Generalized Symmetric Metric Connection on Semi-invariant Submanifolds of a Nearly Sasakian Manifold

Toukeer Khan

Computing & Informatics Department
Mazoon College, P. O. Box. 101, P.C. 133, Airport Heights, Al-Seeb
Muscat, Sultanate of Oman.
Email: toukeerkhan@gmail.com

Sheeba Rizvi

Departement of Liberal Education Era University, Lucknow, India. Email: sheeba.rizvi7@gmail.com

(Received April 17, 2020)

Abstract: We defined generalized symmetric metric connection of type (α, β) for a nearly Sasakian manifold and consider a semi-invariant submanifolds of a nearly Sasakian manifold endowed with a generalized symmetric metric connection of type (α, β) . The object of this paper to study some properties of semi-invariant submanifolds of a nearly Sasakian manifold endowed with a generalized symmetric metric connection of type (α, β) .

Keywords: Nearly Sasakian Manifold, Generalized symmetric metric connection, totally geodesic, totally umbilical.

2000 Mathematics Subject Classification: 53D05, 53D25, 53D12.

1. Introduction

Let linear connection ∇ is said to be generalized symmetric connection if its torsion tensor T is of the form¹

$$(1.1) T(X,Y) = \alpha \{u(Y)X - u(X)Y\} + \beta \{u(Y)\phi X + u(Y)\phi X\},$$

for any vector fields X, Y on a manifold, where α and β are smooth functions ϕ is a tensor of type (1,1) and

 α is a 1-form associated with a non-vanishing smooth non-null unit vector field ξ . Moreover, the connection ∇ is said to be a generalized symmetric metric connection if there is Riemannian metric g in M such that $\nabla g = 0$, otherwise it is non-metric.

In the equation (1.1), if $\alpha = 0$ ($\beta = 0$), then the generalised symmetric connection is called β – quarter-symmetric connection (α – semi-symmetric connection), respectively. Moreover, if we choose (α , β)=(1,0) and (α , β)=(1,0), then the generalized symmetric connection is reduced to a semi-symmetric connection and quarter-symmetric connection, respectively. Hence a generalized symmetric connection can be viewed as a generalization of semi-symmetric and quarter-symmetric connection. They are most important for geometry study and application to physics.

It is well known that a linear connection is symmetric and metric if it is the Levi-Civita connection. The idea of semi-symmetric linear connection and quarter-symmetric linear connections in differential manifold was introduced by S. Golab².

A linear connection ∇ is said to be semi-symmetric connection if its torsion tensor T is of the form³

$$(1.2) T(X,Y) = \eta(Y)X - \eta(X)Y,$$

where η is a 1-form.

The study of semi-invariant submanifolds in Sasakian manifolds were initiated by A. Bejancu and N. Papaghuic⁴. The notion of a nearly Sasakian manifolds was introduced by Blair et al⁵. CR-submanifolds of a nearly Sasakian manifold were studied by M. H. Shahid⁶. M. H. Shahid⁷ investigated properties of semi-invariant submanifolds of a nearly Sasakian manifold. T. Khan⁸, studied on semi-invariant submanifolds of a nearly hyperbolic Kenmotsu manifolds with semi-symmetric metric connection and Ahmed et al⁹, studied on semi-invariant submanifolds of a nearly Kenmotsu manifold with semi-symmetric semi-metric connection. In this paper we study generalized symmetric metric connection on semi-invariant submanifolds of a nearly Sasakian manifold. The paper is organized as follows: In section 2, we give a brief introduction to nearly Sasakian manifolds. In section 3, we study semi-invariant submanifolds of a nearly Sasakian manifold. We find necessary conditions that induced connection

on generalized symmetric metric connection on semi-invariant submanifolds of a nearly Sasakian manifold is also a generalized symmetric metric connection. In section 4, we discuss the Integrability condition of distributions of semi-invariant submanifolds.

2. Preliminaries

Let \overline{M} be a (2m+1)-dimentional almost contact metric manifold with a metric tensor g, a tensor field ϕ of type (1,1), a vector field ξ , a 1-form η which satisfies

$$(2.1) \phi^2 X = -X + \eta(X)\xi,$$

$$(2.1) \phi o \xi = 0,$$

$$(2.3) \eta o \phi = 0,$$

$$(2.4) \eta(\xi) = 0,$$

$$(2.5) \eta(X) = g(X, \xi),$$

$$(2.6) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

for all vector field X, Y in \overline{M} If in addition to the condition for an almost contact metric structure we have $d\eta(X,Y) = g(X,\phi Y)$, the structure is said to be a contact metric structure¹⁰.

The almost contact metric manifold \overline{M} is called a nearly Sasakian manifold if it is satisfies the condition⁵

(2.7)
$$\left(\overline{\nabla}_X \phi\right) Y + \left(\overline{\nabla}_Y \phi\right) X = \eta(Y) X + \eta(X) Y - 2g(X, Y) \xi,$$

where $\bar{\nabla}$ denotes the Riemannian connection with respect to g . If, moreover, \bar{M} satisfies

(2.8)
$$\left(\overline{\overline{\nabla}}_X \phi\right) Y = \eta(Y) X - g(X, Y) \xi ,$$

$$(2.9) \qquad \overline{\nabla}_X \xi = \phi X ,$$

then it is called a Sasakian manifold¹⁰. Thus every Sasakian manifold is a nearly Sasakian manifold. The converse statement fails in general⁵.

3. Semi-Invariant Submanifolds of a Nearly Sasakian Manifolds

Definition¹¹ **3.1:** An n-dimentional Riemannian submanifold M of a nearly Sasakian manifold \overline{M} is called a semi-invariant submanifolds if ξ is tangent to M and there exists M a pair of orthogonal distributions (D, D^{\perp}) such that

- $(i) TM = D \oplus D^{\perp} \oplus \{\xi\} ,$
- (ii) The distribution D is invariant under ϕ that is $\phi D_x = D_x$ for all $X \in M$,
- (iii) the distribution D^{\perp} is anti-invariant under ϕ , that is $\phi D_X^{\perp} \subset T^{\perp}M$ for all $X \in M$, where TM and $T^{\perp}M$ are the tangent space and normal space of M at X.

The distribution D (resp. D^{\perp}) is called the horizontal (resp. vertical) distribution. A semi-invariant submanifold M is said to be an invariant (resp. anti-invariant) submanifold if $D_X^{\perp} = \{0\}$ (resp. $D_X = \{0\}$) for each $X \in M$. We also call M proper if neither D nor D^{\perp} is null.

A vector field X tangent to M is given as

$$(3.1) X = PX + QX + \eta(X)\xi,$$

where PX and QX belong to the distribution D and D^{\perp} respectively. For any vector field N normal to M, we put

$$(3.2) \phi N = BN + CN,$$

where BN (resp. CN) denotes the tangential (resp. normal) component of ϕN .

Now, we define a generalized symmetric metric connection ∇ of type $(\alpha, \beta)^{1}$,

$$(3.3) \qquad \overline{\nabla}_{X}Y = \overline{\overline{\nabla}}_{X}Y + \alpha \left\{ \eta(Y)X - g(X,Y)\xi \right\} - \beta \eta(X)\phi Y.$$

If we choose $(\alpha, \beta) = (1, 0)$ and $(\alpha, \beta) = (1, 0)$, generalized symmetric connection is reduced a semi-symmetric metric connection and quarter-

symmetric metric connection as follows.

$$(3.4) \overline{\nabla}_X Y = \overline{\overline{\nabla}}_X Y + \eta(Y) X - g(X, Y) \xi,$$

$$(3.5) \overline{\nabla}_X Y = \overline{\overline{\nabla}}_X Y - \eta(X) \phi Y,$$

for all $X, Y \in TM$, where η is a 1-form on M and $\overline{\nabla}$ is the induced connection with respect to the metric g on M.

The covariant differential of the vector field ϕY is given by,

(3.6)
$$(\overline{\nabla}_X \phi) Y = \overline{\nabla}_X \phi Y - \phi (\overline{\nabla}_X Y),$$

from (3.3), replace Y by ϕY , we have

$$(3.7) \qquad \bar{\nabla}_X \phi Y = \bar{\bar{\nabla}}_X \phi Y - \alpha g(X, \phi Y) \xi + \beta \eta(X) Y - \beta \eta(X) \eta(Y) \xi .$$

Operating ϕ both side in (3.3), we have

(3.8)
$$\phi(\overline{\nabla}_X Y) = \phi(\overline{\nabla}_X Y) + \alpha \eta(Y) \phi X + \beta \eta(X) Y - \beta \eta(X) \eta(Y) \xi.$$

Using equations (3.7) and (3.8) in (3.6), we have

(3.9)
$$(\overline{\nabla}_X \phi) Y = (\overline{\overline{\nabla}}_X \phi) Y - \alpha \{ \eta(Y) \phi X + g(X, \phi Y) \xi \}.$$

Using equation (2.4) in (3.9), we have

(3.10)
$$(\overline{\nabla}_X \phi) Y = \eta(Y) X - g(X, Y) \xi - \alpha \{ \eta(Y) \phi X + g(X, \phi Y) \xi \}.$$

Interchanging X and Y in (3.10), we have

(3.11)
$$(\overline{\nabla}_{Y}\phi)X = \eta(X)Y - g(X,Y)\xi - \alpha\{\eta(X)\phi Y + g(Y,\phi X)\xi\}.$$

Adding equations (3.10) and (3.11), we have

(3.12)
$$(\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = \eta(X) Y + \eta(Y) X - 2g(X, Y) \xi$$

$$-\alpha \{ \eta(X) \phi Y + \eta(Y) \phi X \}.$$

Now, taking $Y = \xi$ in (3.3), we have

$$\overline{\nabla}_{X}\xi = \overline{\overline{\nabla}}_{X}\xi + \alpha \left\{ \eta(\xi)X - g(X,\xi)\xi \right\} - \beta \eta(X)\phi\xi$$

Using (2.1) and (2.4) in above equation, we have

$$(3.13) \overline{\nabla}_X \xi = \phi X + \alpha X - \alpha \eta(X) \xi.$$

We denote by g the metric tensor of \overline{M} and that induced on M. Let $\overline{\nabla}$ be the generalized symmetric metric connection on \overline{M} and ∇ be the induced connection on M with respect to unit normal N.

Theorem 3.1: (i) Let M be a semi-invariant submanifold. If $X, Y \in D$ and D is parallel with respect to ∇ , then the connection induced on a semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection is also a generalized symmetric metric connection.

- (ii) Let M be a semi-invariant submanifold. If $X, Y \in D^{\perp}$ and D^{\perp} is parallel with respect to ∇ , then the connection induced on a semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection is also a generalized symmetric metric connection.
- (iii) The Gauss formula with respect to a generalized symmetric metric connection is of the form

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

Proof: Let $\overline{\nabla}$ be the induced connection with respect to the unit normal N on the semi-invariant submanifolds M of a nearly Sasakian manifold from a generalized symmetric metric connection $\overline{\nabla}$. Then

$$(3.14) \overline{\nabla}_X Y = \nabla_X Y + m(X, Y),$$

where m is a tensor field of type (0,2) in the semi-invariant submanifolds M. If ∇^* is the induced connection on semi-invariant submanifolds from the Riemannian connection $\overline{\nabla}$, then

$$(3.15) \qquad \overline{\nabla}_X Y = \nabla_X^* Y + h(X, Y).$$

Using (3.14) and (3.15) in (3.16), we have

(3.16)
$$\nabla_{X}Y + m(X,Y) = \nabla_{X}^{*}Y + m(X,Y) + \alpha \{\eta(Y)X - g(X,Y)\xi\}$$
$$-\beta \eta(X)\phi Y.$$

Using (3.1) in (3.16), we have

$$\begin{split} &P\nabla_{X}Y + Q\nabla_{X}Y + \eta(\nabla_{X}Y)\xi + m(X,Y) \\ &= P\nabla_{X}^{*}Y + Q\nabla_{X}^{*}Y + \eta(\nabla_{X}^{*}Y)\xi + h(X,Y) + \alpha\eta(Y)PX \\ &+ \alpha\eta(Y)QX + \alpha\eta(X)\eta(Y)\xi - \beta\eta(X)\phi PY - \beta\eta(X)\phi QY \\ &- \alpha g(X,Y)P\xi - \alpha g(X,Y)Q\xi - \alpha g(X,Y)\xi \,. \end{split}$$

Equating tangential and normal components from both sides, we have

$$(3.17) P\nabla_{X}Y = P\nabla_{X}^{*}Y + \alpha\eta(Y)PX - \alpha g(X,Y)P\xi - \beta\eta(X)\phi PY,$$

$$(3.18) Q\nabla_{X}Y = Q\nabla_{X}^{*}Y + \alpha\eta(Y)QX - \alpha g(X,Y)Q\xi - \beta\eta(X)\phi QY,$$

(3.19)
$$\eta(\nabla_X Y)\xi = \eta(\nabla_X^* Y)\xi + \alpha\eta(X)\eta(Y)\xi - \alpha g(X,Y)\xi,$$

(3.20)
$$m(X,Y) = h(X,Y).$$

In view of (3.17), if M is a semi-invariant submanifold, $X, Y \in D$ and D is parallel with respect to ∇ , then the connection induced on semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection is also a generalized symmetric connection.

Similarly, In view of (3.18), if M is a semi-invariant submanifold, $X, Y \in D^{\perp}$ and D^{\perp} is parallel with respect to ∇ , then the connection induced on semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection is also a generalized symmetric connection. Using (3.20), the Gauss formula for a semi-invariant submanifolds of a nearly Sasakian manifold with generalized symmetric metric connection is

$$(3.21) \overline{\nabla}_X Y = \nabla_X Y + h(X, Y).$$

This prove (iii).

Now, for a semi-invariant submanifold M of a nearly Sasakian manifold with generalized symmetric metric connection, the Weingarten formula is given by

$$(3.22) \qquad \overline{\nabla}_X N = -A_N X + \alpha \eta(N) X - \beta \eta(X) \phi N + \nabla_X^{\perp} N,$$

for $X, Y \in TM$ and $N \in T^{\perp}M$, A_N is the tensor form of M in \overline{M} and ∇^{\perp} denotes the operator of the normal connection, on the normal bundle $T^{\perp}M$, h is the second fundamental form and A_N is the Weingarten associated with N as

$$(3.23) g(h(X,Y),N) = g(A_N X - \alpha \eta(N)X + \beta \eta(X)\phi N,Y).$$

Definition¹² **3.2:** A semi-invariant submanifold is said to be mixed totally geodesic if h(X,Y)=0, for all $X \in D$ and $Y \in D^{\perp}$. The Nijenhuis tensor N(X,Y) for almost contract structure is expressed as

$$(3.24) N(X,Y) = (\overline{\nabla}_{\phi X}\phi)Y - (\overline{\nabla}_{\phi Y}\phi)X - \phi(\overline{\nabla}_X\phi)Y + \phi(\overline{\nabla}_Y\phi)X,$$

for all $X, Y \in TM$.

From (3.12), replacing X and ϕX , we have

(3.25)
$$(\overline{\nabla}_{\phi X} \phi) Y = -2g(\phi X, Y) \xi + \eta(Y) \phi X + \alpha \eta(Y) X$$
$$-\alpha \eta(X) \eta(Y) \xi - (\overline{\nabla}_{Y} \phi) \phi X.$$

From (2.1), again

$$\phi(\phi X) = -X + \eta(X)\xi$$
.

Differentially covariantly along the vector and using (3.13), we have

$$\begin{split} & \left(\overline{\nabla}_{Y}\phi\right)\phi X + \phi\left(\overline{\nabla}_{Y}\phi\right)X + \phi^{2}\left(\overline{\nabla}_{Y}X\right) \\ & = -\overline{\nabla}_{Y}X + \left(\overline{\nabla}_{Y}\eta\right)(X)\xi + \eta\left(\overline{\nabla}_{Y}X\right)\xi \\ & + \eta(X)\left\{\phi Y + \alpha Y - \alpha \eta(Y)\xi\right\}. \end{split}$$

Using (2.1), we have

(3.26)
$$(\overline{\nabla}_{Y}\phi)\phi X = (\overline{\nabla}_{Y}\eta)(X)\xi + \eta(X)\phi Y + \alpha\eta(X)Y$$
$$-\alpha\eta(X)\eta(Y)\xi - \phi(\overline{\nabla}_{Y}\phi)X.$$

Using (3.26) in (3.25), we have

(3.27)
$$(\overline{\nabla}_{\phi X}\phi)Y = -2g(\phi X, Y)\xi + \eta(Y)\phi X - \eta(X)\phi Y - (\overline{\nabla}_{Y}\eta)(X)\xi$$

$$+\alpha\{\eta(Y)X - \eta(X)Y\} + \phi(\overline{\nabla}_{Y}\phi)X.$$

Interchanging X and Y, we have

(3.28)
$$(\overline{\nabla}_{\phi Y}\phi)X = -2g(\phi Y, X)\xi + \eta(X)\phi Y - \eta(Y)\phi X - (\overline{\nabla}_X\eta)(Y)\xi$$
$$-\alpha\{\eta(Y)X - \eta(X)Y\} + \phi(\overline{\nabla}_X\phi)Y.$$

Using (3.27) and (3.28) in (3.24), we have

$$N(X,Y) = 6g(\phi X,Y)\xi + 2\eta(Y)\phi X - 2\eta(X)\phi Y + 2\alpha\eta(Y)X$$
$$-2\alpha\eta(X) - 2\phi\{(\overline{\nabla}_X\phi)Y + (\overline{\nabla}_Y\phi)X\} + 4\phi(\overline{\nabla}_Y\phi)X.$$

Using (3.12) in above, we have

(3.29)
$$N(X,Y) = 6g(\phi X,Y)\xi + 4\phi(\overline{\nabla}_Y\phi)X - 4\eta(X)\phi Y - 4\alpha\eta(X)Y + 4\alpha\eta(X)\eta(Y)\xi.$$

As we know that

$$(\overline{\nabla}_{Y}\phi)X = \overline{\nabla}_{Y}\phi X - \phi(\overline{\nabla}_{Y}X).$$

Using Gauss formula in above equation, we have

$$\left(\overline{\nabla}_{Y}\phi\right)X = \nabla_{Y}\phi X + h(Y,\phi X) - \phi \nabla_{Y}X - \phi h(Y,X).$$

Operating ϕ both side in above equation, we have

$$\phi(\overline{\nabla}_{Y}\phi)X = \phi(\nabla_{Y}\phi X) + \phi h(Y, \phi X) + \nabla_{Y}X - \eta(\nabla_{Y}X)\xi + h(Y, X).$$

Using (3.30) in above equation, we have

$$(3.30) \qquad N(X,Y) = 4\phi(\nabla_Y\phi X) + 4\phi h(Y,\phi X) + 4h(Y,X) + 4\nabla_Y X - 4\eta(\nabla_Y X)\xi$$
$$-4\eta(X)\phi Y - 4\alpha\eta(X)Y + 4\alpha\eta(X)\eta(Y)\xi + 6g(\phi X,Y)\xi.$$

Lemma 3.1: Let M be a semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection. Then

$$(3.31) 2(\overline{\nabla}_X \phi)Y = \nabla_X \phi Y - \nabla_Y \phi X + h(X, \phi Y) - h(Y, \phi X)$$
$$-\phi[X, Y] - 2g(X, Y)\xi, \text{ for all } X, Y \in D$$

Proof: By Gauss Formula, replacing Y by ϕY , we have

$$\overline{\nabla}_X \phi Y = \nabla_X \phi Y + \phi (\overline{\nabla}_X Y),$$

Similarly, $\overline{\nabla}_Y \phi X = \nabla_Y \phi X + \phi (\overline{\nabla}_Y X).$

From both above equation, we have

$$(3.32) \qquad \overline{\nabla}_{Y}\phi Y - \overline{\nabla}_{Y}\phi X = \nabla_{Y}\phi Y - \nabla_{Y}\phi X + h(X,\phi Y) - h(Y,\phi X).$$

By, covariantly differentiation, we have

$$\overline{\nabla}_X \phi Y = (\overline{\nabla}_X \phi) Y + \phi(\overline{\nabla}_X Y),$$

Similarly, $\overline{\nabla}_{Y}\phi X = (\overline{\nabla}_{Y}\phi)X + \phi(\overline{\nabla}_{Y}X).$

From both above equation, we have

$$(3.33) \qquad \overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = (\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X + \phi [X, Y].$$

From equation (3.32) and (3.33), we have

(3.34)
$$(\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X = \nabla_X \phi Y - \nabla_Y \phi X + h(X, \phi Y)$$
$$-h(Y, \phi X) - \phi [X, Y].$$

Adding equation (3.12) and (3.34), we have

$$2(\overline{\nabla}_X\phi)Y = \nabla_X\phi Y - \nabla_Y\phi X + h(X,\phi Y) - h(Y,\phi X) - \phi[X,Y] - 2g(X,Y)\xi,$$

for all $X, Y \in D$

Lemma 3.2: Let M be a semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection. Then

$$(3.35) 2(\overline{\nabla}_X \phi)Y = -A_{\phi Y}X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y]$$

for all $X \in D$ and $Y \in D^{\perp}$.

Proof: By Weingarten Formula, replacing N by ϕY , we have

$$\overline{\nabla}_{X}\phi Y = -A_{\phi Y}X + \alpha \eta(\phi Y)X - \beta \eta(X)\phi^{2}N + \nabla_{X}^{\perp}\phi Y,$$
(3.36)
$$\overline{\nabla}_{X}\phi Y = -A_{\phi Y}X + \nabla_{X}^{\perp}\phi Y + \beta \eta(X)Y - \beta \eta(X)\eta(Y)\xi.$$

As we know that

$$(3.37) \overline{\nabla}_{Y}\phi X = \nabla_{Y}\phi X + h(Y,\phi X).$$

From (3.36) and (3.37), we have

(3.38)
$$\overline{\nabla}_{X} \phi Y - \overline{\nabla}_{Y} \phi X = -A_{\phi Y} X + \nabla_{X}^{\perp} \phi Y - \nabla_{Y} \phi X - h(Y, \phi X)$$
$$+ \beta \eta(X) Y - \beta \eta(X) \eta(Y) \xi.$$

Comparing (3.33) and (3.38), we have

(3.39)
$$(\bar{\nabla}_{X}\phi)Y - (\bar{\nabla}_{Y}\phi)X = -A_{\phi Y}X + \nabla_{X}^{\perp}\phi Y - \nabla_{Y}\phi X - h(Y,\phi X)$$
$$-\phi[X,Y] + \beta\eta(X)Y - \beta\eta(X)\eta(Y)\xi.$$

Adding (3.12) and (3.39), we have

$$2\left(\overline{\nabla}_{\boldsymbol{X}}\boldsymbol{\phi}\right)\boldsymbol{Y} = -\boldsymbol{A}_{\boldsymbol{\phi}\boldsymbol{Y}}\boldsymbol{X} + \nabla_{\boldsymbol{X}}^{\perp}\boldsymbol{\phi}\boldsymbol{Y} - \nabla_{\boldsymbol{Y}}\boldsymbol{\phi}\boldsymbol{X} - \boldsymbol{h}\big(\boldsymbol{Y},\,\boldsymbol{\phi}\boldsymbol{X}\,\big) - \boldsymbol{\phi}\big[\boldsymbol{X},\,\boldsymbol{Y}\big]\,,$$

for all $X \in D$ and $Y \in D^{\perp}$.

Lemma 3.3: Let M be a semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection. Then

$$(3.40) P\nabla_{X}(\phi PY) + P\nabla_{Y}(\phi PX) - PA_{\phi QY}X - PA_{\phi QX}Y = \eta(X)PY$$
$$+\eta(Y)PX + \phi P\nabla_{X}Y + \phi P\nabla_{Y}X - \alpha \{\eta(X)\phi PY + \eta(Y)\phi PX\},$$

$$(3.41) Q\nabla_{X}(\phi PY) + Q\nabla_{Y}(\phi PX) - QA_{\phi QY}X - QA_{\phi QX}Y = \eta(X)QY$$
$$+\eta(Y)QX - \alpha\{\eta(X)\phi QY + \eta(Y)\phi QX\} + 2Bh(X,Y)$$
$$-\beta\{\eta(X)QY + \eta(Y)QX\},$$

(3.42)
$$h(X, \phi PY) + h(Y, \phi PX) + \nabla_X^{\perp} \phi QY + \nabla_Y^{\perp} \phi QX$$
$$= 2ch(X, Y) + \phi Q \nabla_X Y + \phi Q \nabla_Y X,$$

(3.43)
$$\eta \left(\nabla_X \phi P Y + \nabla_Y \phi P X - A_{\phi Q Y} X - A_{\phi Q X} Y \right) \xi$$
$$= 2\eta \left(X \right) \eta \left(Y \right) \xi - 2g \left(X, Y \right) \xi,$$

for all $X, Y \in TM$.

Proof: By covariant differentiation, we have

$$(\overline{\nabla}_X \phi) Y + \phi(\overline{\nabla}_X Y) = \overline{\nabla}_X \phi Y$$
.

Using (3.21) and (3.1), in above, we have

$$(\overline{\nabla}_X \phi)Y + \phi \nabla_X Y + \phi h(X, Y) = \overline{\nabla}_X \phi P Y + \overline{\nabla}_X \phi Q Y$$

Using (3.1) and (3.22) in above, we have

(3.44)
$$(\overline{\nabla}_{X}\phi)Y + \phi\overline{\nabla}_{X}Y + \phi h(X,Y) = P\overline{\nabla}_{X}(\phi PY) + Q\overline{\nabla}_{X}(\phi PY)$$

$$+\eta(\overline{\nabla}_{X}(\phi PY))\xi - PA_{\phi QY}X - QA_{\phi QY}X - \eta(A_{\phi QY}X)\xi$$

$$+h(X,\phi PY) + \overline{\nabla}_{X}^{\perp}\phi QY + \beta\eta(X)QY,$$

Similarly,

$$(3.45) \qquad \left(\overline{\nabla}_{Y}\phi\right)X + \phi\nabla_{Y}X + \phi h(Y, X) = P\nabla_{Y}(\phi PX) + Q\nabla_{Y}(\phi PX) + \eta\left(\nabla_{Y}(\phi PX)\right)\xi - PA_{\phi QX}Y - QA_{\phi QX}Y - \eta\left(A_{\phi QX}Y\right)\xi + h(Y, \phi PX) + \nabla_{Y}^{\perp}\phi QX + \beta\eta(Y)QX .$$

Adding (3.34) and (3.35), we have

$$\begin{split} & \left(\overline{\nabla}_{X} \phi \right) Y + \left(\overline{\nabla}_{Y} \phi \right) X + \phi \nabla_{X} Y + \phi \nabla_{Y} X + 2 \phi h \left(X, Y \right) \\ &= P \nabla_{X} \left(\phi P Y \right) + P \nabla_{Y} \left(\phi P X \right) + Q \nabla_{X} \left(\phi P Y \right) \\ &+ Q \nabla_{Y} \left(\phi P X \right) + \eta \left(\nabla_{X} \left(\phi P Y \right) \right) \xi + \eta \left(\nabla_{Y} \left(\phi P X \right) \right) \xi \\ &- P A_{\phi Q Y} X - P A_{\phi Q X} Y - Q A_{\phi Q Y} X - \eta \left(A_{\phi Q Y} X \right) \xi - Q A_{\phi Q X} Y \\ &- \eta \left(A_{\phi Q X} Y \right) \xi - \eta \left(A_{\phi Q Y} X \right) \xi + h \left(X, \phi P Y \right) + h \left(Y, \phi P X \right) \\ &+ \nabla_{X}^{\perp} \phi Q Y + \nabla_{Y}^{\perp} \phi Q X + \beta \eta \left(X \right) Q Y + \beta \eta \left(Y \right) Q X \end{split}$$

Using (3.1), (3.2) and (3.12) in above equation, we have

$$\eta(X)PY + \eta(X)QY + \eta(Y)PX + \eta(Y)QX + 2\eta(X)\eta(Y)\xi$$

$$-2g(X,Y)\xi - \alpha\eta(X)\phi PY - \alpha\eta(X)\phi QY - \alpha\eta(Y)\phi PX$$

$$-\alpha\eta(Y)\phi QX + \phi P\nabla_{X}Y + \phi Q\nabla_{X}Y + \phi P\nabla_{Y}X + \phi Q\nabla_{Y}X$$

$$+2Bh(X,Y) + 2Ch(X,Y) = P\nabla_{X}(\phi PY) + P\nabla_{Y}(\phi PX)$$

$$+Q\nabla_{X}(\phi PY) + Q\nabla_{Y}(\phi PX) + \eta(\nabla_{X}(\phi PY))\xi + \eta(\nabla_{Y}(\phi PX))\xi$$

$$-PA_{\phi QY}X - PA_{\phi QX}Y - QA_{\phi QY}X - QA_{\phi QX}Y - \eta(A_{\phi QY}X)\xi$$

$$-\eta(A_{\phi QX}Y)\xi + h(X,\phi PY) + h(Y,\phi PX) + \nabla_{X}^{\perp}\phi QY + \nabla_{Y}^{\perp}\phi QX$$

$$+\beta\eta(X)OY + \beta\eta(Y)OX$$

Equation (3.40) to (3.43) following by comparing the tangential, normal and vertical parts.

Definition¹² **3.3:** The horizontal distribution D is said to be parallel with respect to the connection ∇ on M if $\nabla_X Y$ for all vector fields $X, Y \in D$.

Proposition 3.1: Let M be a semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection if the horizontal distribution D is parallel then

$$h(X, \phi Y) = h(\phi X, Y)$$
 for all $X, Y \in D$.

Proof: As the horizontal distribution D is parallel, so for any $X, Y \in D$, we have

$$\nabla_X \phi Y \in D$$
 and $\nabla_Y \phi X \in D$

By virtue of the above fact, (3.41) gives

$$Bh(X,Y)=0$$
, for any $X,Y \in D$

Next, since

$$\phi h(X,Y) = Bh(X,Y) + Ch(X,Y),$$

So, we get

$$\phi h(X,Y) = Bh(X,Y) + Ch(X,Y).$$

Further with the help of (3.42), we have

$$(3.48) h(X, \phi Y) + h(Y, \phi X) = 2\phi h(X, Y), \text{ for any } X, Y \in D.$$

Taking in (3.48), we get

(3.49)
$$h(\phi X, \phi Y) - h(Y, X) = 2\phi h(\phi X, Y).$$

Again taking $Y = \phi Y$ in (3.48), we get

$$(3.50) h(\phi X, \phi Y) - h(X, Y) = 2\phi h(X, \phi Y).$$

Hence it follows from (3.49) and (3.50), we get

$$\phi h(X, \phi Y) = \phi h(\phi X, Y),$$

which is equivalent to

$$h(X, \phi Y) = h(\phi X, Y),$$
 for any $X, Y \in D$.

4. Integrability of Distribution

The purpose of this paragraph is to study the Integrability of distribution $D \oplus \{\xi\}$ and D^{\perp} of semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection.

Theorem 4.1: Let M be a semi-invariant submanifold for a nearly Sasakian manifold with generalized symmetric metric connection, then the distribution $D \oplus \{\xi\}$ is integrable if the following condition are satisfied

$$(4.1) S(X,Y) \in D \oplus \{\xi\},$$

$$(4.2) h(X, \phi Y) = h(\phi X, Y),$$

for all $X, Y \in D \oplus \{\xi\}$

Proof: The torsion tensor S(X,Y) of an almost contact structure (ϕ, ξ, η, g) is given by

$$S(X,Y) = N(X,Y) + 2d\eta(X,Y)\xi,$$

where N(X, Y) is the Nijenhuis tensor of ϕ .

Thus we have,

$$(4.3) S(X,Y) = [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y] + 2d\eta(X,Y)\xi,$$

for any $X, Y \in TM$.

Suppose that the distribution $D \oplus \{\xi\}$ is Integrability, so far $X, Y \in D \oplus \{\xi\}$

$$(4.4) N(X,Y) = 0,$$

then,
$$S(X,Y) = 2d\eta(X,Y) \in D \oplus \{\xi\}$$
,

therefore, $S(X, Y) \in D \oplus \{\xi\}$.

Using (3.30) and (4.4), we have

$$4\phi(\nabla_{Y}\phi X) + 4\phi h(Y, \phi X) + 4h(Y, X) + 4\nabla_{Y}X - 4\eta(\nabla_{Y}X)\xi$$
$$-4\eta(X)\phi Y - 4\alpha\eta(X)Y + 4\alpha\eta(X)\eta(Y)\xi + 6g(\phi X, Y)\xi.$$

Comparing normal part both sides, we have

$$4\phi Q(\nabla_Y \phi X) + 4Ch(Y, \phi X) + 4h(Y, X) = 0,$$

$$(4.5) \qquad \phi Q(\nabla_Y \phi X) + Ch(Y, \phi X) + h(Y, X) = 0.$$

Replace Y by ϕZ in (4.5), we get

(4.6)
$$\phi Q(\nabla_{\phi Z}\phi X) + Ch(\phi Z, \phi X) + h(\phi Z, X) = 0.$$

Interchanging X and Z in (4.6), we have

(4.7)
$$\phi Q(\nabla_{\phi X}\phi Z) + Ch(\phi X, \phi Z) + h(\phi X, Z) = 0.$$

Subtracting (4.6) from (4.7), we have

$$\phi Q(\nabla_{\phi X}\phi Z) - \phi Q(\nabla_{\phi Z}\phi X) + h(\phi X, Z) - h(\phi Z, X) = 0$$

(4.8)
$$\phi Q[\phi X, \phi Z] + h(\phi X, Z) - h(\phi Z, X) = 0.$$

From which the assertion follows.

Lemma 4.1: Let M be a semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection. Then

$$2\left(\overline{\nabla}_{\boldsymbol{Y}}\phi\right)\boldsymbol{Z} = \boldsymbol{A}_{\phi\boldsymbol{Y}}\boldsymbol{Z} - \boldsymbol{A}_{\phi\boldsymbol{Z}}\boldsymbol{Y} + \nabla_{\boldsymbol{Y}}^{\perp}\phi\boldsymbol{Z} - \nabla_{\boldsymbol{Z}}^{\perp}\phi\boldsymbol{Y} - 2\boldsymbol{g}\left(\boldsymbol{X},\boldsymbol{Y}\right)\boldsymbol{\xi} - \phi\left[\boldsymbol{Y},\boldsymbol{Z}\right],$$

for any $Y, Z \in D^{\perp}$.

Proof: Using Weingarten formula (3.22) and fact that ϕY and ϕZ are normal to M for

 $Y, Z \in D^{\perp}$, we get

$$(4.9) \qquad \overline{\nabla}_{Y}\phi Z - \overline{\nabla}_{Z}\phi Y = A_{\phi Y}Z - A_{\phi Z}Y + \nabla_{Y}^{\perp}\phi Z - \nabla_{Z}^{\perp}\phi Y + \beta \{\eta(Y)Z - \eta(Z)Y\}$$

On the other hand, we get

$$(4.10) \qquad \overline{\nabla}_{Y}\phi Z - \overline{\nabla}_{Z}\phi Y = (\overline{\nabla}_{Y}\phi)Z - (\overline{\nabla}_{Z}\phi)Y + \phi[Y, Z].$$

Now from (4.9), (4.10) and fact that $\eta(Y) = \eta(Z) = 0$, we have

$$(4.11) \qquad (\overline{\nabla}_{Y}\phi)Z - (\overline{\nabla}_{Z}\phi)Y = A_{\phi Y}Z - A_{\phi Z}Y + \nabla_{Y}^{\perp}\phi Z - \nabla_{Z}^{\perp}\phi Y - \phi[Y, Z].$$

Moreover from (3.22) and the fact that $\eta(Y) = \eta(Z) = 0$, for $Y, Z \in D^{\perp}$, we get

$$(4.12) \qquad (\overline{\nabla}_{Y}\phi)Z - (\overline{\nabla}_{Z}\phi)Y = -2g(Y,Z)\xi.$$

Adding (4.11) and (4.12), we get our assertion.

Proposition 4.1: Let M be a semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection. Then

$$A_{\phi Y}Z - A_{\phi Z}Y = \frac{1}{3}\phi P[Y, Z]$$

for all $Y, Z \in D^{\perp}$.

Proof: As $Y, Z \in D^{\perp}$ and $X \in TM$, we have

$$2g(A_{\phi Z}Y, X) = g(h(X, Y), \phi Z) + g(h(Y, X), \phi Z),$$

$$2g(A_{\phi Z}Y, X) = g(\overline{\nabla}_X Y - \nabla_X Y, \phi Z) + g(\overline{\nabla}_Y X - \nabla_Y X, \phi Z),$$

$$2g(A_{\phi Z}Y, X) = g(\overline{\nabla}_X Y, \phi Z) + g(\overline{\nabla}_Y X, \phi Z)$$

$$-g(\nabla_Y Y, \phi Z) - g(\nabla_Y X, \phi Z).$$

As $\nabla_{Y}Y \in TM$, $\nabla_{Y}X \in TM$ and $\phi Z \in T^{\perp}M$, we have from above

$$2g(A_{\phi Z}Y, X) = g(\overline{\nabla}_{X}Y, \phi Z) + g(\overline{\nabla}_{Y}X, \phi Z),$$

$$2g(A_{\phi Z}Y, X) = -g(\phi \overline{\nabla}_{X}Y, Z) - g(\phi \overline{\nabla}_{Y}X, Z),$$

$$(4.13) \qquad 2g(A_{\phi Z}Y, X) = -g(\overline{\nabla}_{X}\phi Y, Z) - g(\overline{\nabla}_{Y}\phi X, Z)$$

$$-g((\overline{\nabla}_{X}\phi)Y - (\overline{\nabla}_{Y}\phi)X, Z).$$

Now, As $Y \in T^{\perp}M \Rightarrow \phi Y \in T^{\perp}M$, so replace N by ϕY in (3.22), we have

$$\overline{\nabla}_{X}\phi Y = -A_{\phi Y}X + \alpha \eta(\phi Y)X - \beta \eta(X)\phi^{2}Y + \nabla_{X}^{\perp}\phi Y.$$

Using equation (2.1) and (2.3) in above, we have

$$\overline{\nabla}_{X}\phi Y = -A_{\phi Y}X + \beta \eta(X)Y - \beta \eta(X)\eta(Y)\xi + \nabla_{X}^{\perp}\phi Y.$$

As $\eta(Y) = 0$ for $Y \in D^{\perp}$, we have

$$(4.14) \qquad \overline{\nabla}_{X}\phi Y = -A_{\phi Y}X + \beta \eta(X)Y + \nabla_{X}^{\perp}\phi Y.$$

Using equation (3.12) and (4.14) in (4.13), we have

$$2g(A_{\phi Z}Y, X) = -g(\phi \overline{\nabla}_{Y}Z, X) + g(A_{\phi Y}Z, X) - \beta \eta(X)g(Y, Z)$$
$$-g(\nabla_{X}^{\perp}\phi Y, Z) - \eta(X)g(Y, Z) - \eta(Y)g(X, Z)$$
$$+2g(X, Y)g(\xi, Z) + \alpha \eta(X)g(\phi Y, Z)$$
$$-\alpha \eta(Y)g(\phi X, Z).$$

As $\eta(Y) = \eta(Z) = 0$ for $Y, Z \in D^{\perp}$, we have

$$2g(A_{\phi Z}Y, X) = -g(\phi \overline{\nabla}_{Y}Z, X) + g(A_{\phi Y}Z, X) - \beta g(Y, Z)\eta(X)$$
$$-g(Y, Z)\eta(X) + \alpha g(\phi Y, Z)\eta(X).$$

Transvecting X from both sides, we have

$$(4.15) 2A_{\delta Z}Y = -\phi \overline{\nabla}_{Y}Z + A_{\delta Y}Z - \beta g(Y,Z)\xi - g(Y,Z)\xi + \alpha g(\phi Y,Z)\xi,$$

$$(4.16) 2A_{\delta Z}Y = -\phi \overline{\nabla}_{Z}Y + A_{\delta Z}Y - \beta g(Z,Y)\xi - g(Z,Y)\xi + \alpha g(\phi Z,Y)\xi.$$

Subtracting above two equation, we get

$$\begin{split} &2\left(A_{\phi Y}Z-A_{\phi Z}Y\right)=\phi\left(\overline{\nabla}_{Y}Z-\overline{\nabla}_{Z}Y\right)-\left(A_{\phi Y}Z-A_{\phi Z}Y\right)+2\alpha g\left(\phi Y,Z\right)\xi\;,\\ &2\left(A_{\phi Y}Z-A_{\phi Z}Y\right)=\phi\left[Y,Z\right]-\left(A_{\phi Y}Z-A_{\phi Z}Y\right)+2\alpha g\left(\phi Y,Z\right)\xi\;. \end{split}$$

Comparing the tangential component from both sides, we have

$$2(A_{\phi Y}Z - A_{\phi Z}Y) = \phi P[Y, Z] - (A_{\phi Y}Z - A_{\phi Z}Y)$$

(4.17)
$$A_{\phi Y}Z - A_{\phi Z}Y = \frac{1}{3}\phi P[Y, Z]$$

for all $Y, Z \in D^{\perp}$.

Theorem 4.2: Let M be a semi-invariant submanifold of a nearly Sasakian manifold with generalized symmetric metric connection. Then the distribution D^{\perp} is intangible if and only if

$$A_{\phi Y}Z - A_{\phi Z}Y = 0,$$

for all $Y, Z \in D^{\perp}$.

Proof: Suppose that distribution D^{\perp} is intangible, then $[Y, Z] \in D^{\perp}$ for any

 $Y, Z \in D^{\perp}$.

Therefore P[Y, Z]=0 and from (4.17), we get

$$(4.18) A_{\phi Y} Z - A_{\phi Z} Y = 0.$$

Conversely, let (4.18) hold. Then, by virtue of (4.17), we have P[Y, Z] = 0 for all $Y, Z \in D^{\perp}$. Since rank $\phi = 2n$, either P[Y, Z] = 0 or $P[Y, Z] = K\xi$. But $P[Y, Z] = K\xi$ is not possible as P being a projection operator on D. Hence P[Y, Z] = 0, which is equivalent to $[Y, Z] \in D^{\perp}$ for all $Y, Z \in D^{\perp}$ and D^{\perp} is integrable.

References

- 1. O. Bahadir, Generalized Symmetric Metric Connection for Kenmotsu Manifolds, arXiv preprint arXiv: 1804.10020 (2018).
- S. Golab, On Semi-Symmetric and Quarter-Symmetric Linear Connections, *Tensor*, 29 (1975), 249-254.
- 3. S. Sharfuddin and S. I. Husain, Semi-Symmetric Metric Connexion in Almost Contact Manifolds, *Tensor*, **30** (1976), 133-139.
- 4. A. Bejancu and N. Papaghuic, Semi-Invariant Submanifolds of a Sasakian Manifold, *An. Stiint. Univ. Al. I. Cuza Lasi Mat.*, **27** (1981), 163-170.
- 5. D. E. Blair, D. K. Showers and K. Yano, Nearly Sasakian Structures, *Kodai Math. Sem. Rep.*, 27 (1976), 175-180.
- M. H. Shahid, SR-submanifolds of a Nearly Sasakian Manifold, Math. Chronicle New Zeeland, 19 (1990), 77-84.
- 7. M. H. Shahid, On Semi-Invariant Submanifolds of a Nearly Sasakian Manifold, *Indian J. Pure Appl. Math.*, **24(10)** (1993), 571-580.
- 8. T. Khan, S. A. Khan and M. Ahmed, On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with Semi-Symmetric Metric Connection, *IJERA*, **4(9)** (2014), 61-69.
- 9. M. Ahmed, S.A. Khan and T. Khan, On Semi-Invariant Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold with Semi-Symmetric Semi-Metric Connection, *IOSR-JM*, **10(4)** (2014), 45-50.
- 10. D. E. Blair, *Contact Manifolds in Riemannian Geometry*, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, New York, 1976.
- A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, 1986.
- 12. A. Bejancu, CR-submanifolds of a Kaehler Manifold I, *Proc. Amer. Math. Soc.*, **69(1)** (1978), 135-142.