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Abstract: In this paper I have proved a theorem on IN,p,ql summability of a
factored Fourier series, which generalizes various known results. However
the theorem is as follows.

Theorem: If ®(¢) is a function of bounded variation in (0, 7) then the
factored Fourier series.
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1. Definitions and Notations
1. Let ) a,be a given infinite series. We denote by {s, }, the sequence of
its partial sum, i.e. s, = '—io a; -
Let {p,}and {g,} be sec;lences of constants, real or complex, and write
(P*@)p = Poln + D1y Feeeeeeeeenenen + Pn4
= éo Pp—i9;-
We assume throughout that (p*g),, #0, when n=20 and (p*q),, =0when

n<o.

The nth (N, p,q) transform by Borwein' of the sequence {s;} is
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The series Y. a; is said to be summable (N, p,q) to s if t,f 45 as
0

n—>oo.
We shall denote it by § a;=s(N,p,q) ot s =>s(N,p.q),
i=0

i=
and is said to absolute summable (N, p,q) or summable |N,p,ql if
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2. Letf(t) be a periodic function with period 27 and integrable
over (—, ) without any loss of generality we may assume that the constant
term in the Fourier series of f(¢) is zero so that

f@ ~ El (a;, cosnt +b,, sinnt) = A, (1)
n=
and j_’; F()dt=0

Let cp(t)z%{f(x+t)+f(x—f)}

3. Considering absolute Norlund summability of a factored Fourier series
Singh? has proved the following theorem.

Theorem: If ®(t) is a function of bounded variation in(0,7) then the
series
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(n+Dp,
Z—P A, (1)

n
is summable[N, p, 1, at t = x, where the sequence{ p, }is non-negative and

non-increasing such that
{(n+1>pn}
PV[

is of bounded variation.
The aim of this paper is to generalize above theorem forlN, p,ql
summability.
We shall prove the following main theorem.

Theorem: If ®(t)is a function of bounded variation in(0,7)then the
factored Fourier series.

*
s Datn g

is | N, p,q| summable at t = x where the sequences {p, }and {q;} are non-
negative non-increasing such that

1
(i) {M} is of bounded variation
(P*)y

1
(ii) {M} is of bounded variation
(P*qp

&
(iii) {%} is bounded
n

p
(iv) “ntl is non-decreasing
Pn

q
(v) {n_—l—l} is non-decreasing
qn

n

and {2, } is a convex sequence such that Y, —*- <o
n

Proof: It is known that if®,(¢),0<a <, is of bounded variation the

series ZAn (t) is convergent. Thus
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To prove the theorem we have simply to show that:
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This completes the proof of the theorem.
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