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Abstract: In this paper, we consider a projective motion in a 

Finsler space whose deviation tensor satisfies certain conditions. It is 

proved that a projective motion in a Finsler space, whose deviation 

tensor satisfies (£ £ ) 0
k i i

k j k j
y B H B H− = , is necessarily an affine 

motion. It is also established that a projective motion which is also a 

curvature collineation and under which the covariant derivative of 

the deviation tensor is Lie-symmetric, is either an affine motion or 

the space is flat. In a recurrent Finsler space, if a projective motion is 

a curvature collineation and it leaves the recurrence vector invariant, 

then the projective motion is necessarily an affine motion. 
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1. Introduction 

 

K. Yano and T. Nagano
1
 discussed a Riemannian Space ( 2)

n
V n >  

admitting a projective motion under which the covariant derivative of 

Weyl’s projective curvature tensor is invariant. They proved that such 

projective motion is an affine motion if the space is not of constant 

curvature. They also established that an infinitesimal projective motion in a 

symmetric Riemannian space ( 2)
n

V n >  is an affine motion if the space is 

not of constant curvature. P. N. pandey
2
 extended these results to an n – 

dimensional Finsler space ( 2)
n

F n > . He established that an infinitesimal 

projective motion which leaves the covariant derivative of projective 

deviation tensor invariant is an affine motion or the space is of scalar 

curvature. The aim of the present paper is to study an infinitesimal 

projective motion in a Finsler space, leaving certain tensors invariant. 
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2. Preliminaries 
 

Let nF  be an n-dimensional Finsler space equipped with a metric 

function ( , )i i
F x y  satisfying the requisite conditions 

2, 3
. Let 

ijg , 
i

jkG  and 

i

jkhH  be the components of the metric tensor, Berwald’s connection 

coefficients and components of Berwald’s curvature tensor respectively. 

The curvature tensor 
i

jkhH  is skew-symmetric in its last two lower indices 

and positively homogeneous of degree zero in i
y . Transvecting this tensor 

by i
y  we obtain the following tensors: 

 

(2.1)             (a)  
i i j

kh jkhH H y= ,                    (b)   i i k

h khH H y= . 
 

The tensor i

hH  satisfies    
 

 (2.2)             (a)  ( ) ,

1

3

i i i

k h h k khH H H∂ − ∂ =ɺ ɺ       (b)  (n 1) H,i

iH = −        

 

                     (c)   0,i

i hy H =                          (d)  0i h

hH y = , 
 

where H is scalar curvature, k

i iky g y=  and 
k k

y

∂
∂ =

∂
ɺ . 

Partial differentiation of connection coefficients 
i

jk
G with respect to 

hy  

yields a tensor being denoted by 
i

jkh
G , i.e 

i i

jkh h jk
G G=∂ɺ . This tensor is 

symmetric in all its lower indices and satisfies 
 

(2.3)                     0i h

jkh
G y = . 

 

The commutation formula for Barwald covariant differential operator 

k
B and directional differential operator 

h
∂ɺ  is given by 

 

(2.4)                     
i i r i i r

h k j k h j j hkr r hkj
T T T G T G∂ Β − Β ∂ = −ɺ ɺ , 

 

where 
i

j
T  is an arbitrary tensor. 

 A Finsler space 
n

F is said to be recurrent if there exists a non-zero 

vector 
m

λ such that 
 

 (2.5)                    
i i

m jkh m jkh
B H Hλ=  ,          0i

jkh
H ≠ . 

 

The vector  
m

λ  is called the recurrence vector. Pandey 
4
 proved that the 

recurrence vector
m

λ is independent of directional arguments provided the 

scalar curvature H does not vanish. 
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Let us consider an infinitesimal transformation 
 

(2.6)                      ( )i i i jx x v x= + ∈                                                              

where ε  is an infinitesimal constant and i
v  is a contravariant vector field 

and denote the operator for Lie differentiation with respect to the 

infinitesimal transformation (2.6) by the symbol £. 
The commutation formula for the Lie-differential operator £ and Berwald 

covariant differential operator k
B  is given by  

 

(2.7)                      ( )£ £ £ £ £i i r i i r i r

k j k j j kr r jk r j k
B T B T T G T G T G− = − − ∂ɺ , 

 

while the commutation formula for the Lie-differential operator and 

directional differential operator is given by 
 

 (2.8)                      £ £ 0
k k

i i

j j
T T∂ ∂− =ɺ ɺ     

 

where 
i

j
T  is an arbitrary tensor. 

The infinitesimal transformation (2.6) is called an affine motion if it 

preserves parallelism of vectors while it is called a projective motion if it 

preserves geodesics. 

The necessary and sufficient condition for the transformation (2.6) to be an 

affine motion is 
 

(2.9)                        £ 0i

jk
G = , 

 

while the necessary and sufficient condition for (2.6) to be a projective 

motion is 
 

(2.10)                      £
i i i i

jk jk j k k j
G y p p pδ δ= + +   

 

where  
 

(2.11)                       (a)   
j j

p p=∂ɺ ,      (b)   
jk j k

p p=∂ ∂ɺ ɺ , 
 

p  being a scalar invariant positively homogeneous of degree one in 
iy . 

The homogeneity of p implies 
 

(2.12)                       (a)   
i

i
p y p= ,       (b)   0.k

jk
p y =  

                   
It is well known that every affine motion is a projective motion. A non-

affine projective motion is characterized by (2.10), (2.11) and 0p ≠ . 

The necessary and sufficient condition for the transformation (2.6) to be a 

curvature collineation is 
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(2.13)                       £ 0i

jkh
H = .     

          

3. A Special Projective Motion 
 

Let a Finsler space n
F  admits an infinitesimal projective motion (2.6) 

characterized by (2.10) and (2.11). 

Replacing 
i

j
T  in equation (2.7) by 

i

j
H , we have 

 

(3.1)             ( )£ £ £ £ £i i r i i r i r

k j k j j rk r jk r j k
B H B H H G H G H G− = − − ∂ɺ , 

 

which, in view of (2.2 d), (2.10) and (2.12), gives 
 

(3.2)             
£ £

2

i i i r r i i

k j k j rk j r j k j k

i i

j k k j

B H B H y p H p H p H

H p p H

δ− = + −

− − ∂ɺ
. 

 

Transvecting (3.2) by 
ky  and using (2.2 d), (2.12 ), we get 

 

(3.3)              [£ £ ] 4k i i i r i

k j k j r j j
y B H B H y p H pH− = − . 

 

Suppose  [£ £ ] 0k i i

k j k j
y B H B H− = , then (3.3) gives 

 

(3.4)             4 0i r i

r j j
y p H pH− = . 

 

Multiplying (3.4) by 
i

y ( )j

ijg y= , and using 2i

i
y y F=  and (2.2c), we get 

 

(3.5)               0r

r j
p H = . 

 

Using (3.5) in (3.4), we find 0,p = becasuese the deviation tensor i

jH  of a 

non-flat Finsler space is non vanishing. This leads to 
 

Theorem 3.1. A projective motion in a Finsler space
n

F  is an affine 

motion if the following condition holds 
 

                        £ £ 0k i i

k j k j
y B H B H − =  . 

 

The condition £ £ 0k i i

k j k j
y B H B H − =   is obviously satisfied if the Lie 

differential operator £ and Berwald covariant differential operator k
B  

commute. Thus, we have 
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Corollary 3.1. If the operator of Lie- differentiation with respect to a 

projective motion and Berwald covariant differentiation commute on 

Berwald deviation tensor, then the projective motion is necessarily an affine 

motion. 
 

Suppose the projective motion (2.6) is a curvature collineation, i.e. 

(2.13) holds. Transvecting (2.13) by 
j ky y  and using (2.1), we get 

 

(3.6)            £ 0i

h
H = . 

 

In view of (3.6), equations (3.2) becomes 
 

(3.7)            £ 2i i r r i i i i

k j rk j r j k j k j k k j
B H y p H p H p H H p p Hδ= + − − − ∂ɺ . 

 

Interchanging the indices j  and k in (3.7), we have 
 

(3.8)            £ 2i i r r i i i i

j k rj k r k j k j k j j k
B H y p H p H p H H p p Hδ= + − − − ∂ɺ   . 

 

Subtracting (3.8) from (3.7) and using (2.2a), we get 
 

(3.9)           
( ) ( ) ( )£

3

i i r r i r i r i

k j j k j rk k rj j k k j r

i i i

k j j k kj

B H B H H p H p y H H p

H p H p pH

δ δ− = − + −

+ − −
. 

 

Suppose that the tensor 0i i

k j j k
B H B H− = is Lie-symmetric i.e. 

( )£ 0i i

k j j k
B H B H− =  , then (3.9) gives 

 

(3.10)          
( ) ( )

3 0.

r r i r i r i i

j rk k rj j k k j r k j

i i

j k kj

H p H p y H H p H p

H p pH

δ δ− + − +

− − =
   

 

Transvecting (3.10) by 
ky , and using (2.2d) and (2.12), we have 

 

(3.11)             4 0i r i

r j j
y p H pH− = . 

 

Transvecting (3.11) by 
i

y  and using (2.2c), we have 

 

(3.12)             0r

r j
p H = , 

which together with (3.11) implies 0p = if 0i

jH ≠  and 0i

j
H = if 0p ≠ . This 

leads to 
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Theorem 3.2. A projective motion in a Finsler space 
n

F  which is a 

curvature collineation and with respect to which the covariant derivative of 

deviation tensor is Lie-symmetric, is either an affine motion or the space 
n

F  

is flat. 
 

 If the Finsler space is a recurrent space characterized by (2.5), the 

condition 
 

(3.13)                        ( )£ 0i i

k j j k
B H B H− = , 

 

may be written as 
 

(3.14)                         ( ) ( )£ £ 0
j

i i

j kk
H Hλ λ− = . 

 

Transvecting (3.14) by ky , we have  
 

                                 ( )£ 0k i

k j
y Hλ = , 

 

which implies ( )£ 0k

k
yλ = for 0i

jH ≠ . Differentiating ( )£ 0k

k
yλ =  partially 

with respect to jy , we get £ 0
j

λ = . Conversely, £ 0
j

λ =  implies (3.14) and 

hence (3.13). Thus, (3.13) is equivalent to £ 0
j

λ = . In view of this and 

theorem 3.2, we conclude 
 

Theorem 3.3. A projective motion in a recurrent Finsler space, which is 

a curvature collineation and leaves the recurrence vector invariant, is 

necessarily an affine motion. 
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