A Note on the IN,p,ql Summability of a Factored Fourier Series

Satish Chandra and Manoj Saxena
Department of Mathematics
S.M. Post-Graduate College,

Chandausi - 244412 (INDIA)
E-mail: satishchandra111960@gmail.com
(Received April 26, 2014)

Abstract

In this paper I have proved a theorem on IN,p,ql summability of a factored Fourier series, which generalizes various known results. However the theorem is as follows.

Theorem: If $\Phi(t)$ is a function of bounded variation in $(0, \pi)$ then the factored Fourier series.

$$
\sum \frac{\left(p^{*} q\right)_{n} \lambda_{n}}{n^{\alpha}} A_{n}(t)
$$

is $|N, p, q|$ summable at $t=x$ where the sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are non-negative non-increasing such that
(i) $\left\{\frac{(n+1) p_{n}}{\left(p^{*} q\right)_{n}}\right\}$ is of bounded variation
(ii) $\left\{\frac{(n+1) q_{n}}{\left(p^{*} q\right)_{n}}\right\}$ is of bounded variation
(iii) $\left\{\frac{\left(p^{*} q\right)_{n}}{n^{\alpha}}\right\}$ is bounded
(iv) $\left\{\frac{p_{n+1}}{p_{n}}\right\}$ is non-decreasing
(v) $\left\{\frac{q_{n+1}}{q_{n}}\right\}$ is non-decreasing
and $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum \frac{\lambda_{n}}{n}<\infty$.
2000 Mathematics subject classification: 40D05, 40E05, 40F05, 40G05, 42 C 05 and 42C10.

Keywords: $|N, p, q|$ summability, Factored Fourier series.

1. Definitions and Notations

1. Let $\sum a_{n}$ be a given infinite series. We denote by $\left\{s_{n}\right\}$, the sequence of its partial sum, i.e. $s_{n}=\sum_{i=0}^{n} a_{i}$.
Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be sequences of constants, real or complex, and write

$$
\begin{aligned}
(p * q)_{n} & =p_{0} q_{n}+p_{1} q_{n-1}+\ldots \ldots \ldots+p_{n} q_{0} \\
& =\sum_{i=0}^{n} p_{n-i} q_{i} .
\end{aligned}
$$

We assume throughout that $(p * q)_{n} \neq 0$, when $n \geq 0$ and $(p * q)_{n}=0$ when $n<0$.
The $n^{\text {th }}(N, p, q)$ transform by Borwein ${ }^{1}$ of the sequence $\left\{s_{n}\right\}$ is

$$
t_{n}^{p, q}=\frac{1}{\left(p^{*} q\right)_{n}} \sum_{i=0}^{n} p_{n-i} q_{i} s_{i}
$$

The series $\sum_{i=0}^{\infty} a_{i}$ is said to be summable (N, p, q) to s if $t_{n}^{p, q} \rightarrow s$ as $n \rightarrow \infty$.
We shall denote it by $\sum_{i=0}^{n} a_{i}=s(N, p, q)$ or $\quad s_{n} \rightarrow s(N, p, q)$,
and is said to absolute summable (N, p, q) or summable $|N, p, q|$ if $t_{n}^{p, q} \in B V$
2. Let $f(t)$ be a periodic function with period 2π and integrable over $(-\pi, \pi)$ without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero so that

$$
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv A_{n}(t)
$$

and

$$
\int_{-\pi}^{\pi} f(t) d t=0
$$

Let

$$
\Phi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\}
$$

3. Considering absolute Nörlund summability of a factored Fourier series Singh ${ }^{2}$ has proved the following theorem.

Theorem: If $\Phi(t)$ is a function of bounded variation in $(0, \pi)$ then the series

$$
\sum \frac{(n+1) p_{n}}{P_{n}} A_{n}(t)
$$

is summable $\left[N, p_{n}\right]$, at $t=x$, where the sequence $\left\{p_{n}\right\}$ is non-negative and non-increasing such that

$$
\left\{\frac{(n+1) p_{n}}{P_{n}}\right\}
$$

is of bounded variation.
The aim of this paper is to generalize above theorem for $|N, p, q|$ summability.
We shall prove the following main theorem.
Theorem: If $\Phi(t)$ is a function of bounded variation in $(0, \pi)$ then the factored Fourier series.

$$
\sum \frac{\left(p^{*} q\right)_{n} \lambda_{n}}{n^{\alpha}} A_{n}(t)
$$

is $|N, p, q|$ summable at $t=x$ where the sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are nonnegative non-increasing such that
(i) $\left\{\frac{(n+1) p_{n}}{\left(p^{*} q\right)_{n}}\right\}$ is of bounded variation
(ii) $\left\{\frac{(n+1) q_{n}}{\left(p^{*} q\right)_{n}}\right\}$ is of bounded variation
(iii) $\left\{\frac{\left(p^{*} q\right)_{n}}{n^{\alpha}}\right\}$ is bounded
(iv) $\left\{\frac{p_{n+1}}{p_{n}}\right\}$ is non-decreasing
(v) $\left\{\frac{q_{n+1}}{q_{n}}\right\}$ is non-decreasing
and $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum \frac{\lambda_{n}}{n}<\infty$.
Proof: It is known that if $\Phi_{\alpha}(t), 0<\alpha \leq$, is of bounded variation the series $\sum A_{n}(t)$ is convergent. Thus

$$
\sum_{n=1}^{m} A_{n}(t) \frac{\left(p^{*} q\right)_{n} \lambda_{n}}{n^{\alpha}}=O\left(\sum_{n=1}^{m-1}\left|\Delta \frac{\left(p^{*} q\right)_{n} \lambda_{n}}{n^{\alpha}}\right|\right)+O\left(\frac{\left(p^{*} q\right)_{m} \lambda_{m}}{m^{\alpha}}\right)
$$

$$
\begin{aligned}
& \quad \begin{aligned}
= & O\left(\sum_{n=1}^{m-1} \frac{\lambda_{n}}{(n+1)}\left\{\frac{(n+1) p_{n} q_{n}}{\left(p^{*} q\right)_{n+1}}\right\} \frac{\left(p^{*} q\right)_{n+1}}{n^{\alpha}}\right) \\
& +O\left(\sum_{n=1}^{m-1} \frac{\left(p^{*} q\right)_{n} \lambda_{n}}{n^{\alpha+1}}\right)+O\left(\sum_{n=1}^{m-1} \frac{\left(p^{*} q\right)_{n}}{n^{\alpha}} \Delta \lambda_{n}\right)+O(1) \\
= & O(1)
\end{aligned} \\
& \text { as } \quad \frac{\left(p^{*} q\right)_{n}}{n^{\alpha}}=O(1) .
\end{aligned}
$$

To prove the theorem we have simply to show that:

$$
\sum \frac{1}{(n+1)\left(p^{*} q\right)_{n-1}}\left|\sum_{k=1}^{n} p_{n-k} q_{k} k A_{k}(x) \frac{\left(p^{*} q\right)_{k} \lambda_{k}}{k^{\alpha}}\right|<\infty
$$

Now by Abel's transformation

$$
\begin{aligned}
L_{n} & =\left|\sum_{k=1}^{n} p_{n-k} q_{k} k A_{k}(x) \frac{\left(p^{*} q\right)_{k} \lambda_{k}}{k^{\alpha}}\right| \\
& \leq\left|\sum_{k=1}^{n-1} \Delta\left(\frac{\left(p^{*} q\right)_{k} \lambda_{k}}{k^{\alpha}}\right) \sum_{\mu=1}^{k} p_{n-\mu} q_{\mu} \mu A_{\mu}(x)\right|+\frac{\left(p^{*} q\right)_{n} \lambda_{n}}{n^{\alpha}}\left|\sum_{\mu=1}^{n} p_{n-\mu} \mu A_{\mu}(x)\right| \\
& \leq\left|\sum_{k=1}^{n-1} \Delta\left(\frac{\left(p^{*} q\right)_{k} \lambda_{k}}{k^{\alpha}}\right)\right|\left\{1 \leq m \leq k\left|\sum_{\mu=1}^{m} p_{m-\mu} \mu A_{\mu}(x)\right|\right\}+C\left(p^{*} q\right)_{n} \lambda_{n} \\
& \leq C \sum_{k=1}^{n-1} k^{\alpha}\left|\Delta\left(\frac{\left(p^{*} q\right)_{k} \lambda_{k}}{k^{\alpha}}\right)\right|+C\left(p^{*} q\right)_{n} \lambda_{n} \\
& =L_{n, 1}+L_{n, 2}
\end{aligned}
$$

Now,

$$
\sum_{n=2}^{m} \frac{\left|L_{n, 1}\right|}{n\left(p^{*} q\right)_{n-1}}=\sum_{k=1}^{m-1} k^{\alpha}\left|\Delta\left(\frac{\left(p^{*} q\right)_{k} \lambda_{k}}{k^{\alpha}}\right)\right| \sum_{n=v+1}^{k} \frac{1}{v\left(p^{*} q\right)_{v+1}}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{m-1} \frac{k^{\alpha}}{\left(p^{*} q\right)_{k}}\left|\Delta\left(\frac{\left(p^{*} q\right)_{k} \lambda_{k}}{k^{\alpha}}\right)\right| \\
& \leq C \sum_{k=1}^{m-1} \Delta \lambda_{k}+C \sum_{k=1}^{m-1} \frac{k^{\alpha}\left(p^{*} q\right)_{k} \lambda_{k}}{\left(p^{*} q\right)_{k} k^{\alpha}}+C \sum_{k=1}^{m-1} \frac{k^{\alpha}}{k^{\alpha+1}} \lambda_{k} \\
& \leq C \sum_{k=1}^{m-1} \Delta \lambda_{k}+C \sum_{k=1}^{m-1} \frac{\lambda_{k}}{k} \\
& \leq C
\end{aligned}
$$

and

$$
\sum \frac{1}{n\left(p^{*} q\right)_{n-1}}\left|L_{n, 2}\right| \leq C \sum \frac{\lambda_{n}}{n} \leq C .
$$

This completes the proof of the theorem.

References

1. D. Borwein, On products of sequences, Jour. London Math. Soc., 33 (1958), 352-357.
2. L.B. Singh, Absolute Nörlund summability of a factored Fourier series, Indian Journal of Mathemtics, Vol. 12, No. 3 (1970), 189-194.
3. S.N. Bhatt, and Kishore, N., Absolute Nörlund summability of Fourier series, Indian Jour. Math. 9 (1967), 259-267.
4. L.Mc. Fadden, Absolute Nörlund summability, Duke Math. Jour., 9 (1942), 168-207.
5. G.H. Hardy, Divergent series, Oxford University Press, Oxford (1949).
6. N. Kishore, Absolute Nörlund summability of a factored Fourier series, Indian Jour. Math., 9 (1967), 123-136.
7. T. Singh, Absolute Nörlund summability of a factored Fourier series, Indian Jour. Math., 9 (1967), 227-236.
8. A. Zygmund, Trigonometric series, Vols. I \& II (IInd). Cambridge University Press, Cambridge (1959)
