
ISSN 0974 - 9373 
 

Vol. 23  No. 4 (2019)       Journal of International Academy of Physical Sciences       pp. 337- 347 

 

 

 

Newtonian Limit for the Curvature of Space Time 

 
K. C. Petwal 

Department of Mathematics 

HNB Garhwal University, SRT Campus Badshahi Thaul 

Tehri Garhwal-249 199, Uttarakhand, India 

E-mail: kcpetwal@gmail.com  

 

 

 

 (Received September 21, 2019)  
 

 

 
Abstract: The curvature of space time expresses the tidal force that a 

body feels when moving along a geodesic. Harmann Weyl named 

Weyl
1
 curvature tensor which is measure of the curvature of space 

time. In general relativity, A. Danehkar
2
 studied that the curvature of 

space time is a solution of vacuum Einstein equation and it governs the 

propagation of gravitational waves through area of space devoid of 

matter. Hermann Klaus Hugo Weyl (1955), one of the German 

Mathematician of 19
th

 century, published technical and some general 

work on space, time, matter, philosophy, logic symmetry and 

visualized general relativity with the laws of electromagnetism.  

       In the present manuscript, we have tried to draw our focus on 

properties of conformal Weyl curvature tensor i.e. curvature of space 

time and its applications in the modern literature of relativity and 

cosmology. However, in this note we wish to compliment some recent 

enhancements in the cosmological literature by implementing notions 

of Weyl’s conformal curvature tensor and its recurrence properties. In 

particular, we shall outline some generalized recurrence properties of 

Weyl’s curvature tensor in the Weyl’s space and then delineate its 

Newtonian limit. Besides this, we shall discuss some relativistic 

equations under Newtonian limit. It is shown that for the space-time 

having dimensions less than 4, needed a tensor (called Cotton tensor), 

other than Weyl’s tensor to check out the conformal flatness of the 

space-time and its recurrent nature. Moreover, a relativistic form of 

Weyl’s tensor and relativistic equation evolved due to its parts (namely, 

electric and magnetic) has been studied. 

Keywords: Relativistic, Curvature, Weyl space, Weyl tensor, 

Newtonian limit, Cotton tensor, Eulerian, Newtonian tidal tensor. 
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1. Introduction 

 

       H. Weyl’s at al1 sums up his efficiency, perfection and curiosity, not 

only in Mathematics, but in Physics of space-time, matter and Philosophy 

also. In search of “what is the role of electricity in the geometry of space-

time”? Weyl concentrated to this topic in paper after paper and book after 

book. In a 1918 article, Hermann Weyl3 tired to combine electromagnetism 

and gravity by requiring the theory to be invariant under a local scale change 

of the metric, i.e.,  
uv uvg g e

 
 , where   is a 4-vector. This attempt was 

successful and was characterized by Einstein for being inconsistent with 

observed physical results. It predicted that a vector parallel transported from 

point p  to q  would have a length that was path dependent.  Now, in order 

to pursue our proposed study “Newtonian limit for the curvature of space 

time”, we briefly introduce some notions on Weyl’s space, Generalized 

Weyl’s space and Newtonian limit of general relativity. 

       Weyl’s space: An n dimensionl differentiable manifold nM  is said to 

be a Weyl space if it has a symmetric connection   and a symmetric 

conformal metric tensor ijg  preserved by   satisfying the compatibility 

condition given by the equation3-5 
 

(1.1)              2 0k ij k ijg F g   , 

 

Or in extended form  
 

(1.2)              2 0h h
ij hj ik ih jk k ijk

g g g F g
x


     


, 

 

where kF  represents a covariant vector filed and i
kl  are the connection 

coefficients of the symmetric connection   and are defined as; 
 

(1.3)               i im
k l mk l ml k kl m

i
g g F g F g F

k l

 
     

 
.  

 

Moreover, under the renormalization condition; 
 

(1.4)              2
ij ijg g , 

 

of the metric tensor ijg , the covariant vector field kF  is transformed by the  
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law; 
 

(1.5)              lnk k k
F F

x



 


,            

 

where   is a scalar function defined on nM . 

Thus the space nM  satisfying all the foregoing condition will be symbolized 

by  , ,i
n jk ij kM g F  or  ,nM g F . Also a geometric object   defined on 

 , ,i
n jk ij kM g F  is called a satellite of weight  w  of the tensor ijg , if it 

admits a transformation of the form: 
 

(1.6)              w   , 
 

under the renormalization condition of the metric tensor ijg 3,6. 

Further the prolonged covariant derivative of a satellite   is defined by; 
 

(1.7)              k k kwF    .                                 

 

It is remarkable that the prolonged covariant derivative preserves the weight. 

Generalized Weyl’s space: An n dimensional differentiable manifold 

nGM  having an anti-symmetric connection   and anti-symmetric 

conformal metric tensor ijg   preserved by   is called a “generalized Weyl 

space”7. For such a space, in local co-ordinate system, we have a 

compatibility condition as below: 
 

(1.8)  2 0k ij k ijg F g     ,                   

 

where kF   are the components of a covariant vector filed called the 

complementary vector filed of the nGM  space. 

Using the concept of covariant differentiation8,9, the compatibility condition 

(1.8) can be written in extended form as; 
 

(1.9)              2 0h h
ij h j ik ih jk k ijk

g g L g L F g
x


    
   


,                   
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where i
klL  are the connection coefficients of the anti-symmetric connection 

k
  and are obtained from the compatibility condition as10; 

 

(1.10)            
1

2

i i h h h mi
kl kl km lh ml kh kl hmL g g g g            .              

 

Now, putting 
 

(1.11)            
1

2

i h h h mi
kl km lh ml kh kl hmg g g g           ,                     

 

we obtain 
 

(1.12)            i i i
kl kl klL    ,                   

 

where i
kl  and i

kl  are respectively the coefficients of a Weyl connection 

and the torsion tensor of nGM  space and are expressed as; 

 

(1.13)               

1

2

i i i i
kl kl lk kl

L L L    , 

 

(the round bracket stands for symmetry) 
 

and 
 

(1.14)               

1

2

i i i i
kl kl lk k l

L L L     . 

 

(The square bracket stands for anti-symmetry).   

A generalized Weyl space satisfying all the aforementioned condition is 

symbolized as  , ,i
n jk ij kGM L g F  . 

Newtonian Limit in General Relativity: The concept of Newtonian limit 

in theory of relativity has been introduced to focus on two major aspects; 

one of them concerns to the presentation of a precise derivation of the 

Newtonian limit of fluid evolution equation in a 4-dimensional “frame 

theory” developed by 11,12. This theory covers both Einstein and Newtonian 

theory of gravitationally interacting matter. On the other hand, second 

aspect pertains to the discussion general relativistic equations to describe a 

closed Newtonian system. 
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2. Recurrence Properties of Space-Time/Weyl Curvature  

Tensor in Mn & Gmn Spaces 

 

       According to ref.
3
, under a renormalization condition of the fundament- 

al metric tensor ijg  of the form (1.4), an object   defined on  space, 

admits a transformation of the form (1.6) is called a satellite with weight 

 w  of the metric tensor and the prolonged covariant derivative of the 

satellite   relative to the symmetric connection   is defined by13: 
 

(2.1)              k k kwF    .        

 

Whereas the same relative to anti-symmetric connection   is defined as; 
 

(2.2)              k k kwF       ,        

 

which evinces that the prolonged derivative preserves the weight of satellite. 

Now the conformal Weyl curvature tensor i
jklC  of the generalized Weyl 

space nGM  is given by14 as 

 

(2.3)              
       

2

2

i i i i im im
jkl jkl l k jl jk mlj k j l m k

C R R R g g R g g R
n n

     


 

 

                           
1

2
2

i i i im im
j l jk k jl jl mk jk mll k

n R R R g g R g g R
n

       


 

 

                     
  

 
1 2

i i
jk l jl k

R
g g

n n
  

 
,  

 

where the square bracket stands for the anti-symmetrization. 

This n dimensional nGM  space is said to be conformally recurrent Weyl 

space if its conformal curvature tensor (2.3) of weight 0, on taking the 

prolonged derivative, satisfies the condition; 
 

(2.4a)            i i
m jkl m jklC C  ,        

 

where m mF   is a non-zero covariant recurrence vector field of weight zero. 

The conformal curvature tensor given by (2.3) can be re-defined in the 

purely contravariant pattern as below: 
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(2.4b)             
1

2

ijkl ijkl il kj il jk jk li jl kiC R g S g S g S g S
n

    


,   

where 
 

1

2 1

lj lj ljS R g R
n

 


. ljR  and R  are the Ricci quantities, while 

ijklC   bears the following main properties: 

(a)  It is purely covariant against conformal redefinition of the metric, i.e.,  

   kl klg x x g                

(b) It vanishes if and only if the nGW  space is conformally flat, i.e., klg is 

diffeomorphic to kl , where kl  is flat. 

(c) It possesses the symmetries of Riemannian tensor and also is traceless in 

each index pair. 

(d) Evidently, from the properties (a) and (b), the Weyl tensor acts as a 

template for conformal flatness. Thus by evaluating it on a specific 

metric tensor, one can distinguish, whether the space-time under 

consideration is conformally flat or not. 

       In three dimensions the Weyl tensor vanishes identically and the 

Riemannian tensor is given by the last term in (2.4) (at 3n  ). But not all 

three dimensional space-times are conformally flat. 

Now, as it is well known that in dimensions greater than three, the 

conformal tensor (2.3) or (2.4) is the Weyl tensor, then what about the three 

dimensional space-time? To overcome from this difficulty, one need a 

substitute for Weyl tensor, which would act as a template for the conformal 

flatness?  

       Indeed there is a crucial substitution for Weyl tensor, known as “Cotton 

Tensor” which is delineated as; 
 

 (2.5)              
1

2

ij ikl j jkl i
k l k lC D R D R

g
   .       

 

This Cotton tensor serves that role, as it possesses conformal template 

properties (a) and (b).  ijC  is symmetric in its indices and like the Weyl 

tensor, it is traceless.  Therefore, in case of the space-time having dimension 

less than 4, one can have the conformal recurrence properties for such 

conformally non-flat continuum by taking the prolonged derivative of 

Cottons tensor (2.5) of weight zero. The conformally non-flat space-time 

having dimension 3n   will be called conformally recurrent if the Cotton 

tensor satisfy the following: 
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 (2.6)             ij ij
m mC C  ,  

 

where m  is a non-zero recurrence vector filed of weight zero. 

It is remarkable that for the space-time having dimension less than three, 

there is no need of a conformal tensor and indeed none exists as all such 

spaces are locally conformally flat.We, now, study conformal Weyl tensor, 

its Newtonian limit and some relativistic equations in general relativity due 

to Newtonian limit. 

 

3. Conformal Weyl’s Curvature Tensor, Its Newtonian Limit and 

Relativistic Equations 

 

      In the modern cosmological literature, role of conformal Weyl’s 

curvature tensor has been adequately discussed. Especially, concentration 

upon the two crucial parts, namely “electric” and “magnetic” parts of 

conformal Weyl’s curvature tensor has been drawn by11,12 individually.  

Further11,12 have discussed some ideas on the magnetic part of Weyl tensor 

under Newtonian limit of general relativity. 

      In order to pursue significance of Weyl tensor in cosmological 

structures, the “frame-theory” for a general 4-dimensional space-time 

continuum is employed which encapsulate both the “Newton’s theory” as 

well as “Einstein’s theory”. In this frame theory, a single parameter 2c   is 

introduces in such a way that it distinguishes between Newton’s and 

Einstein’s theory. The limit for this parameter is take as 0 . Moreover, in 

the formalism of Einstein’s theory, a temporal metric ijt  and an inverse 

spatial metric ijs  are used which are related by an expression of the form: 
 

(3.1)              jk k
ij it s  .      

 

In case of general relativity, the parameter   is taken to be greater than 

zero, i.e., 0  and the Riemannian as well as inverse Riemannian metric 

ijg  & ijg  are used such that; 

 

(3.2)              1
ij ijg t    & ij ijg s .          

 

On the other hand, in Newton’s theory, the parameter   is taken to be zero 

and the temporal metric is defined as; 
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(3.3)              , ,ij i jt t t ,            

 

where t  is the absolute time and the comma  ,  denotes the derivative with 

respect to the Eulerian co-ordinates which will be discussed further. 

In the conception of frame theory, the conformal Weyl’s curvature tensor 

(2.3), for 0   takes the following form: 

 

(3.4) 1 1

3

i i i mi i pr
jkl jkl k lj jk lm k lj prC R R t R s t R z    
    

 
.      

 

This expression becomes worthless for 0  . However, if one uses the 

Einstein’s field equation; 
 

(3.5)              
1

8
2

kl
ij ik jl ij kl ijR G t t t t F t

 
   

 
 ,      

 

of the frame theory (valid for 0  ), to eliminate ijR  from the equation 

(3.4), we obtain; 
 

(3.6)              
2

8
3

i i i pr mi i pr
jkl jkl k lp jr jk lm k lj prC R G t t T t t T t t T  

 
    

 
.     

 

Now this formula is noteworthy, even for 0  . Thereby, one can define the 

conformal Weyl’s curvature tensor in the frame theory by  (3.6). This 

expression for the Weyl’s curvature tensor is quite suitable, for instance, if a 

sequence of general relativistic solutions has a Newtonian solution as a 

limit, then the limit of conformal Weyl curvature tensor is surely produced 

by (3.6). Furthermore, in case of Newton’s theory,  0  , (3.6) due to (3.3) 

reduces to the form: 
 

(3.7)              , ,

8

3

i i i
jkl jkl j k l

G
C R t t


   .                              

 

Also, the “electric” and “magnetic” part of the conformal Weyl curvature 

tensor with respect to any 4-velocity vector iv  can be obtained from (3.7) 

and these are respectively defined like below: 
 

(3.8)               ,

4

3

i i j l i i
k kjl k k

G
E R v v v t


    ,      
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(3.9)              
1

0
2

ru p j l
ik i j p r uklH s C v v   .     

 

Here it is very observable that the magnetic part ikH  of the conformal Weyl 

tensor vanishes in the Newtonian limit. This fact can be more precisely 

justified as follows: 

       In the general relativity, ikH  measures the relative rotation of nearby 

freely falling gyroscopes due to gravito-magnetism. This effect has 

nonexistence in case of Newtonian theory in which the parallelism of spatial 

vectors is path independent. It means, parallel gyroscopes will always 

remain parallel if subjected to nothing except inertia and gravity. Here, we 

now discuss some relativistic equations in Newtonian limit. 

In three dimensional Weyl space, (3.8) yields a new kind of tensorial 

quantity called “Newtonian tidal tensor” which is trace free part of 

gravitational field tensor  ,i jg  (here comma denotes derivative with 

respect to Eulerian co-ordinate system) and is given by 
 

(3.10)            , ,

1

3
i j i j i j l lE g g  ,  

 

Provided that 
 

(3.11)   0
j i

E  ,  0i iE  .                      

 

Likewise any Eulerian field, the Newtonian tidal tensor of the gravitational 

field strength  g  can be written in terms of Lagrangian co-ordinates as 

below: 
 

(3.12)             1 11
| |

3
i j i k kj i j l k klE g J g J   ,                

 

where a vertical slash stands for the derivative with regard to Lagrangian co-

ordinate system. 

In order to discuss evolution of tidal tensor as relativistic equation, we 

introduce a diffeomorphism  : ,tf x f X t , which sends fluid elements 

from their initial Lagrangian position  X  to a point x  in the Eulerian space 

at time t . Also, we use an expression for the jacobian of the inverse 

transformation;  
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(3.13)            1h f  ,     , , ,g x t f h x t t ,   det |i kJ f      

 

and         
 

(3.14)               
1 1

| , , , ,
2 3

j l jpq l p q opq o p q ijh f f f f f f
J
      ,    

 

so that the Newtonian tidal tensor could explicitly be expressed in terms of 

f  as: 

 

(3.15)               
1 1

, , , ,
2 3

i j jpq l p q opq o p q ijE f f f f f f
J

    
 

  
 

.    

 

Therefore any trajectory field f , which obeys the Lagrange-Newtonian 

system is given as; 
 

(3.16)             , , 0J j kf f f          

 

and 
 

(3.17)                  0
1 2 3 2 3 1 3 1 2, , , , , , 4f f f f f f f f f J G        ,    

 

where   is a cosmological constant.  

The last two equations determine the evolution of tidal tensor in the form of 

relativistic equation of general relativity via  (3.12). In (3.16) and (3.17), the 

symbol  , ,A B C  denote the functional determinant of any functions 

 ,A X t ,  ,B X t  and  ,C X t  with respect to Lagrangian co-ordinate 

system X  and 0  denotes the initial density field15. 
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