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Abstract: The classical Maxwell’s electromagnetic equations were 

obtained for electric field and magnetic field in terms of differential 

operators curl and divergence; these involve space coordinates and 

their directions, but use time as a parameter only. In Special Relativity 

time has been given the status of a coordinate and a direction is 

assigned. Using differential forms we have obtained in an entirely 

new way expressions for these differential operators which are 

invariant under Lorentz transformation: LT. Using these new 

derivations we obtain expressions for curl and divergence of electric 

field and magnetic field. These expressions are related to classical 

Maxwell’s equations in such a natural way that they lead again to the 

conclusion that the latter are invariant under LT and provide an 

Exterior Calculus Perspective of Maxwell’s equations and their 

presentation from the point of view of 4-dimensional space time. 
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1. Introduction 

 

  In an earlier paper published as part of a book1, we studied a LT where 

the moving frame moved with uniform velocity v in an arbitrary direction 

relative to the stationary frame. We obtained some new results which were 

invariant under LT. These helped us to obtain expressions for gradient, 
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divergence, curl and d’Alembertian operator which are invariant under LT. 

The computations involved in obtaining these new results are quite heavy. 

In fact, they are not easily accessible to readers unfamiliar with the theory of 

differential forms in Exterior Calculus. To make our new results more easily 

understandable we used standard LT and obtained the same new results as in 

our earlier paper. These results are available in Krisna S. Amur and 

Christopher R2. Electromagnetic equations were written down, but at that 

time a suitable form needed to relate them to classical Maxwell’s equations 

did not show itself up. This work is taken up in this paper. 
 

We give some mathematical details which will help the reader to 

understand the expressions obtained for differential operators: gradient, 

divergence, curl and d’Alembertian. 
 

Consider a coordinate system 
0 1 2 3( x ,x ,x ,x )  in 4-dimensional space 

time with 0x ct . We assume that the velocity of light c  is unity, so that 
0x t  has the unit of length and 1 2 3x ,x ,x  are space coordinates. This space 

time has a flat metric   which satisfies 
 

(1.1)   1( e ,e )         if 0    

      1      if 1 2 3, , ,     

                                   0     if      
 

where e  , 0 1 2 3, , ,   are basis vectors. This space time with metric   is 

known as Minkowski space. 
 

Standard LT is a transformation from one system of coordinates  x  in a 

Lorentz frame    into another system 'x  in a Lorentz frame ' which is 

moving with uniform velocity v  along 1x -axis.The transformation 

equations are given by
3
 

 

(1.2)   ' '
 x x

  
   ,    

'
 

'
x x

 


  ,
 

 

where we have followed Einstien summation convention for repeated 

indices and the coefficient matrices are constant matrices given by 

  

'
'

0 0 0 0

0 0 0 0
,

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

v v

v v 
 

   

   
     ,    
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where 
2

1

1 v
 


. Using these we have   

 
0' 0 1 1' 0 1 2' 2 3' 3 ,  , ,  xx x vx x vx x x x x           

                 0' 0 1 1' 0 1 2' 2 3' 3, , ,e e ve e ve e e e e e        . 
 

We have 
 

   0 1 2 3 0' 1' 2' 3' '

', , , , ' , , ,x x x x x e x x x x x e 

    X X . 

 

The volume element dV  and star operator *dX in space time are given by  
 

1 2 3 0 ,dV dx dx dx dx     
 

where   is wedge product, it is skew symmetric, e.g 1 2 2 1.dx dx dx dx     
 

2 3 0 3 1 0

1 2

1 2 0 1 2 3

3 0 .

d dx dx dx e dx dx dx e

dx dx dx e dx dx dx e

      

     

X
 

 

Lemma  1.1: Both dV and *dX are invariant under LT.  
 

 Proof: For details of the proof we refer1,2. 
 

Lemma 1.2: Let f be differentiable real valued function and F, a 

differentiable vector field on space time. Then we have 

 

(1.3)  

 

4 0 1 2 30 1 2 3

0 1 2 3

0 1 2 34

0

4 0 30

3

1

2

grad

i

i

i

f f f f
( a ) ( f ) e e e e ,

x x x x

F F F F
( b ) div = ,

x x x x

( c ) ( cur

where is spatial  part  of

d

l ) gradF e ( curl ) ,
x

F e F ,

’ Alembert
f

ian o( d ) f
x

f



    
     

    

    
   

    

 
    

 




 





F

F
F F

F

2 2 2

2 2 2 20 1 2 3

0

f f f
,

x x x

x ctwhere .















           



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These are invariant under LT.  
 

Proof: We give a detailed proof of b) and for the proof of the rest we 

refer
1,2

. 

Consider a differentiable vector field F e

F on space time. Then setting 

x e X  we have 
 

F
d * d dx dx e ,e

x


 

 


    


F X ,  3,2,1,0,,   

              

F
dV

x





 





, 

 

where e ,e      and dx dx dV     

 

                                 
F

dV
x











, on simplification,
          

 
             

 

                                 
0 1 2 3

0 1 2 3

F F F F F
dV dV

x x x xx





     
     

     
 

            
                     

4( )div dV F , by definition of divergence. 

 

Similarly, we can obtain 

 

4( )'d d div dV ,  F X F  

  

where     
0 1 2 3

4
0 1 2 3

div

' ' ' '

' ' ' '

F F F F
( )

x x x x

    
     

     

F
. 

     
 

 

Since * * 'd dX X , 'dV dV , it follows that 4 4( ) ( )'div divF F , hence 

4( )divF  is invariant under LT. 

 

2. Maxwell’s Equations 

 

In 3-dimensional Euclidean space in which charge density 0  and 

electric current density 0J  Maxwell’s equations are given by
4 
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 (2.1)   

3

3

3

3

1
( ) (curl  ) ,

( ) (div ) 0,

1
( ) ( ) ,

( ) (div ) 0.

a
c t

b

c
c t

d


  





 

 
 

curl

H
E

E

E
H

H

,      

 

Both electric field E  and magnetic field H  have no component in the 

direction 0e  of time, we set 0 0E  and 0 0H  , E E and H H , where 

E  and H  are spatial parts of E  and H  respectively. Consider the 

divergence of these fields. From (1.3)(b) we have 
 

3

4 3

1

(div ) (div )
i

i
i

E

x


 


E E  ,    since 0 0E  . 

 

Similarly we can show that, 4 3(div ) (div )H H .  

Using the results in (2.1) we get 

 

(2.2)   4(div ) 0E
   

and    4(div ) 0H .     
 

 

Now consider curl of these fields. Using the formula for curl given in (1.3) 

c) we get 

 

(2.3)   

     

 

     

 

04 30

0

4

04 30

0

4

curl curl ,

0,

curl curl ,

0.

e
x

E

e
x

H


   





   

 




grad

grad

E E E

H H H
   

 

We observe that 0e  is orthogonal to both E and H  which in their turn are 

orthogonal to each other.   

                                

                               H  

                                                   0e  

                       E 
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So we have 0e E H  and 0e  H E . Using these in (2.3) we get  

 

(2.4)   

4 3
0

4 3
0

(curl ) (curl ) ,

( ) ( ) ,

x

x


  


   

 

H
E E

E
H Hcurl curl

                                                                  

 

where 0x ct . 
 

Using these and (2.1), (2.2) we state the following proposition. 

  

Proposition 2.1: In 4-dimensional space time which is free of charge 

density   and electric current density J , Maxwell’s equations are given by 

 

(2.5)   

4 4

4 3

4 3

(div ) 0, (div ) 0,

1
(curl ) (curl ) 0 ,

1
(curl ) (curl ) 0.

c t

c t


  



  




    

E H

H
E E

E
H H

 

 

Since the expression for curl and divergence are invariant under LT, it 

follows that the classical Maxwell’s electromagnetic equations expressed in 

terms of them are also invariant under LT. 
 

We consider an application of the results obtained in Proposition 2.1. In2  

it is shown that  
4

curl grad 0f    , where f is a real valued function on 

space time. Since  
4

curl 0E , we set  
4

gradf .E Then since  
4

div 0 ,E  

we get  
4

div gradf     d’Alembertian of f =0. This leads to the wave 

equation5 

 

(2.6)   
1 2 3

2 2 2 2

2 2 2 2 2

1
   

f f f f
,

c t x x x

   
  

   

 

 

from the formula (d) given in (1.3). 
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Proposition 2.2: General classical Maxwell’s equations can be put in 

the following form: 

 

(2.7)   

 

 

 

 

4

4

4

4

1
( ) Curl ( ) ,

1 4
( ) Curl ( ) ,

( ) div 4 ,

( ) div 0,

a
c t

b
c t c

c

d






  


   

 







E H B

H D E J

D

B

 

  

where  
 

    B=magnetic induction, D=dielectric displacement, 

               ρ=charge density,  J=electric current density. 

 

Proof: General classical Maxwell’s equations are4 

 

(2.8)
   

 

 

 

 

3

3

3

3

1
( ) ,

4 1
( ) ,

( ) 4 ,

( ) 0.

a curl
c t

b curl
c c t

c div

d div






  


  

 







B
E

D
H J

D

B

  

 

From (2.4) and (2.8) we have 

 

   
4 3

1 1
Curl Curl ( )

c t c t

 
   

 

H
E E H B by using (2.8)(a),   x

0
=ct. 

 

   
4 3

1 1 4
Curl Curl ( )

c t c t c

 
     

 

E
H H D E J  by using (2.8)(b). 

 

Since B
0
 and D

0
 are zero,  

0B

t




 and 

0D

t



  
are zero in the expressions for 

 
4

divB  and  
4

divD  and    
4 3

div div 0 B B  and   

   
4 3

div div 4 . D D  
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  Since classical Maxwell’s electrodynamic equations are shown to be 

invariant under LT, it follows that the equations in (2.7) are invariant under 

LT. 
 

Remark: The advantage of finding an expression for  
4

curlF  which 

contains curlF where F  is spatial part of F is clearly seen in the 

computations given above. Classical Maxwell’s equations in free space time 

show themselves in the expressions for  
4

curlE and  
4

curl .H  
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