A Five-Dimensional $\mathbf{C}^{\text {h }}$-Symmetric Finsler Space with Constant Unified Main Scalar*

Anamika Rai and S. K. Tiwari
Department of Mathematics
K.S. Saket Post Graduate College
Ayodhya, Faizabad
Email: anamikarai2538@gmail.com, sktiwarisaket@yahoo.com

(Received December 24, 2015)

Abstract

In the present paper, we have discussed the theory of a fivedimensional C^{h}-symmetric Finsler space with constant unified main scalar. Also, the h -connection vectors of a five-dimensional C^{h}-symmetric Finsler space with constant unified main scalar has been determined.

Keywords: C^{h}-symmetric Finsler space, Miron frame unified main scalar, Landsberg space.

AMS Classification No. : 53B40, 53C60.

1. Introduction

F. Ikeda ${ }^{1}$ discussed the properties of Finsler spaces satisfying the condition $L^{2} C^{2}=f(x)$, where L is the fundamental function and C is the length of the torsion vector C_{i}. Also, Ikeda ${ }^{2}$ considered the condition $L^{2} C^{2}=$ non-zero constant, which is stronger than the corresponding condition considered in 1984. A two-dimensional Berwald space is an example of such a Finsler space with constant function LC. A theory of intrinsic orthonormal frame field on an n-dimensional Finsler space, as a generalization of Berwald's and Moor's ideas on two-dimensional and threedimensional Finsler spaces respectively, has been studied by Matsumoto and Miron ${ }^{3}$.

A three-dimensional Finsler space with constant unified main scalar has been studied by Ikela ${ }^{4}$ and Singh and Kumari ${ }^{5}$. The four-dimensional $C^{h}-$ symmetric Finsler space with constant unified main scalar has been studied by Tiwari and Rai ${ }^{6}$.

[^0]The main scalar of a five-dimensional Finsler space has been studied by Shanker, Chaubey and Pandey ${ }^{7}$. A Finsler space F^{n} is called $C^{h}-$ symmetric Finsler space if $C_{i j| | h}=C_{i j|k| k}$. In the present paper, we have discussed the theory of a five-dimensional C^{h}-symmetric Finsler space with constant unified main scalar. The orthonormal frame field $\left(l^{i}, m^{i}, n^{i}, p^{i}, q^{i}\right)$, called the Miron frame, plays an important role in a fivedimensional C^{h}-symmetric Finsler space.

2. Scalar Components in Miron Frame

Let us consider a five-dimensional Finsler space F^{5} with the fundamental function $L(x, y)$. The metric tensor $g_{i j}$ and C - tensor $C_{i j k}$ of F^{5} are defined by

$$
g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}, C_{i j k}=\frac{1}{4} \dot{\partial}_{i} \dot{\partial}_{j} \dot{\partial}_{k} L^{2} .
$$

Throughout this paper, we use the symbols $\dot{\partial}_{i}=\frac{\partial}{\partial y^{i}}$ and $\partial_{i}=\frac{\partial}{\partial x^{i}}$. The frame $\left\{e_{(\alpha)}^{i}\right\}, \alpha=1,2,3,4,5$ is called Miron frame of F^{5}, where $e_{(1)}^{i}=l^{i}=\frac{y^{i}}{L}$ is the normalized supporting element, $e_{(2)}^{i}=m^{i}=\frac{c^{i}}{c}$ is the normalized torsion vector, $e_{(3)}^{i}=n^{i}, e_{(4)}^{i}=p^{i}, e_{(5)}^{i}=q^{i}$ are constructed by $g_{i j} e_{(\alpha)}^{i} e_{(\beta)}^{i}=\delta_{\alpha \beta}$. Here C is the length of the torsion vector $C_{i}=C_{i j k} g^{j k}$.

The Greek letters $\alpha, \beta, \gamma, \delta$ vary from 1 to 5 throughout the paper. Summation convention is applied for both the Greek and Latin indices.In the Miron's frame an arbitrary tensor can be expressed by scalar components along the unit vectors, $l^{i}, m^{i}, n^{i}, p^{i}$ and q^{i} For instance, let $T=T_{j}^{i}$ be a tensor field of $(1,1)$ type, then the scalar components $T_{\alpha \beta}$ of T_{j}^{i} are defined by

$$
T_{j}^{i}=T_{j}^{i} e_{(\alpha) i} e_{(\beta)}^{j} .
$$

and the components T_{j}^{i} of the tensor T are expressed as

$$
T_{j}^{i}=T_{\alpha \beta} e_{(\alpha)}^{i} e_{(\beta) j}^{i} .
$$

From the equations $g_{i j} e_{(\alpha)}^{i} e_{(\beta)}^{i}=\delta_{\alpha \beta}$, we have

$$
\begin{equation*}
g_{i j}=l_{i} l_{j}+m_{i} m_{j}+n_{i} n_{j}+p_{i} p_{j}+q_{i} q_{j} \tag{2.1}
\end{equation*}
$$

Next, the C-tensor $C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}$ satisfies $C_{i j k} l^{i}=0$ and is symmetric in i, j, k therefore if $C_{\alpha \beta \gamma}$ are scalar components of $L C_{i j k}$, that is if

$$
\begin{equation*}
L C_{i j k}=C_{\alpha \beta \gamma} e_{(\alpha) i} e_{(\beta) j} e_{(\gamma) k}, \tag{2.2}
\end{equation*}
$$

then, we have

$$
\begin{align*}
L C_{i j k} & =C_{222} m_{i} m_{j} m_{k}+C_{223} \Pi_{(i j k)}\left(m_{i} m_{j} m_{k}\right)+C_{233} \Pi_{(i j k)}\left(m_{i} n_{j} n_{k}\right) \tag{2.3}\\
& +C_{333}\left(n_{i} n_{j} n_{k}\right)+C_{224} \Pi_{(i j k)}\left(m_{i} m_{j} p_{k}\right)+C_{444}\left(p_{i} p_{j} p_{k}\right) \\
& +C_{244} \Pi_{(i j k)}\left(m_{i} p_{j} p_{k}\right)+C_{255} \Pi_{(i j k)}\left(m_{i} m_{j} q_{k}\right)+C_{255} \Pi_{(i j k)}\left(m_{i} q_{j} q_{k}\right) \\
& +C_{555}\left(q_{i} q_{j} q_{k}\right)+C_{334} \Pi_{(i j k)}\left(n_{i} n_{j} p_{k}\right)+C_{344} \Pi_{(i j k)}\left(n_{i} p_{j} p_{k}\right) \\
& +C_{335} \Pi_{(i j k)}\left(n_{i} n_{j} q_{k}\right)+C_{355} \Pi_{(i j k)}\left(n_{i} q_{j} q_{k}\right)+C_{445} \Pi_{(i j k)}\left(p_{i} p_{j} q_{k}\right) \\
& +C_{455} \Pi_{(i j k)}\left(p_{i} q_{j} q_{k}\right)+C_{234} \Pi_{(i j k)}\left\{m_{i}\left(n_{j} p_{k}+n_{k} p_{j}\right)\right\} \\
& +C_{235} \Pi_{(i j k)}\left\{m_{i}\left(n_{j} q_{k}+n_{k} q_{j}\right)\right\}+C_{245} \Pi_{(i j k)}\left\{m_{i}\left(p_{j} q_{k}+p_{k} q_{j}\right)\right\} \\
& +C_{345} \Pi_{(i j k)}\left\{n_{i}\left(p_{j} q_{k}+p_{k} q_{j}\right)\right\},
\end{align*}
$$

where $\prod_{(i j k)}\{\ldots \ldots .$.$\} denotes the cyclic interchange of i, j, k$ and summation. For instance,

$$
\Pi_{(i j k)}\left\{A_{i} B_{j} C_{k}\right\}=A_{i} B_{j} C_{k}+A_{j} B_{k} C_{i}+A_{k} B_{i} C_{j} .
$$

Contracting (2.2) with $g^{i j}$, we get $L C M_{i}=C_{\alpha \beta \beta} C_{(\alpha) i .}$ Thus, if we put

$$
\left\{\begin{array}{l}
C_{222}=H, C_{233}=I, C_{244}=K, C_{333}=J, \tag{2.4}\\
C_{344}=J^{\prime}, C_{444}=H^{\prime}, C_{334}=I^{\prime}, C_{234}=K^{\prime}, \\
C_{255}=M, C_{355}=J^{\prime \prime}, C_{455}=M^{\prime}, C_{555}=H^{\prime \prime}, \\
C_{335}=I^{\prime \prime}, C_{445}=K^{\prime \prime}, C_{235}=N, C_{245}=N^{\prime}, \\
C_{345}=M^{\prime \prime},
\end{array}\right.
$$

then, we have

$$
\left\{\begin{array}{l}
H+I+K+M=L C, C_{233}=-\left(J+J^{\prime}+J^{\prime \prime}\right) \tag{2.5}\\
C_{224}=-\left(H^{\prime}+I^{\prime}+M^{\prime}\right), C_{225}=-\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) .
\end{array}\right.
$$

The seventeen scalars $H, I, J, K, H^{\prime}, I^{\prime}, J^{\prime}, K^{\prime}, H^{\prime \prime}, I^{\prime \prime}, J^{\prime \prime}, K^{\prime \prime}, M, M^{\prime}, M^{\prime \prime}, N, N^{\prime}$ are called the main scalars of a five-dimensional Finsler space. We shall use Cartan's connection $C \Gamma=\Gamma_{j k}^{i}, G_{j}^{i}, C_{j k}^{i}$ in the following section of this paper. The h-covariant derivative of the frame field $e_{(\alpha) i}$ are given by ${ }^{8}$

$$
\begin{equation*}
e_{(\alpha) i \mid j}=H_{(\alpha) \beta \gamma} e_{(\beta) i} e_{(\gamma) j}, \tag{2.6}
\end{equation*}
$$

$H_{(\alpha) \beta \gamma}, \gamma$ being fixed, are given by

$$
H_{(\alpha) \beta \gamma}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \tag{2.7}\\
0 & 0 & h_{r} & J_{r} & k_{r} \\
0 & -h_{r} & 0 & h_{r}^{\prime} & J_{r}^{\prime} \\
0 & -J_{r} & -h_{r}^{\prime} & 0 & k_{r}^{\prime} \\
0 & -k_{r} & -J_{r}^{\prime} & -k_{r}^{\prime} & 0
\end{array}\right] .
$$

In (2.7), we have put

$$
\begin{aligned}
& H_{2(3)}=-H_{312}=h_{r}, H_{244 \gamma}=-H_{4,2 \gamma}=J_{r}, H_{2) 5 \gamma}=-H_{552 \gamma}=k_{r}, \\
& H_{3) 4 \gamma}=-H_{4,3 \gamma}=h_{r}^{\prime}, H_{3) 5 \gamma}=-H_{5(3)}=J_{r}^{\prime}, H_{4) 5 \gamma}=-H_{554 \gamma}=k_{r}^{\prime} .
\end{aligned}
$$

Thus, in a five-dimensional Finsler space there exist six h-connections vector $h_{i}, j_{i}, k_{i}, h_{i}^{\prime}, j_{i}^{\prime}, k_{i}^{\prime}$ whose scalar components with respect to Miron frame are $h_{r}, J_{r}, k_{r}, H_{r}^{\prime}, J_{r}^{\prime}, k_{r}^{\prime}$ that is

$$
\left\{\begin{array}{l}
h_{i}=h_{r} e_{(r) i}, J_{i}=J_{r} e_{(r) i}, k_{i}=k_{r} e_{(r) i} \tag{2.8}\\
h_{i}^{\prime}=h_{r}^{\prime} e_{(r) i}, J_{i=}^{\prime}=J_{r} e_{(r) i}, k_{i}^{\prime}=k_{r}^{\prime} e_{(r) i}
\end{array}\right.
$$

A Finsler space F^{n} is called C^{h} - symmetric Finsler if

$$
\begin{equation*}
C_{i j k \mid h}=C_{i j h \mid k} \tag{2.9}
\end{equation*}
$$

where | denote h-covariant derivative with respect to Cartan's connections.
With the help of equations (2.7) and (2.8), the equations (2.6) can be explicitly written as

$$
\left\{\begin{array}{l}
l_{1 \mid j}=0, m_{i \mid j}=n_{i} h_{j}+p_{i} J_{j}+q_{i} k_{j}, \tag{2.10}\\
n_{i} \mid j=-m_{i} h_{j}+p_{i} h_{j}+q_{i} J_{j}^{\prime}, \\
p_{i \mid j}=-m_{i} J_{j}-n_{i} h_{j}^{\prime}+q_{i} k_{j}^{\prime}, \\
q_{i \mid j}=-m_{i} k_{j}-n_{i} J_{j}^{\prime}-p_{i} k_{j}^{\prime} .
\end{array}\right.
$$

The h-scalar derivative of the adopted components $T_{\alpha \beta}$ of the tensor T_{j}^{i} of $(1,1)$ type is defined as ${ }^{9}$

$$
\begin{equation*}
T_{\alpha \beta, \gamma}=\left(\delta_{k} T_{\alpha \beta}\right) e_{(r)}^{k}+T_{\mu \beta} H_{(\mu) \alpha \gamma}+T_{\alpha \mu} H_{(\mu) \beta \gamma}, \tag{2.11}
\end{equation*}
$$

where $\delta_{k}=\partial_{k}-G_{k}^{r} \dot{\partial}_{r}$.
Thus is $T_{\alpha \beta \gamma}$ is adopted components of $T_{j k}^{i}$, that is

$$
\begin{equation*}
T_{j k}^{i}=T_{\alpha \beta, \gamma} e_{(\alpha)}^{i} e_{(\beta) j} e_{(\gamma) k} \tag{2.12}
\end{equation*}
$$

From (2.2), it follows that

$$
\begin{equation*}
L C_{h i j k}=C_{\alpha \beta \gamma, \delta} e_{(\alpha) h} e_{(\beta) i} e_{(\gamma) j} e_{(\delta) k} \tag{2.13}
\end{equation*}
$$

The explicit form of $C_{\alpha \beta \gamma, \delta}$ is easily obtained:

$$
\left\{\begin{align*}
(\text { a }) C_{1 \beta \gamma, \delta}= & 0, \\
(b) C_{222, \delta}= & H_{, \delta}+3\left(J^{\prime}+J^{\prime}+J^{\prime \prime}\right) h_{\delta}+3\left(H^{\prime}+I^{\prime}+M^{\prime}\right) J_{\delta} \\
& +3\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) k_{\delta}, \\
(c) C_{223, \delta}= & -\left(J^{\prime}+J^{\prime}+J^{\prime \prime}\right),_{\delta}+(H-2 I) h_{\delta}-2 K^{\prime} J_{\delta}-2 N k_{\delta} \\
& +\left(H^{\prime}+I^{\prime}+M^{\prime}\right) h_{\delta}^{\prime}+\left(H^{\prime \prime}+I^{\prime \prime}+M^{\prime \prime}\right) J_{\delta}^{\prime}, \\
(d) C_{224, \delta}= & -\left(H^{\prime}+I^{\prime}+M^{\prime}\right),_{\delta}-2 K^{\prime} h_{\delta}+(H-2 K) J_{\delta}-2 N^{\prime} k_{\delta} \tag{2.14}\\
& -\left(J^{\prime}+J^{\prime}+J^{\prime \prime}\right) h_{\delta}^{\prime}+\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) k_{\delta,}^{\prime} \\
(e) C_{225, \delta}= & -\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right),_{\delta}-2 N h_{\delta}-2 N^{\prime} J_{\delta}+(H-2 M) k_{\delta} \\
& -\left(J^{\prime}+J^{\prime}+J^{\prime \prime}\right) J_{\delta}^{\prime}-\left(H^{\prime}+I^{\prime}+M^{\prime}\right) k_{\delta,}^{\prime}, \\
(f) C_{233, \delta}= & I_{\delta}-\left(3 J^{\prime}+2 J^{\prime}+2 J^{\prime \prime}\right) h_{\delta}-I^{\prime} J_{\delta}-I^{\prime \prime} k_{\delta}-2 N J_{\delta}^{\prime}-2 k^{\prime} h_{\delta}^{\prime}, \\
(g) C_{234, \delta}= & K^{\prime},_{\delta}-\left(2 I^{\prime}+H^{\prime}+M^{\prime}\right) h_{\delta}-\left(2 J^{\prime}+J^{\prime \prime}+J^{\prime \prime}\right) J_{\delta}-M^{\prime \prime} k_{\delta} \\
& -(K t I) h_{\delta}^{\prime}-N^{\prime} J^{\prime}{ }_{\delta}-N k_{\delta,}^{\prime},
\end{align*}\right.
$$

$$
\begin{aligned}
& \int(h) C_{235, \delta}=N,_{\delta}-\left(2 I^{\prime \prime}+H^{\prime \prime}+K^{\prime \prime}\right) h_{\delta}-M^{\prime \prime} J_{\delta}-\left(J+J^{\prime}+2 J^{\prime \prime}\right) k_{\delta} \\
& -N^{\prime} h^{\prime}{ }_{\delta}-(M-I) J^{\prime}{ }_{\delta}+K^{\prime}{ }^{\prime}{ }^{\prime}{ }_{\delta} \\
& \text { (i) } C_{244, \delta}=K,{ }_{\delta}-J^{\prime} h_{\delta}-\left(3 H^{\prime}+2 I^{\prime}+2 M^{\prime}\right) J_{\delta}+2 K^{\prime} h^{\prime}{ }_{\delta}-K^{\prime \prime} k_{\delta}-2 N^{\prime} k^{\prime}{ }_{\delta} \text {, } \\
& \text { (j) } C_{245, \delta}=N^{\prime},_{\delta}-M^{\prime \prime} h_{\delta}-\left(H^{\prime \prime}+I^{\prime \prime}+2 K^{\prime \prime}\right) J_{\delta}+N h^{\prime}{ }_{\delta} \\
& -\left(H^{\prime}+I^{\prime}+2 M^{\prime}\right) k_{\delta}+K^{\prime} J^{\prime}{ }_{\delta}+(K-M) k_{\delta}^{\prime}, \\
& \text { (k) } C_{255, \delta}=M,{ }_{\delta}-J^{\prime \prime} h_{\delta}-M^{\prime} J_{\delta}-\left(3 H^{\prime \prime}+2 I^{\prime \prime}+2 K^{\prime \prime}\right) k_{\delta} \\
& +2 N J{ }_{\delta}{ }^{\prime}+2 N^{\prime} k^{\prime}{ }_{\delta}, \\
& \text { (l) } C_{333, \delta}=J,_{\delta}+3\left(I h_{\delta}-I^{\prime} h_{\delta}^{\prime}-I^{\prime \prime} J^{\prime}{ }_{\delta}\right) \text {, } \\
& \text { (m) } C_{334, \delta}=I^{\prime},_{\delta}+2 K^{\prime} h_{\delta}+I J_{\delta}+\left(J-2 J^{\prime}\right) h_{\delta}^{\prime}-2 M^{\prime \prime} J^{\prime} \delta_{\delta}-I^{\prime \prime} k^{\prime}{ }_{\delta} \\
& \text { (n) } C_{335, \delta}=I^{\prime \prime},_{\delta}+2 N h_{\delta}-2 M^{\prime \prime} h^{\prime}{ }_{\delta}+\left(J-2 J^{\prime \prime}\right) J^{\prime}{ }_{\delta}+I k_{\delta}+I^{\prime} k^{\prime}{ }_{\delta} \text {, } \\
& \text { (o) } C_{344, \delta}=J^{\prime},_{\delta}+K h_{\delta}+2 K^{\prime} J_{\delta}-\left(H-2 I^{\prime}\right) h_{\delta}^{\prime}-K^{\prime \prime} J^{\prime}{ }_{\delta}-2 M^{\prime \prime} k^{\prime}{ }_{\delta} \text {, } \\
& \text { (p) } C_{345, \delta}=M^{\prime \prime}{ }^{\prime}{ }_{\delta}+N^{\prime} h_{\delta}+N J_{\delta}+\left(I^{\prime \prime}-K^{\prime \prime}\right) h^{\prime}{ }_{\delta}+K^{\prime} k_{\delta}+\left(I^{\prime}-M^{\prime}\right) J^{\prime}{ }_{\delta} \\
& +\left(J^{\prime}-J^{\prime \prime}\right) k_{\delta,}^{\prime}, \\
& \text { (q) } C_{355, \delta}=J^{\prime \prime},_{\delta}+M h_{\delta}-M^{\prime} h_{\delta}^{\prime}+2 N k_{\delta}-\left(H^{\prime \prime}-2 I^{\prime \prime}\right) J_{\delta}^{\prime}+2 M^{\prime \prime} k^{\prime}{ }_{\delta} \text {, } \\
& \text { (r) } C_{444, \delta}=H^{\prime},_{\delta}+3\left(K J_{\delta}+J^{\prime} h_{\delta}^{\prime}-K^{\prime \prime} k^{\prime}{ }_{\delta}\right) \text {, } \\
& \text { (s) } C_{445, \delta}=K^{\prime \prime},_{\delta}+2 N^{\prime} J_{\delta}+2 M^{\prime \prime} h_{\delta}^{\prime}+K k_{\delta}+J^{\prime} J^{\prime}{ }_{\delta}+\left(H^{\prime}-2 M^{\prime}\right) k^{\prime}{ }_{\delta} \text {, } \\
& \text { (t) } C_{455, \delta}=M^{\prime},_{\delta}+M J_{\delta}+J^{\prime \prime} h_{\delta}^{\prime}+2 N^{\prime} k_{\delta}+2 M^{\prime} J_{\delta}^{\prime}-\left(H^{\prime \prime}-2 K^{\prime \prime}\right) k_{\delta}^{\prime} \text {, } \\
& (u) C_{555, \delta}=H^{\prime \prime}{ }^{\prime}{ }_{\delta}+3\left(M k_{\delta}+J^{\prime \prime} J^{\prime}{ }_{\delta}+M^{\prime} k^{\prime}{ }_{\delta}\right) \text {. }
\end{aligned}
$$

where $H,{ }_{\delta}$, for instance is the h-scalar derivative of the single scalar H, namely $H_{, \delta}=\left(\delta_{i} H\right) e_{(\delta)}^{i}$.
Making use of equation (2.9), equation (2.13) yields

$$
\begin{equation*}
C_{\alpha \beta \gamma, \delta}-C_{\alpha \beta \delta, \gamma}=0 . \tag{2.15}
\end{equation*}
$$

This equation is explicitly written as:

$$
\left\{\begin{align*}
(a)- & \left(J+J^{\prime}+J^{\prime \prime}\right)_{, 2}+(H-2 I) h_{2}-2 K^{\prime} J_{2}-2 N k_{2}+ \\
& \left(H^{\prime}+I^{\prime}+M^{\prime}\right) H_{2}^{\prime}+\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) J^{\prime}{ }_{2} \tag{2.16}\\
& =H,_{3}+3\left(J+J^{\prime}+J^{\prime \prime}\right) h_{3}+3\left(H^{\prime}+I^{\prime}+M^{\prime}\right) J_{3} \\
& +3\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) k_{3},
\end{align*}\right.
$$

$$
\begin{aligned}
& \text { (b) } I^{\prime} 2-\left(3 J+2 J^{\prime}+2 J^{\prime \prime}\right) h_{2}-I^{\prime} J_{2}-I^{\prime \prime} k_{2}-2 K^{\prime} h^{\prime}-2 N J_{2}{ }^{\prime} \\
& =-\left(J+J^{\prime}+J^{\prime \prime}\right)_{; 3}+(H-2 I) h_{3}-2 K^{\prime} J_{3}-2 N k_{3} \\
& \left(H^{\prime}+I^{\prime}+M^{\prime}\right) h_{3}^{\prime}+\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) J^{\prime}{ }_{3}, \\
& \text { (c) } K^{\prime}{ }_{, 2}-\left(2 I^{\prime}+H^{\prime}+M^{\prime}\right) h_{2}-\left(2 J^{\prime}+J+J^{\prime \prime}\right) J_{2}-M^{\prime \prime} k_{2}-(K-I) h_{2}^{\prime} \\
& -N^{\prime} J^{\prime}{ }_{2}-N k^{\prime}{ }_{2}=-\left(J+J^{\prime}+J^{\prime \prime}\right)_{4}+(H-2 I) h_{4}-2 K^{\prime} J_{4} \\
& -2 N k_{4}+\left(H^{\prime}+I^{\prime}+M^{\prime}\right) h_{4}^{\prime}+\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) J^{\prime}{ }_{4} \\
& =-\left(H^{\prime}+I^{\prime}+M^{\prime}\right)_{3}-2 k^{\prime} h_{3}+(H-2 K) J_{3}-2 N^{\prime} k_{3} \\
& -\left(J+J^{\prime}+J^{\prime \prime}\right) h^{\prime}{ }_{3}+\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) k^{\prime}{ }_{3}, \\
& \text { (d) } N_{, 2}-\left(2 I^{\prime \prime}+H^{\prime \prime}+K^{\prime \prime}\right) h_{2}-M^{\prime \prime} J_{2}-\left(J+J^{\prime}+2 J^{\prime \prime}\right) k_{2} \\
& \text { - } N^{\prime} h^{\prime}{ }_{2}-(M-I) J^{\prime}{ }_{2}+K^{\prime} k^{\prime}{ }_{2} \\
& =-\left(J+J^{\prime}+J^{\prime \prime}\right)_{5}+(H-2 I) h_{5}-2 K^{\prime} J_{5}-2 N k_{5} \\
& +\left(H^{\prime}+I^{\prime}+M^{\prime}\right) h_{5}{ }_{5}+\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) J^{\prime}{ }_{5} \\
& =-\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right)_{, 3}-2 N h_{3}-2 N^{\prime} J_{3}+(H-2 M) k_{3} \\
& -\left(J+J^{\prime}+J^{\prime \prime}\right) J_{3}^{\prime}-\left(H^{\prime}+J^{\prime}+M^{\prime}\right) k^{\prime}{ }_{3}, \\
& \text { (e) } J_{, 2}+3\left(I h_{2}-I^{\prime} h^{\prime}{ }_{2}-I^{\prime \prime} J^{\prime}{ }_{2}\right)=I_{, 3}-\left(3 J+2 J^{\prime}+2 J^{\prime \prime}\right) h_{3} \\
& -I^{\prime} J_{3}-I^{\prime \prime} k_{3}-2 k^{\prime} h^{\prime}{ }_{3}-2 N J_{3}^{\prime} \\
& \text { (f) } I_{, 2}^{\prime}+2 k^{\prime} h_{2}+I J_{2}+\left(J-2 J^{\prime}\right) h^{\prime} 2-2 M^{\prime \prime} J^{\prime}{ }_{2}-I^{\prime \prime} k^{\prime}{ }_{2} \\
& =k_{, 3}^{\prime}-\left(2 I^{\prime}+H^{\prime}+M^{\prime}\right) h_{3}-\left(2 J^{\prime}+J+J^{\prime \prime}\right) J_{3}-M^{\prime \prime} k_{3} \\
& -(K-I) h_{3}^{\prime}-N^{\prime} J^{\prime}{ }_{3}-N k_{3}^{\prime}=I_{4}-\left(3 J+2 J^{\prime}+2 J^{\prime \prime}\right) h_{4} \\
& -I^{\prime} J_{4}-I^{\prime \prime} k_{4}-2 K^{\prime} h_{4}-2 N J_{4}^{\prime}, \\
& (g) I{ }^{\prime \prime}{ }_{2}+2 N h_{2}-2 M " h^{\prime}{ }_{2}+\left(J-2 J^{\prime \prime}\right) J^{\prime}{ }_{2}+I k_{2}+I^{\prime} k^{\prime}{ }_{2} \\
& =N_{, 3}-\left(2 I^{\prime \prime}+H^{\prime \prime}+K^{\prime \prime}\right) h_{3}-M^{\prime \prime} J_{3}-\left(J+J^{\prime}+2 J^{\prime \prime}\right) k_{3} \\
& -N^{\prime} h^{\prime}{ }_{3}-(M-I) J_{3}^{\prime}+K^{\prime} k^{\prime}{ }_{3} \\
& =I_{, 5}-\left(3 J+2 J^{\prime}+2 J^{\prime \prime}\right) h_{5}-I^{\prime} J_{s} \\
& \text { - I' } k_{5}-2 K^{\prime} h^{\prime}{ }_{5}-2 N J^{\prime}{ }_{5} \text {, }
\end{aligned}
$$

(h) $\quad J_{, 2}^{\prime}+K h_{2}+2 k^{\prime} J_{2}-\left(H^{\prime}-2 I^{\prime}\right) H_{2}^{\prime}-K^{\prime \prime} J_{2}^{\prime}-2 M^{\prime \prime} k_{2}^{\prime}$

$$
\begin{aligned}
= & K_{, 3}+J^{\prime} h_{3}-\left(3 H^{\prime}+2 I^{\prime}+2 M^{\prime}\right) J_{3}+2 K^{\prime} h_{3}^{\prime}-K^{\prime \prime} k_{3}-2 N^{\prime} k_{3}^{\prime} \\
= & K_{, 4}^{\prime}-\left(2 I^{\prime}+H^{\prime}+M^{\prime}\right) h_{4}-\left(2 J^{\prime}+J+J^{\prime \prime}\right) J_{4} \\
& -M^{\prime \prime} k_{4}-(K-I) h_{4}^{\prime}-N^{\prime} J_{4}^{\prime}-N k_{4}^{\prime},
\end{aligned}
$$

(i) $J_{, 2}^{\prime \prime}+M h_{2}-M h_{2}^{\prime}+2 N k_{2}-\left(H^{\prime \prime}-2 I^{\prime \prime}\right) J_{2}^{\prime}+2 M^{\prime \prime} k_{2}^{\prime}$

$$
\begin{aligned}
= & M_{, 3}-J^{\prime \prime} h_{3}-M^{\prime} J_{3}-\left(3 H^{\prime \prime}+2 I^{\prime \prime}+2 K^{\prime \prime}\right) k_{3}+2 N J_{3}^{\prime}+2 N^{\prime} k_{3}^{\prime} \\
= & N,{ }_{5}-\left(2 I^{\prime \prime}+H^{\prime \prime}+K^{\prime \prime}\right) h_{5}-M^{\prime \prime} J_{5}-\left(J+J^{\prime}+2 J^{\prime \prime}\right) k_{5} \\
& -N^{\prime} h_{5}^{\prime}-(M-I) J_{5}^{\prime}+k^{\prime} k_{5}^{\prime},
\end{aligned}
$$

(j) $\quad M_{, 2}^{\prime \prime}+N^{\prime} h_{2}+N J_{2}+\left(I^{\prime \prime}-K^{\prime \prime}\right) h^{\prime}+k^{\prime} k_{2}+\left(I^{\prime}-M^{\prime}\right) J_{2}^{\prime}+\left(J^{\prime}-J^{\prime \prime}\right) k_{2}^{\prime}$

$$
\begin{aligned}
= & N_{, 3}^{\prime}-M^{\prime \prime} h_{3}-\left(H^{\prime \prime}+I^{\prime \prime}+2 K^{\prime \prime}\right) J_{3}+N h_{3}^{\prime}-\left(H^{\prime}+I^{\prime}+2 M^{\prime}\right) k_{3} \\
& +K^{\prime} J_{3}^{\prime}+(K-M) k_{3}^{\prime} \\
= & N_{, 4}-\left(2 I^{\prime \prime}+H^{\prime \prime}+K^{\prime \prime}\right) h_{4}-M^{\prime \prime} J_{4}-\left(J+J^{\prime}+2 J^{\prime \prime}\right) k_{4}-N^{\prime} h_{4}^{\prime} \\
& -(M-I) J_{4}^{\prime}+k^{\prime} k_{4}^{\prime} \\
= & K^{\prime},{ }_{5}-\left(2 I^{\prime}+H^{\prime}+M^{\prime}\right) h_{5}-\left(2 J^{\prime}+J+J^{\prime \prime}\right) J_{5}-M^{\prime \prime} k_{5}-(K-I) h_{5}^{\prime} \\
& -N^{\prime} J_{5}^{\prime}-N k_{5}^{\prime},
\end{aligned}
$$

(k) $\quad-\left(H^{\prime}+I^{\prime}+M^{\prime}\right)_{, 2}-2 K^{\prime} h_{2}+(H-2 K) J_{2}-2 N^{\prime} k_{2}-\left(J+J^{\prime}+J^{\prime \prime}\right) h_{2}^{\prime}$

$$
\begin{aligned}
& +\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) K_{2}^{\prime} \\
& =H_{, 4}+3\left(J+J^{\prime}+J^{\prime \prime}\right) h_{4}+3\left(H^{\prime}+I^{\prime}+M^{\prime}\right) J_{4}+3\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) k_{4}
\end{aligned}
$$

(l) $K_{, 2}+J^{\prime} h_{2}-\left(3 H^{\prime}+2 I^{\prime}+2 M^{\prime}\right) J_{2}+2 K^{\prime} h_{2}^{\prime}-K^{\prime \prime} k_{2}-2 N^{\prime} k_{2}^{\prime}$
$=-\left(H^{\prime}+I^{\prime}+M^{\prime}\right)_{, 4}-2 K^{\prime} h_{4}+(H-2 k) J_{4}-2 N^{\prime} k_{4}-\left(J+J^{\prime}+J^{\prime \prime}\right) h_{4}^{\prime}$
$+\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) k_{4}^{\prime}$,
(m) $\quad H_{, 2}^{\prime}+3\left(K J_{2}+J^{\prime} h_{2}^{\prime}+K^{\prime \prime}\right) k_{2}^{\prime}=K_{, 4}-J^{\prime} h_{4}-\left(3 H^{\prime}+2 I^{\prime}+2 M^{\prime}\right) J_{4}$

$$
+2 K^{\prime} h_{4}-K^{\prime \prime} k_{4}-2 N^{\prime} k_{4}^{\prime},
$$

(n) $\quad K_{, 2}^{\prime \prime}+2 N^{\prime} J_{2}+2 M^{\prime \prime} h_{2}^{\prime}+K k_{2}+J^{\prime} J^{\prime}{ }_{2}+\left(H^{\prime}-2 M^{\prime}\right) k_{2}^{\prime}$

$$
\begin{aligned}
= & N_{, 4}^{\prime}-M^{\prime \prime} h_{4}-\left(H^{\prime \prime}+I^{\prime \prime}+2 K^{\prime \prime}\right) J_{4}+N h_{4}^{\prime}-\left(H^{\prime}+I^{\prime}+2 M^{\prime}\right) k_{4} \\
& +K^{\prime} J_{4}^{\prime}+(K-M) k_{4}^{\prime}=K_{, 5}-J^{\prime} h_{5}-\left(3 H^{\prime}+2 I^{\prime}+2 M^{\prime}\right) J_{5} \\
& +2 K^{\prime} h_{5}^{\prime}-K^{\prime \prime} k_{5}-2 N^{\prime} k_{5}^{\prime}
\end{aligned}
$$

(o) $\quad M_{, 2}^{\prime}+M J_{2}+J^{\prime \prime} u^{\prime}{ }_{2}+2 N^{\prime} k_{2}+2 M^{\prime \prime} J^{\prime}{ }_{2}-\left(H^{\prime \prime}-2 K^{\prime \prime}\right) k_{2}^{\prime}$

$$
=M_{, 4}-J^{\prime \prime} h_{4}-M^{\prime} J_{4}-\left(3 H^{\prime \prime}+2 I^{\prime \prime}+2 K^{\prime \prime}\right) k_{4}+2 N J_{4}^{\prime}
$$

$$
+2 N^{\prime} k_{4}^{\prime}=N_{, 5}^{\prime}-M " h_{5}-\left(H^{\prime \prime}+I^{\prime \prime}+2 K^{\prime \prime}\right) J_{5}+N h_{5}^{\prime}
$$

$$
-\left(H^{\prime}+I^{\prime}+2 M^{\prime}\right) k_{5}+K^{\prime} J_{5}^{\prime}+(K-M) k_{5}^{\prime}
$$

(p) $I_{, 3}^{\prime}+2 K^{\prime} h_{3}+I J_{3}+\left(J-2 J^{\prime}\right) h_{3}^{\prime}-2 M^{\prime \prime} J_{3}^{\prime}-I^{\prime \prime} k_{3}^{\prime}$
$=J_{, 4}+3\left(I h_{4}-I^{\prime} h_{4}^{\prime}-I^{\prime \prime} J_{4}^{\prime}\right)$,

$$
\left[\begin{array}{rl}
(q) & J_{3}^{\prime}+K h_{3}+2 K^{\prime} J_{3}-\left(H^{\prime}-2 I^{\prime}\right) h_{3}^{\prime}-K^{\prime \prime} J_{3}^{\prime}-2 M^{\prime \prime} k_{3}^{\prime} \\
& =I_{, 4}^{\prime}+2 K^{\prime} h_{4}+I J_{4}+\left(J-2 J^{\prime}\right) h_{4}^{\prime}-2 M^{\prime \prime} J_{4}^{\prime}-I^{\prime \prime} k_{4}^{\prime} \\
(r) & M_{, 3}^{\prime \prime}+N^{\prime} h_{3}+N J_{3}+\left(I^{\prime \prime}+K^{\prime \prime}\right) h_{3}^{\prime}+K^{\prime} k_{3}+\left(I^{\prime}-M^{\prime}\right) J_{3}^{\prime}+\left(J^{\prime}-J^{\prime \prime}\right) k_{3}^{\prime} \\
& =I_{, 4}^{\prime \prime}+2 N h_{4}-2 M^{\prime \prime} h_{4}^{\prime}+\left(J-2 J^{\prime \prime}\right) J_{4}^{\prime}+I k_{4}+I^{\prime} k_{4}^{\prime} \\
& =I_{, 5}^{\prime}+2 K^{\prime} h_{5}+I J_{5}+\left(J-2 J^{\prime}\right) h_{5}^{\prime}-2 M^{\prime \prime} J_{5}^{\prime}-I^{\prime \prime} k_{5}^{\prime}
\end{array}\right.
$$

(s) $H_{, 3}^{\prime}+3\left(K J_{3}+J^{\prime} h_{3}-K^{\prime \prime} J_{3}^{\prime}-2 M^{\prime \prime} k_{3}^{\prime}\right)=J_{, 4}^{\prime}+K h_{4}+2 K^{\prime} J_{4}-\left(H^{\prime}-2 I^{\prime}\right) h_{4}^{\prime}$ $-K^{\prime \prime} J_{4}^{\prime}-2 M^{\prime \prime} k_{4}^{\prime}$,
(t) $T_{, 3}^{\prime \prime}+2 N^{\prime} J_{3}+2 M^{\prime \prime} h_{3}^{\prime}+K k_{3}+J^{\prime} J_{3}^{\prime}+\left(H^{\prime}-2 M^{\prime}\right) k_{3}^{\prime}$

$$
\begin{aligned}
& =M_{, 4}^{\prime \prime}+N^{\prime} h_{4}+N J_{4}+\left(I^{\prime \prime}-K^{\prime \prime}\right) h_{4}+K^{\prime} k_{4}+\left(I^{\prime}-M^{\prime}\right) J_{4}^{\prime}+\left(J^{\prime}-J^{\prime \prime}\right) k^{\prime} \\
& =J_{, 5}^{\prime}+K h_{5}+2 K^{\prime} J_{5}-\left(H^{\prime}-2 I^{\prime}\right) h_{5}^{\prime}-K^{\prime \prime} J_{5}^{\prime}-2 M^{\prime \prime} k_{5}^{\prime}
\end{aligned}
$$

(u) $M_{, 3}^{\prime \prime}+M J_{3}+J^{\prime \prime} h_{3}^{\prime}+2 N^{\prime} k_{3}+2 M^{\prime \prime} J_{3}^{\prime}-\left(H^{\prime \prime}-2 K^{\prime \prime}\right) J_{3}^{\prime}+\left(J^{\prime}-J^{\prime \prime}\right) k_{3}^{\prime}$

$$
\begin{gathered}
=J_{, 4}^{\prime \prime}+M h_{4}-M^{\prime} h_{4}^{\prime}+2 N k_{4}-\left(H^{\prime \prime}-2 I^{\prime \prime}\right) J_{4}^{\prime}+2 M^{\prime \prime} k_{4}^{\prime} \\
=M_{, 5}^{\prime \prime}+N^{\prime} h_{5}+N J_{5}+\left(I^{\prime \prime}-K^{\prime \prime}\right) h_{5}^{\prime}+K^{\prime} h_{5}+\left(I^{\prime}-M^{\prime}\right) J_{5}^{\prime}+\left(J^{\prime}-J^{\prime \prime}\right) k_{5}^{\prime} \\
(v)-\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right)_{, 2}-2 N h_{2}-2 N^{\prime} J_{2}+(H-2 M) k_{2}-\left(J+J^{\prime}+J^{\prime \prime}\right) J_{2}^{\prime} \\
\quad-\left(H^{\prime}+I^{\prime}+M^{\prime}\right) k_{2}^{\prime}= \\
\quad H_{, 5}+3\left(J+J^{\prime}+J^{\prime \prime}\right) h_{5}+3\left(H^{\prime}+I^{\prime}+M^{\prime}\right) J_{5} \\
\\
\quad+3\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right) k_{5}
\end{gathered}
$$

(w) $N_{, 2}^{\prime}-M^{\prime \prime} h_{2}-\left(H^{\prime \prime}+I^{\prime \prime}+2 K^{\prime \prime}\right) J_{2}+N h_{2}^{\prime}-\left(H^{\prime}+I^{\prime}+2 M^{\prime}\right) k_{2}+K^{\prime} J_{2}^{\prime}$

$$
\begin{aligned}
&+(K-M) k_{2}^{\prime}= \\
&-\left(H^{\prime}+I^{\prime}+2 M^{\prime}\right) J_{, 4}^{\prime \prime}-2 K^{\prime} h_{5}-M^{\prime} h_{4}^{\prime}+(H-2 K) J_{5} \\
&-2 N^{\prime} k_{5}-\left(J+J^{\prime}+J^{\prime \prime}\right) h_{5}^{\prime}+\left(H^{\prime \prime}+I^{\prime \prime}+2 K^{\prime \prime}\right) k_{5}^{\prime} \\
&=-\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right)_{, 4}-2 N h_{4}-2 N^{\prime} J_{4}+(H-2 M) k_{4} \\
&-\left(J+J^{\prime}+J^{\prime \prime}\right) J_{4}^{\prime} K^{\prime} h_{5}-\left(H^{\prime}+I^{\prime}+M^{\prime}\right) k_{4}^{\prime},
\end{aligned}
$$

(x) $M_{, 2}-J^{\prime \prime} h_{2}-\left(3 H^{\prime \prime}+2 I^{\prime \prime}+2 K^{\prime \prime}\right) k_{2}+2 N J_{2}^{\prime}+2 N^{\prime} k_{2}^{\prime}$

$$
\begin{aligned}
= & -\left(H^{\prime \prime}+I^{\prime \prime}+K^{\prime \prime}\right)_{, 5}-2 N h_{5}-2 N^{\prime} J_{5}+(H-2 M) k_{5} \\
& -\left(J+J^{\prime}+J^{\prime \prime}\right) J_{5}^{\prime}-\left(H^{\prime}+I^{\prime}+M^{\prime}\right) k_{5}^{\prime},
\end{aligned}
$$

(y) $H_{, 2}^{\prime \prime}+3\left(M K_{2}+J^{\prime \prime} J_{2}^{\prime}+M^{\prime} k_{2}^{\prime}\right)$

$$
=M_{, 5}-J^{\prime \prime} h_{5}-M^{\prime} J_{5}-\left(3 H^{\prime \prime}+2 I^{\prime \prime}+2 K^{\prime \prime}\right) k_{5}+2 N J_{5}^{\prime}+2 N^{\prime} k_{5}^{\prime}
$$

(z) $I_{, 3}^{\prime \prime}+2 N h_{3}-2 M^{\prime \prime} h_{3}^{\prime}+\left(J-2 J^{\prime \prime}\right) J_{3}^{\prime}+I k_{3}+I^{\prime} k_{3}^{\prime}$

$$
=J_{, 5}+3\left(I h_{5}-I^{\prime} h_{5}^{\prime}-I^{\prime \prime} J_{5}^{\prime}\right)
$$

$$
\begin{aligned}
& \text { (} A \text {) } \\
& J_{, 3}^{\prime \prime}+M h_{3}-M^{\prime} h_{3}^{\prime}+2 N k_{3}-\left(H^{\prime \prime}-2 I^{\prime \prime}\right) J_{3}^{\prime}+2 M^{\prime \prime} k_{3}^{\prime} \\
& =I_{, 5}^{\prime \prime}+2 N h_{5}-2 M^{\prime \prime} h_{5}^{\prime}+\left(J-2 J^{\prime \prime}\right) J_{5}^{\prime}+I k_{5}+I^{\prime} k_{5}^{\prime} \text {, } \\
& \text { (B) } \quad H_{, 3}^{\prime \prime}+3\left(M k_{3}+J^{\prime \prime} J_{3}^{\prime}+M^{\prime} k_{3}^{\prime}\right) \\
& =J_{, 5}^{\prime \prime}+M h_{5}-M^{\prime} h_{5}^{\prime}+2 N k_{5}-\left(H^{\prime \prime}-2 I^{\prime \prime}\right) J_{5}^{\prime}+2 M^{\prime \prime} k_{5}^{\prime} \text {, } \\
& \text { (C) } K_{, 4}^{\prime \prime}+2 N^{\prime} J_{4}+2 M^{\prime \prime} h_{4}^{\prime}+J^{\prime} J_{4}^{\prime}-\left(C^{\prime}-2 M^{\prime}\right) k_{4}^{\prime} \\
& =H_{, 5}^{\prime}+3\left(K J_{5}+J^{\prime} h_{5}^{\prime}-K^{\prime \prime} k_{5}^{\prime}\right) \text {, } \\
& \text { (D) } \quad M_{, 4}^{\prime}+M J_{4}+J^{\prime \prime} h_{4}^{\prime}+2 N^{\prime} k_{4}+2 M^{\prime \prime} J_{4}^{\prime}-\left(H^{\prime \prime}-2 K^{\prime \prime}\right) k_{4}^{\prime} \\
& =K_{, 5}^{\prime \prime}+2 N^{\prime} J_{5}+2 M^{\prime \prime} h_{5}^{\prime}+K k_{5}+J^{\prime} J_{5}^{\prime}+\left(H^{\prime}-2 M^{\prime}\right) k_{5}^{\prime} \text {, } \\
& \text { (E) } \quad H_{, 4}^{\prime \prime}+3\left(M k_{4}+J^{\prime \prime} J_{4}^{\prime}+M^{\prime} k_{4}^{\prime}\right) \\
& =M_{, 5}^{\prime}+M J_{5}+J^{\prime \prime} h_{5}^{\prime}+2 N^{\prime} k_{5}+2 M^{\prime \prime} J_{5}^{\prime}-\left(H^{\prime \prime}-2 K^{\prime \prime}\right) k_{5}^{\prime} .
\end{aligned}
$$

Since $C_{i j h} y^{h}=0$ and $y_{k}^{h}=0$. Hence from (2.9) it follows that $C_{i j k \mid h} y^{h}=0$, that is $P_{i j k}=0$. Therefore, we have the following theorem:

Theorem 2.1: A five-dimensional C^{h}-symmetric Finsler space with unified main scalar is a Landsberg space.

The converse of theorem (2.1) is not necessarily true, so the $C^{h}-$ symmetric Finsler space is more general than the Landsberg space.

3. The Constant Unified Main Scalar

In a five-dimensional Finsler space, $H+I+K+M=L C$ is called the unified main scalar. Now, we consider five-dimensional C^{h}-symmetric Finsler space with non-zero constant unified main scalar. Therefore, we have

$$
\begin{equation*}
(H+I+K+M), \alpha=(L C), \alpha=0 \text { for } \alpha=1,2,3,4,5 . \tag{3.1}
\end{equation*}
$$

Adding equation (2.16 (a), (2.16) (e), first part of equation (2.16) (h) and first part of equation (2.16) (i) and applying equation (3.1), we get $h_{2}=0$. Similarly, adding equations (2.16) (k), (2.16) (m), first part of equation (2.16) (f) and first part of equation (2.16) (o) and applying equation (3.1), we get $J_{2}=0$. Again adding equations $(2.16)(b)$, (2.16) (s), first part of equation (2.16) (u) and last part of equation (2.16) (c) and applying equation (3.1), we get $J_{3}=h_{4}$. Hence we have the following:

Theorem 3.1: In a five-dimensional C^{h}-symmetric Finsler space with non-zero constant unified main scalar, the scalar components of h connection vectors h_{i} and J_{i} are given by

$$
\begin{aligned}
h_{i} & =h_{i} l_{i}+h_{3} n_{i}+h_{4} p_{i}+h_{5} q_{i}, \\
J_{i} & =J_{1} l_{i}+J_{3} n_{i}+J_{4} p_{i}+J_{5} q_{i},
\end{aligned}
$$

where $J_{3}=h_{4}$.

References

1. F. Ikeda, Finsler spaces satisfying the condition $L^{2} C^{2}=f(x)$, Anal. Sti. Lasi, 30 (1984) 31-33.
2. F. Ikeda, On Finsler spaces with the non-zero function $L^{2} C^{2}$,Tensor, N. S., $\mathbf{5 0}$ (1991) 74-78.
3. M. Matsumoto and R. Miron, On an invariant theory of Finsler spaces, Period. Math. Hunder, 8 (1977) 73-82.
4. F. Ikeda,On three-dimensional Finsler spaces with non-zero constant unified main scalar, Tensor, N. S., 50 (1991) 276-280.
5. U. P. Singh, and Bindu Kumari, Conformal changes of three-dimensional Finsler spaces with constant unified main scalar, J. Purvanchal Acad. Sci., 6 (2000) 1.
6. S. K. Tiwari and Anamika Rai, The four dimensional C^{h} - symmetric Finsler space with constant unified main scalar, J. Nat. Acad. Math., 27 (2013) 72-82.
7. Gauree Shanker, G. C. Chaubey and Vinay Pandey, On the main scalars of fivedimensional Finsler space, Int. Electron. J. Pure Appl. Math., 5 (2012) 69-78.
8. M. Matsumoto, A Theory of three-dimensional Finsler spaces in terms of scalars, Demostration Mathematica, 6 (1973) 1-29.
9. M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kenseisha Press, Saikawa, Ostu, Japan, 1986.

[^0]: *Presented at CONIAPS XVIII, University of Allahabad during December 22-24, 2015.

