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1. Introduction and Preliminaries

The concept of fuzzy sets was introduced by L. Hade 1965. The
concept is used in topology and analysis. It isdumed developed by many
mathematicians. Fuzzy set is applied in the fiefddecision making,
population dynamics, computer science, artificigklligence, operational
research, industrial engineering, pattern recogmjtmedicine, group health
underwriting, management sciefice* ° & 78 910 nd many others. There
was a remarkable and progressive development infidtld of fuzzy
topology in which one of the most important probdeis to obtain a clear
concept of fuzzy metric space which has been iigegsid by many authors
in different ways. Particularly, Geroge and Veeraitfehave introduced and
studied an interesting notion of fuzzy metric spdagzy metric space was
introduced by Kramosil and Michalkkin 1975. Then, it was modified by
George and Veeramdfin 1994. Related fixed point theorems were studied
int4 1> 16.17.18. 1314 many others.

We list some definitions as follows
1.1. Definition. ?® A binary operation*:[0,1] - [0,1]is continuous t-
norm if * satisfies the following conditions:

(i) *is commutative and associative,
(i) *is continuous,
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(i) a*1=alal]o0,1],
(iv) a* b< ¢« dwheneven< c, b<danda,b,c, d[0,1].

1.2. Definition. ** The 3-tuple X, p,%) is called a fuzzy metric space if
X is an arbitrary non-empty set, is a continuous-norm and u is a fuzzy
set inX ?x (0, ) satisfying the following conditions :
(i) pKxyt)>0,
(i) px,y,t)=1lifand onlyifx =y,
(i) p sy, )=py,xt),
(iv) u(x, Yy, s)x K (Y, Z, )< M (X, Z, t+s),

(V) u(Xy; - ):(0,0) - (0,1] is continuous
forall x, y, Z0X and t, s >0.

1.3. Definition. #* Let (X, 4, #) be a fuzzy metric space. A sequence
{x.} in Xis said to converge to UX if and only if lim (x,, x t) =1, for

eacht >0.
A sequence{x} in X is called Cauchy sequence if and only if

lim 2(x,, X,,,, ) =1, foreacht >0 andp=1, 2, 3, .

A fuzzy metric spaceX, |, #) is said to be complete if and only if every
Cauchy sequence Kis convergent irX.

The following theorem was provedn

1.4. Theorem:Let (X, d) and (Yg) be complete metric spaces. Let A, B
be mappings of X into Y and S, T be mappings otdrX satisfying the
inequalities

d(Sy, Ty ¥ (Ax, Bx), d(x, Sy) "(y, Ax
d(Sy, TY) d(SAx, TBx) m%é((x,X)d(Sy, Ty), d(Sy, SAX)d(Ty , *f}a

, d(Sy, TYyg (Ax, Bx), d(x, 3y)'(y, Ax),
olAx By (BSy. ATys ¢ m{)é(y,y)a(Ax, BX)o (Ax, BSg) (Bx ,AT}/

forall x,XO X and y,y Y, where0< c<1.If one of the mappings A, B,
S and T is continuous, then SA and TB have a umioonenon fixed point z
in X and BS and AT have a unique common fixed poimt Y. Further,
Az=Bz=w and Sw=Tw = z.
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The following theorem was provedin

1.5. Theorem:Let (X, d) and (Y, d) be two complete metric spaces. Let
A, B be mappings of X into B(Y) and S, T be mapgpofgY into B(X)
satisfying the inequalities
a(Sy, TY9, (Ax, Bx)o, (x, SH) '(y,Ag?

Sy, T9: (SAX. TBS Cm%éxx,wﬁy. Ty), (Sy, &%) (Ty, TB:

52(AX, Bx )52 (BSy’ ATYQ c m{%(sy’ Ty§2 (AX’ Bx )51 (X ’ g?) '(y ’ Ag

d,(y.y ¥, (Ax, BX)9, (Ax, BS¥) (Bx,

forall x,XO X and y,y Y, where0< c<1.If one of the mappings A, B,

S and T is continuous, then SA and TB have a umigoenon fixed point z
in X and BS and AT have a unique common fixed pointY. Further,

Az=Bz=w and Sw=Tw = z.

Now, we extend Theorem 1.4 and Theorem 1.5 for ¢et@guzzy metric
spaces.

2. Main Result

2.1. Theorem:Let (X, 4,# and (Y,0, *) be two complete fuzzy metric
spaces. Let A, B be mappings of X into Y and ® mdppings of Y into X
satisfying the inequalities

H(Sy, Ty, 1 (Ax, Bx, t)
ilrl](X, Sy, 9 (v, Ax, 1),
H(X, X, YU(SY, Ty, b),
H(Sy, SAX,DU(Ty, TBx|!

(1)  kp(Sy, Ty, Hu(SAX, TBx )

u(Sy, Ty, (Ax, Bx, t)
X, Sy, 9 (¥, Ax, 1),

v(y, Y, tV (Ax, BX, t),

V(AX, BSy, 1) (Bx, ATy, |t

(2)  kv(Ax, BX, ty (BSy, ATy ,3)

for all x,XxO X and y,y [Y,where O<k<1. If A and S or B and T are
continuous, then SA and TB have a unique commed print z in X and
BS and AT have a unique common fixed point w fRu¥ther, Az= Bz=w
and Sw=Tw = z.
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Proof: Let x be any arbitrary point in X. Forn = 1, 2, 3,..., let
SYon1 = Xonas BXon1 = Yon TYon = Xoq AX 2= Y 204
Applying inequality (1), we get

KL(SYon.1:TY 20, O (SAX g, TBXong, OF W (Xongy X on B (X 2n2 X 2f)

IU(SyZn-l' T y2n! t)/ (AXZn’ BXZn-lv t),
H(Xon-1 SYon1, W (Y2n, AX o 1),
H(Xans Xon1 DU (SY2n1 TY om0 1),
H(SYon.1 SAXon, t (TY2n, TBXpn g, t

> min

HXon- 1 X on OV (Y 2n1Y 20 D),
HXon1s Xon OV (Y 2 Y 202 D),
H(Xan X on1 DU (X 203 X 20t),
,U(XZn-l’ Xon-v t)/j (X 2m X 2 t)

=min

from which it follows that
(3) KU(Xongs Xon 12 MIN{V (Yong, ¥ o 4 Kongy X o )

Applying inequality (2), we get

KV(AXn, BX o2 OV(BSY s ATY 00) = K (Yona Yo OV (Y 20y and)
H(SYonas TYon, WV (A%, BXony, 1),
HXon-10 SYan1, W (o s AXpp, 1),
VYan1r Yonr DV (AX 5, BX 5 41),
V(AX 50, BSYon.1, )V (BXona, ATY 5, 1)
HXan1 Xon OV Y on Y 2 D)
HXon1 Xona OV (Y 20Y 203 D),
V2n1 Yo OV Yo Y on 1),

VY 2n1 Yo OV Y on Yona )

>min

=min

from which it follows that
(4) KVYang Yor 02 mMin{ 22 (Xon1 X o0 0.V YV ons Yor O
From (3) and (4) can be written as

k,U(Xn_l, Xns t) 2 min{V (yn—l’ Yns t)vu (Xn—l’ X s 1})
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KVYn1 Yoo 1) = min{ £ (Xog, Xy 0,V Oty Yoo D
which can be again written as
(5)  Ki(Xpess Xne D) 2 MV (¥, Vit D (s Xoe, D
6)  KVYpen Yo ) = Min{ 12X, Xags 0,V Vs Yiess D
From (5) and (6), by induction, we get

M X0 2 min{y O v, 0.4 05,7 )

1 .
Ve Yo 1) 2 k—nmln{,u(xl, X5, 0,V (A, Vo, B
Let t, =t Now,
p

H(Xns Xpaps ©) = Xy, Xpypoty + 1+ ptimes)

Z,U(Xn, Xn+1’t1)* ,U(X n+1 X n+2’t])< o ,U(X n+p-1 X n+pt )

1 .
Zﬁmln{v(yl, Voo 0,1 (X, %o, B} ...

...... *kn%p_l{min VY, Yo, D104, %, D)
which implies that
lim g(Xp, Xpap, t) 2T T.% 1=
={x,} is a Cauchy Sequence with a liin X.

Similarly, { y,} is a Cauchy sequence with a limiin Y.
Now, on using the continuity & andSrespectively, we get
w=Ilimy, , =limAx ,, = Az
and z=Ilimx,, =limSy, =Sw

So that we get

(7) Az =w
(8) Sw=z
From (7) and (8), we get
9 SAz =z

Again applying inequality (1), we get
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KL (SYon.1,TY 20 U (SAX g, TBX g4, 1)
H(SYon1s TYans WV (AXgq, BXopg, 1),
in H(Xon-1 SY2na)V (Y 200 AX o 1),
H(Xon, Xonas QU (SYon1, TY 2ns 1),
H(SYon1,SAXGn 1 (TY 0, TBX 51,1)

=m

which implies that
(10) KL(SAX,, , TBX 1,0 = Min{ v (AX 5, BX 50y ) (X 5y X 5t}
On lettingn — o, we get
ku(Sw, TBz, temin{v (Az, w, t), 1
= HU(Sw, TBz, t)z%
= H(Sw, TBz, tp 1,as0 <k <

= HU(Sw, TBz, t) =

which implies that
Sw=TBz
and from (8), we get

(11) z=TBz
From (9) and (11), we get
(12) SAz=z=TBz
Now, (10) gives
Ki(X a1, TY 200 D2 MIN{V (AX 50 BX 03 1),V (Y 25 AX 2 0,4 (X 20X 208}
On lettingn — o, we get
MUz, Tw, t) =1
which implies that
13) z=Tw
Again applying inequality (2), we get
KV(AX,,, BX,, 1, OV(BSY,, ,, ATy, 1)
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>min

which implies that

(14)  kv(BSY,,,,ATY,,,)= min{

On lettingn — oo, we get
v(BSw, ATw, t) =1

which implies that

(15) BSw=ATw

Now, (14) gives

Kv(Y,,, ATy, 1) 2 min{

On lettingn — o, we get
v(iw, ATw, t) =1

which implies that

(16) w=ATw.

From (15) and (16), we get

(17) BSw=w=ATw

From (8) and (17), we get

(18) Bz=w

From (7) and (18), we get

(199 Az=Bz=w

From (8) and (13), we get

(200 Sw=Tw=z

Similarly, on using the continuity of B and T, thkove results hold.

H(SYonas TYon s LV (AX,,, BX, s, 1),
M (Xo1r SYonar V (Yan» AXpys 1),
V(Yon Yo DV (AX 5, BX 5 1),
V(AX

2n?

“(SyZn-l’ Ty2n ! t)’u(xzn-l’ S)én.l ’ t}’
V(yZn—I! y2n’ t)’V (AX 2n? BX 2n-1 t)

H(SYon1s T Yon o M 0601 » Sy » t},
V(yZn-l’yZn’ t)1V(AX n? BSyZn-P t)

BSY,n.10 OV (BX, 00 ATY 5, 1)

265
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To prove the uniqueness, I8A and TB have a second distinct
common fixed pointZ in X andBSandAT have a second distinct common

fixed pointwin'Y.
Applying inequality (1), we get

H(Sy, Ty, ty (Az, Bz t),

, JH(Z Sy, ty (¥, Az, 1),
kKu(Sy, Ty, t) u(SAz, TBz, & mi (2,2, DSy, TY, 1),

u(Sy, SAz, h)u(Ty, T Bz, 1)

u(z, 2, ty (Az, Bz, t),
uz, z,ty (Bz, Az, t)
H(z, 2, )u(z, 2, v),
uz,z,9uz zt)

= Klu(z, Z, )f = mi

= ku(z, 2, t=2 midv (Az, Bz, t), u(z,'z Jt

which implies that
(21) ku(z,2,te v (Az, Bz, t
Applying inequality (2), we get
u(sy, Ty, ty (Az, Bz, 1),
U(Z, Sy, ty (¥, Az, 1),
kv (Az, BZ, t)v (BSy, ATy, t
v (Az v (BSy. ATy, te mi vy, Y, t\v(Az, BZ,t),

v(Az, BSy, ty (BZ, ATy, t

u(z, 2,ty (Az, Bz, t),
u(z,z,ty (Bz, Az, t),
v(Az, BZ, tyv (Az, BZ, 1),
V(Az, BZ, t\v (BZ, Az, t)

= k[v(Az, BZ, t)f = min

= kv(Az, BZ, t)= min{v (Az, BZ, 1), pu(z,'z, })
which implies that

(22) kv(Az,BZ, t)=u(z, 2z, t

From (21) and (22), we get
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K*u(z, 7, )= kv(Az, Bz, t> u (z,'z, 1

- y(z,z,t)zk—lzy(z,z,tj

= ,u(z,z’,t)z%,u(z,z,t)z ..zk—ln,u (z,)z,-

O Iimk—ln,u(z,z,t)>:

= Uz, 2,1t =1

which implies thatz = Z

This proves the uniqueness ofSimilarly, the uniqueness of can be
proved. The following corollary considering one rpaf mappings can be
discussed.

2.2. Corollary: Let (X, 1,# and (Y0, *) be two complete fuzzy metric
spaces. Let S be mapping of X into Y and T be mgmbiY into X satisfying
the inequalities

u(Ty, Ty, t¥ (Sx, Sx, t)
X, Ty, ty (¥, Sx, 1),
kv(Sx, SX, ty ( STy, STy 3t) "“E'(y, ) oSk S,

V(Sx, STy, t) (Sx, STy

u(Ty, Ty, tv (Sx,9x, 1),

X, Ty, ty (¥, Sx, 1),

Ku(Ty, Ty, u(TSx, TSx &) min
Hx, X, Ou(Ty, Ty, t),

H(Ty, TSX, )u(Ty, TSx |1

forall x,Xxd X and y, y Y, ,where 0<k<1. If S or T is continuous, then TS

has a unique fixed point z in X and ST has a uniixed point w in
Y.Further, Sz=w and Tw = z.
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