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Abstract:  Differentiators are used in many analog and digital systems 
to take the derivative of a signal. The signal is affected by the presence 
of the machine epsilon of the computer which may be considered to be 
an extremely high frequency noise of very small amplitude. 
Perturbation is also caused by the presence of noise in the signal. It is 
the purpose of this work to construct a wavelet based band-pass filter 
that removes the noise and computes the derivative of the signal.
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1. Introduction

It is interesting to note that sometimes process of differentiation reduces 
to integration as in the case of Cauchy integral formula which is applicable  
if the function is analytic. We know that in case of finite-difference method     

)(xf  is approximated with an error of order h. In case of central difference, 
approximation to )(xf  is better than the forward or backward difference  
approximation and the error is of order h2 . One can see1 and2 for details. It 
is the purpose of this paper to construct a wavelet-based band pass filter that 
acts like a smooth difference quotient whose step size is of the same order as 
that of the usual difference quotient, but approximation of )(xf  is more 
accurate with an error of order h8. However in the presence of high-
frequency noise the previous difference quotients, as well as their iterated 
counterparts, are essentially useless to compute )(xf  . We present in this 
work a technique based on the construction of an appropriate wavelet, with 
many vanishing moments which, when being convolved in a precise manner 
with the function, acts as a band pass filter and at the same time as a 
difference quotient. This technique has been already described explicitly by 
Maurice Hasson in his paper3. His construction is based on Mexican hat 
function. In this work the author uses derivative of the Gaussian Function in 



54                                                          Rajendra Pandey

order to construct the wavelet filter. Of course, this technique to be effective 
requires that the convolution integrals be computed with high accuracy and 
at low cost. We may guess that there is a possibility of computing the 
convolution involving these wavelets by a quadrature rule with almost 
machine accuracy and at very low cost. By the appropriate use of Euler –
McLaurin Summation formula in conjunction with the trapezoidal or 
simpson`s rule, one may compute the integrals involved in the process. One 
may go through the text4 for detailed study of the formula and rules.

Through out this paper we use the following notations for Fourier 
transform )(f


of a function f(x): 

dxexff xi 



 )()(



and the inversion formula takes the form 
1

( ) ( ) .
2

i xf x f e dw






 


2. Construction of the wavelet filter and computation of derivatives

This section is devoted in building the wavelet 2(x) satisfying the 
following properties (2.1) and (2.2). Once 2(x) is built we will analyze the 
rate at which it approximates the derivative of a given function.

(2.1)                            4,3,2,0,0)(2 




kdttt k   

(2.2)                              1)(2 




tdtt

2.1 Construction of the wavelet: We begin the required construction with 
function (x) which is derivative of the Gaussian function 

                                               
2 /2( ) .xx xe  

Its Fourier transform  )( is 

(2.3)                                      2/2

)(2)(   ei


One can see that 
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                                          2/'2/ 22

)( xx xee   .

Therefore, Fourier transform of 2/2

)( xex  is equal to ( i ) )(f


, Here 

)(f


is the Fourier transform of 2/2

)( xexf  , We know that Fourier 

transform of 2/2xe is 2/2

2  e . Thus Fourier transform of (x) is given 
by (2.3). 
Let us define,

                                       
1

( )
( ) : .

2

  







Now, we have

(2.4)                   
2

2 4 6
/2

1( ) ( ) ( )(1 ...........).
2 8 48

i e i           

By the above expansion, we have 

                                          2,00)0()(
1  kfork

and

                                          i)0()1(
1

Hence

                               1 1

1
( ) ( ) ( ) 1.
x x

dx x x dx
h h h

 
 

 

   

From (2.4), we have

(2.5)            
         

)..........
30721288

1)(2/()2/(
642


 i



.           

By following an adaptation of the classical Richardson extrapolation 
method5. We define 

                                        

1 1
2

( ) 8 ( / 2)
( ) : .

3

     




 


Therefore, using (2.4) and (2.5), we have 

(2.6)                                    .)..........
768

5

32
1)(()(

64

2

  i


This implies that  
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                                          2,00)0()(
2  kfork , 3, 4

and

                                          i)0()1(
2

Hence, we have again 

                              
1)()(

1
)( 22  









dxxxdx
h

x

hh

x 

and 

                               

1 1
2

( ) 16 (2 )
( ) .

3

x x
x

  


             

Let us summarize the above construction in the form of 

Theorem 2.1:   For the wavelet 2(x) defined by

(2.7)                                  )32(
23

1
)(

22 22/
2

xx xexex  




Equations (2.1) and (2.2) hold

Figure 1: The Wavelet 
10

1
),(

1
2 h

h

x

h

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Figure 2: The Wavelet 
10

1
),(

1
3 h

h

x

h


Figure 3: The Fourier transform  ),()( 22 xof  illustrating the band         

pass filter characteristics

Remark 2.1 By reiterating the Richardson extrapolation technique on 
2( ), one can obtain 

2 2 2/2 2 8
3

1
( ) ( 160 4096 ).

45 2
x x xx xe xe xe


     
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Indeed the analysis of such a wavelet shows that the last term is identically 
zero in our experiment. This proves the inadequacy of the wavelet )(3 x . 

This is why we do not reiterate )(2 x .

2.2 Computation of derivatives

In the next theorem we will compute f `(x) and will present the analysis of 
the error estimate 

Theorem 2.2:  Let f(x) be a smooth function, then 

(2.8)                                                )`()()(
11

2 xfdt
h

t
txf

hh








                                                     )()()( 86)7(
2

4)5(
1 hOhxfChxfC 

where 2(x) is given by (2.7) and 

(2.9)                                        03125.0)(
!5

1
2

5
1  





dtttC 

and 

(2.10)                                      0013021.0)(
!7

1
2

7
2  





dtttC 

Proof :                                          dt
h

t
txf

hh
)()(

11
2







                                                    dtthtxf
h

)()(
1

2






(2.10)                                          )(
1

)())`()((
11 2

2 hO
h

dttxthfxf
hh

 






Now using (2.1) with k=0, 1 and (2.2) , we see from (2.10) that
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(2.11)                                           )`()()(
11

2
0

xfdt
h

t
txf

hh
Lim
h









Now using (2.2)   again 

                           
)`()(

1
)(

1
2 xfdt

h

t

h
txf

h








                                         
dtxf

h

t

h

t
dt

h

t

h
txf

h 










  )`()()(

1
)(

1
22 

                                          dttxthfthxf
h

)())`()((
1

2






We Know that

(2.12)
                              

)(
!

)(
)1()( 55

)(4

0

htOht
k

xf
thxf kk

k

k

k  


Therefore, from (2.1) and (2.12) we have

5 5
(5)

2 2

7 7
(7) 9

2

1 1 1
( ) ( ) `( ) ( ) ( )

5!

1 1
( ) ( ) ( )

7!

t t h
f x t dt f x f x t dt

h h h h

t h
f x t dt O h

h h

 



 

 





 
    

 

 
  

 

 



Here we have used the fact that 0)0()(
2 k if k is even.

Now let us calculate the values of the quantities C1 and C2. 
We have,

                                   
)0()( )5(

22
5  

idxxx 




Using (2.6), we find that 
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75.3)(2

5 




dxxx 

In a similar manner we find that 

                                    
5625.6)(2

7 




dxxx 

This completes the proof of the theorem 

Remark 2.2: It is easy to check that )(2 x is a linear invariant system 

(operator). Now, let us examine the stability of the system )(2 x . An 
arbitrary system is said to be stable if and only if every bounded input
produces a bounded output. If the input signal f(x) is bounded, there exists a 
constant Mf such that 

|f(x)| < Mf for all x.

Now consider the convolution formula 

                                            
dtttxfxg )()()( 2







where g(x) is the output signal.

Therefore,

                        

dtttxfxg )()()( 2






                                   
dtttxf )()( 2







(2.13)                        dttM f 




 )(2

Now 

                    










 dttetedtt tt 22 22/
2 32

23

1
)(




                                      







 










 dttedtte tt 22 22/ 32
23

1


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                                       







 





 dttedtte tt

0

2

0

2/ 22

642
23

1



                                          1 6
2 16 .

3 2 2 
  

This together with (2.13) proves that output is bounded .Hence the system 
)(2 x   is stable.

Remark 2.3 In the case of a polynomial  )(xPn of degree n, we have the 

following result, regardless the value of h, 

                     
0,1,2,3,4=n for )()()(

11 `
2 xPdt

h

t
txP

hh nn 






                                      
3. Frequency Domain Characterization of the Filter

Let us consider the Fourier transform of the convolution integral 

                                
dt

h

t

h
txf

h
)(

1
)(

1
2







                                
dxdt

h

t
txfe

h
iwx









 









 )()(
1

22


                                 
dtdxtxfe

h

t

h
iwx









 










)()(
1

22


                                 
dte

h

t

h

f iwt




 )(
)(

22




                                   
)(

)(
2 h

h

f  




                                   
)).((  if




     
0has

                   
Here we have used (2.6).

We know that                 is the Fourier transform of the function f `(x). 

Hence using the above technique one can express the derivative of the signal 

)).((  if

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in frequency domain. Thus differentiation is obtained through multiplication 

in frequency domain. 

Example 3.1   Let us excite the system with the complex exponential 

                                               

xiAexf )(
                        

 x

where A is  the amplitude and      is any arbitrary frequency .

We obtain the response 

                          
dttAexg txi )()( 2

)( 






                                  
dtteAe tixi )(2 







                                   
2 ( ).i xAe    

As a result of this characteristic behavior the exponential signal is an eigen 

function of the system. Moreover, one can see that our wavelet function is 

also useful for the purpose of amplitude modulation.

4. Conclusion

Our   wavelet           is an odd function and it is linear time-invariant 

stable system. It is, of course, remarkable that differentiation reduces to 

multiplication in frequency domain. Our wavelet is also useful for amplitude 

modulation as shown in the example 3.1.
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