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Abstract: In this paper I have proved a theorem on |N,p,q| summability of a 

factored Fourier series, which generalizes various known results. However 

the theorem is as follows. 
 

Theorem: If ( )tΦ  is a function of bounded variation in (0, )π then the 

factored Fourier series. 
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1. Definitions and Notations 
 

1. Let na∑ be a given infinite series. We denote by{ }ns , the sequence of 

its partial sum, i.e.  
0
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Let { }pn and { }qn  be sequences of constants, real or complex, and write 
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We assume throughout that ( * ) 0p q n ≠ , when 0n ≥  and ( * ) 0p q n = when 

0n < . 
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and is said to absolute summable ( , , )N p q  or summable | , , |N p q  if 
,p q
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2. Let ( )f t  be a periodic function with period 2π and integrable 

over ( , )π π−  without any loss of generality we may assume that the constant 

term in the Fourier series of ( )f t  is zero so that 
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3. Considering absolute Nӧrlund summability of a factored Fourier series 

Singh
2
 has proved the following theorem.  

 

Theorem: If ( )tΦ  is a function of bounded variation in (0, )π then the 

series 
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non-increasing such that 
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is of bounded variation. 

The aim of this paper is to generalize above theorem for | , , |N p q  

summability. 

We shall prove the following main theorem. 
 

Theorem: If ( )tΦ is a function of bounded variation in (0, )π then the 

factored Fourier series. 
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Proof: It is known that if ( ),0tα αΦ < ≤ , is of bounded variation the 

series ( )nA t∑  is convergent. Thus 
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To prove the theorem we have simply to show that: 
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Now by Abel’s transformation 
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This completes the proof of the theorem. 
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