Cyclic Codes of Length p^k over Z_{pm}

Arpana Garg and Sucheta Dutt Department of Applied Sciences PEC University of Technology Chandigarh, India. Email: arpanapujara@gmail.com, suchetapec@yahoo.co.in

(Received May 05, 2015)

Abstract: In this paper, the structure of cyclic codes over Z_{p^m} of length $n=p^k$ for any prime p and natural numbers m and k is studied as ideals

of $Z_{p^m}[x]/\langle x^n-l\rangle$. It is proved that cyclic codes of length $n = p^k$ over

 Z_{p^m} are generated as ideals of $Z_{p^m}[x]/\langle x^n-l \rangle$ by at most *m* elements.

MSC: 94B15, 94B05, 94B60.

Keywords: Cyclic codes, Ideals, Minimal Degree Polynomial, Principal ideal *R*ing.

1. Introduction

Let *R* be a commutative finite ring with identity. A linear code *C* over *R* of length *n* is defined as an *R*-submodule of R^n . A cyclic code *C* over *R* of length *n* is a linear code such that any cyclic shift of a codeword is also a codeword, that is, whenever $(c_0, c_1, c_2, ..., c_{n-1})$ is in *C* then so is $(c_{n-1}, c_0, c_1, c_2, ..., c_{n-2})$. The one-one correspondence between cyclic codes of length $n = p^k$ over Z_{p^m} and ideals of $Z_{p^m}[x]/\langle x^n - 1 \rangle$ is well known (Here *p* is prime and *k* and *m* are natural numbers).

The structure of cyclic codes over Z_4 of length 2^e is given by T. Abualrub¹. This result is extended to cyclic codes over Z_8 of length 2^k by Arpana Garg and Sucheta Dutt², where it is proved that cyclic codes over Z_8 of length 2^k are generated by at most three elements. This result is further generalized to cyclic codes of length 2^k over Z_{2^m} and it is proved that cyclic codes over the ring Z_{2^m} of length 2^k as ideals of $Z_{2^m}[x]/\langle x^n-1\rangle$, where $n=2^k$ are generated by at most *m* elements³. In this paper, we study the structure of cyclic codes of length $n=p^k$ over Z_{p^m} as ideals of the ring $Z_{p^m}[x]/\langle x^n-1\rangle$ and prove that cyclic codes of length $n=p^k$ over Z_{p^m} are generated by at most *m* elements.

2. Preliminaries

Codewords of a cyclic code of length *n* over a ring *R* can be represented by polynomials over *R* modulo $x^n - 1$. Thus any codeword $(c_0, c_1, c_2, ..., c_{n-1})$ can be represented by a polynomial $c(x)=c_0+c_1x+c_2x^2+...+c_{n-1}x^{n-1}$ over the ring *R*.

Definition 2.1: The content of the polynomial

 $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_l x^l$

where a_i 's belong to Z_{p^m} , is defined as the greatest common divisor of $a_0, a_1, a_2, ..., a_l$.

Consider the ring $Z_{p^m}[x]/\langle x^n - 1 \rangle$ where *p* is prime and *m*, *n* are natural numbers. It is known that this ring is a principal ideal domain for m = 1. However, for m > 1 and $n = p^k$, the ideal of $Z_{p^m}[x]/\langle x^n - 1 \rangle$ generated by *p*, x+p-1 cannot be generated by a single element. Therefore $Z_{n^m}[x]/\langle x^n - 1 \rangle$ is not a principal ideal ring for m > 1 and $n = p^k$.

3. Generators of cyclic codes over Z_{p^m} of length p^k as ideals of $Z_{p^m}[x]/\langle x^n - 1 \rangle$

Lemma 3.1: Let C be an ideal of the ring $Z_{p^m}[x]/\langle x^n -1 \rangle$ where $n = p^k$. If the minimal degree polynomial g(x) in C is monic, then C is generated as an ideal by g(x).

Proof: Let g(x) be the minimal degree polynomial in C such that the leading coefficient of g(x) is a unit. Let c(x) be a polynomial in C. Then, by division algorithm there exists q(x) and r(x) over Z_{p^m} such that

Cyclic Codes of Length
$$p^k$$
 over Z_{pm} 125

c(x) = g(x)q(x) + r(x) where r(x) = 0 or $\deg r(x) < \deg g(x)$. Now $r(x) = c(x) - g(x)q(x) \in C$, as *C* is an ideal. If $r(x) \neq 0$, then $\deg r(x) < \deg g(x)$, which is a contradiction to the choice of degree of g(x). Therefore r(x) = 0, that is, every polynomial c(x) in *C* is a multiple of g(x). Hence *C* is generated by g(x).

Lemma 3.2: Let C be an ideal of the ring $Z_{p^m}[x]/\langle x^n - 1 \rangle$ where $n = p^k$. Let g(x) be a minimal degree polynomial in C. If the leading coefficient of g(x) is p^sh where $1 \leq s \leq m$ and (p,h) = 1, then the content of g(x) is p^s , that is, $g(x) = p^s q_s(x)$, where $q_s(x) \in Z_{p^{m-s}}[x]/\langle x^n - 1 \rangle$.

Proof: Let g(x) be a minimal degree polynomial in *C* of degree 't' with leading coefficient $p^{s}h$ where $1 \le s \le m$ and (p,h) = 1. Let $g(x) = a_0 + a_1x + a_2x^2 + ... + a_ix^i$ be such that $a_i = p^{s}h$. We claim that $a_i \equiv 0 \pmod{p^s}$ for every *i*. Suppose this is not so. Then there exist some j < t such that $a_i \ne 0 \pmod{p^s}$. Then $p^{m-s}g(x)$ is a nonzero polynomial of degree less than the degree of g(x) and belongs to *C*, which contradicts the minimality of degree of g(x) in *C*. Hence $a_i \equiv 0 \pmod{p^s}$ for every *i* and content of g(x) is p^s . Therefore $g(x) = p^s q_s(x)$, where $q_s(x) \in Z_{p^{m-s}}[x]/< x^n - 1>$.

Lemma 3.3: Let C be an ideal of the ring $Z_{p^m}[x]/\langle x^n -1 \rangle$ where $n = p^k$. Let g(x) be a minimal degree polynomial in C with leading coefficient p^sh where $1 \leq s \leq m$ and (p,h) = 1. Let all the polynomials in C have leading coefficients of the type p^uh such that $u \geq s$ and h is a unit. Then $C = \langle g(x) \rangle = \langle p^s q_s(x) \rangle$ where $q_s(x) \in Z_{p^m}[x]/\langle x^n -1 \rangle$.

Proof: As g(x) is a minimal degree polynomial in *C* of degree 't' with leading coefficient $p^{s}h$ where $1 \le s \le m$ and (p,h) = 1, by Lemma 3.2, the content of g(x) is p^{s} and $g(x) = p^{s}q_{s}(x)$, where $q_{s}(x) \in Z_{p^{m-s}}[x] / < x^{n} - 1 >$. We claim that all the polynomials in *C* are multiples of $g(x) = p^{s}q_{s}(x)$. If possible, slet there exist polynomials in *C* which are not divisible by g(x). Out of such polynomials, let c(x) be a minimal degree polynomial. Let deg c(x) = v. As c(x) is not divisible by g(x), there exists $r(x) \neq 0$ such that $c(x) = g(x)dx^{v-t} + r(x)$ where deg $r(x) < \deg c(x)$ and *d* is an integer. Because *C* is an ideal, we have $r(x) = c(x) - g(x)dx^{v-t} \in C$. As deg $r(x) < \deg c(x)$ and $r(x) \in C$ we must have g(x)/r(x). This implies g(x)/c(x), which is a contradiction. Therefore all polynomials in *C* are multiples of $g(x) = p^{s}q_{s}(x)$. Hence $C = \langle g(x) \rangle = \langle p^{s}q_{s}(x) \rangle$

Lemma 3.4: Let *C* be an ideal of the ring $Z_{p^m}[x]/\langle x^n - 1 \rangle$ where $n = p^k$. Let $p^{s_l}q_l(x)$ be a minimal degree polynomial in *C*, where $q_l(x)$ is monic. Then $C = \langle p^{s_1}q_1(x), p^{s_2}q_2(x), ..., p^{s_{l-1}}q_{l-1}(x), p^{s_l}q_l(x) \rangle$ where $0 \leq s_1 \leq s_2 \leq ... \leq s_{l-1} \leq s_l$ and $p^{s_l}q_i(x)$ is a minimal degree polynomial in *C* among all polynomials in *C* with leading coefficient of the type $p^u a$, where $(a, p) = 1, u < s_{i+1}$, and $q_i(x)$ is monic for $1 \leq i \leq 1$.

Proof: Let c(x) be any polynomial in *C* with leading coefficient of the type $p^{u}h$ (*h* unit). If $u \ge s_{i}$, then kill the highest power of c(x) as follows:

(3.1)
$$c(x) = p^{s_l} q_l(x) . d. x^{\deg(c(x)) - \deg(p^{s_l} q_l(x))} + r(x)$$

where either r(x) = 0 or deg r(x) < deg c(x). As *C* is an ideal, $r(x) \in C$. If $r(x) \notin C$ and leading coefficient of r(x)) is of the type $p^u h$ (*h* unit) such that $u \ge s_i$, then further go on killing the highest degree term of the remainder till it is zero or it has leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_i$. If remainder become zero at some stage, then c(x) is divisible by $p^{s_i}q_i(x)$. Moreover, if during the process degree of remainder equal to zero at that stage as $p^{s_i}q_i(x)$ is a minimal degree polynomial in *C*. Therefore without loss of generality, we suppose that either c(x) is divisible by $p^{s_i}q_i(x)$ or

(3.2)
$$c(x) = p^{s_l} q_l(x) q(x) + r_1(x),$$

Cyclic Codes of Length
$$p^k$$
 over Z_{p^m} 127

where deg deg $(r_1(x)) > deg(p^{s_i}q_i(x))$ and leading coefficient of $r_1(x)$ is of the type $p^u h$ (*h* unit) such that $u < s_i$. Let $g_1(x)$ be minimal degree polynomial in *C* among all polynomials in *C* with leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_i$. Then all polynomials in *C* with degree less than degree of $g_1(x)$ should have leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_i$. Let leading coefficient of $g_1(x)$ be $p^{s_{i-1}}h_1(h_1$ unit). Now, we claim that content of $g_1(x)$ is $p^{s_{i-1}}$. Leading coefficient of $(p^{s_i} - p^{s_{i-1}})g_1(x)$ is $p^{s_i}h_1(h_1$ unit). Therefore

(3.3)
$$(p^{s_1} - p^{s_{l-1}})g_1(x) = p^{s_l}q_l(x).d.x^{\deg(g_1(x)) - \deg(p^{s_l}q_l(x))} + r'(x)$$

where $r'(x) = 0 \deg r'(x) < \deg \{ (p^{s_i} - p^{s_{i-1}})g_1(x) \} = \deg g_1(x)$. As *C* is an ideal, $r'(x) \in C$. If $r'(x) \neq 0$, then leading coefficient of r'(x) must be of the type $p^u h$ (*h* unit) such that $u \ge s_1$. Therefore

(3.4)
$$r'(x) = p^{s_l} q_l(x) . d_2 . x^{\deg(r'(x)) - \deg(p^{s_l} q_l(x))} + r''(x)$$

where either r'(x) = 0 or $\deg(r''(x)) < \deg(r'(x)) < \deg(g_1(x))$. As *C* is an ideal, $r'(x) \in C$. Again, if $r'(x) \neq 0$, then leading coefficient of r''(x) must be of the type $p^u h$ (*h* unit) such that $u \ge s_l$. Continuing in this way, we can go on killing the highest degree term of the remainder till degree of the remainder becomes less than degree of $p^{s_l}q_l(x)$. The situation that the degree of remainder is less than degree of $p^{s_l}q_l(x)$ cannot arise because $p^{s_l}q_l(x)$ is a minimal degree polynomial in *C* and the remainder belongs to *C*. It follows that at some stage the remainder is zero. This implies that content of $(p^{s_l} - p^{s_{l-1}})g_1(x)$ is p^{s_l} and therefore the content of $g_1(x)$ is $p^{s_{l-1}}$ and $g_1(x) = p^{s_{l-1}}q_{l-1}(x)$ (say), where $q_{l-1}(x)$ is a monic polynomial. Now, if *C* does not contain any polynomial with leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$.

type $p^{u}h$ (*h* unit) such that $u < s_{l-1}$, then leading coefficient of $r_1(x)$ (referring back to equation (3.2)) is of the type $p^{u}h$ (*h* unit) such that $s_l > u \ge s_{l-1}$. Now, kill the highest degree term of $r_1(x)$ as follows:

(3.5)
$$r_1(x) = p^{s_{l-1}} q_{l-1}(x) \cdot d_3 x^{\deg(r(x)) - \deg(p^{s_{l-1}} q_{l-1}(x))} + r_2(x)$$

where either $r_2(x) = 0$ or $\deg(r_2(x)) < \deg(r_1(x))$. As $r_2(x) \in C$ and all polynomials in C have leading coefficient of the type $p^{\mu}h$ (h unit) such that $u \ge s_{l-1}$, leading coefficient of $r_2(x)$ is also of the type $p^u h$ (h unit) such that $u \ge s_{l-1}$. Let leading coefficient of $r_2(x)$ be equal to $p^{u_1}t_1(t_1 \text{ unit})$ where $u_1 \ge s_{l-1}$. If $u_1 \ge s_{l-1}$, then kill the highest degree term of $r_2(x)$ by using $p^{s_l}q_1(x)$ and if $s_l > u \ge s_{l-1}$, then kill the highest degree term of $r_2(x)$ by using $p^{s_{l-1}}q_{l-1}(x)$. The successive remainder is either zero or is of the same type. Continuing in the same way, kill the highest power of the remainder by using $p^{s_l}q_l(x)$ or $p^{s_{l-1}}q_{l-1}(x)$ to obtain the various successive remainders as multiples of $p^{s_l}q_l(x)$ or $p^{s_{l-1}}q_{l-1}(x)$. Moreover, at some stage degree of remainder becomes less than degree of $p^{s_i}q_i(x)$, implies that remainder which is zero. This further implies that $c(x) \in \langle p^{s_l} q_l(x), p^{s_{l-1}} q_{l-1}(x) \rangle$.

If code *C* contains polynomials with leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$, then choose minimal degree polynomial in *C* among all those polynomials in *C* with leading coefficient of the type $p^u h$ (*h* unit) such that $u < s_{l-1}$. Let it be $g_2(x)$ with leading coefficient $p^{s_{l-2}}h_2(h_2 \text{ unit})$. Then all polynomials in *C* of degree less than degree of $g_2(x)$ have leading coefficient of the type $p^u h$ (*h* unit) such that $u \ge s_{l-1}$, We claim that content of $g_2(x)$ is $p^{s_{l-2}}$. Now, $p^{s_{l-1}-s_{l-2}}g_2(x)$ has leading coefficient $p^{s_{l-1}}h_2(h_2 \text{ unit})$. Therefore

(3.6)
$$p^{s_{l-1}-s_{l-2}}g_2(x) = p^{s_{l-1}}q_{l-1}(x).d_4.x^{\deg(g_2(x) - \deg(p^{s_{l-1}}q_{l-1}(x)))} + r_3(x)$$

where either $r_3(x) = 0$ or deg $deg(r_3(x)) < deg(p^{s_{l-1}-s_{l-2}}g_2(x)) = deg(g_2(x))$. As *C* is an ideal, $r_3(x) \in C$. If $r_3(x) \neq 0$, then leading coefficient of $r_3(x)$ must be of the type $p^u h$ (*h* unit) such that $u \ge s_{l-1}$. Let leading coefficient of $r_3(x)$ be equal to $p^{u_2}t_2(t_2$ unit). If $u_2 \ge s_l$ then kill the highest degree term of $r_3(x)$ by using $p^{s_l}q_l(x)$ and if $s_l > u_2 \ge s_{l-1}$ then kill the highest degree term of $r_3(x)$ by using $p^{s_{l-1}}q_{l-1}(x)$. The successive remainder is either zero or is of the same type. Continuing in the same way, kill the highest power of the remainder by using $p^{s_l}q_l(x)$ or $p^{s_{l-1}}q_{l-1}(x)$ to obtain the various

Cyclic Codes of Length
$$p^k$$
 over Z_{p^m} 129

successive remainders as multiples of $p^{s_l}q_l(x)$ or $p^{s_{l-1}}q_{l-1}(x)$. Moreover, at some stage degree of remainder becomes less than degree of $p^{s_l}q_l(x)$, which implies that remainder is zero. This further implies that the content of $p^{s_{l-1}-s_{l-2}}g_2(x)$ is $p^{s_{l-1}}$. Therefore the content of $g_2(x)$ is $p^{s_{l-2}}$ and $g_2(x) = p^{s_{l-2}}q_{l-2}(x)$ (say), where $q_{l-2}(x)$ is a monic polynomial.

Now, if *C* does not contain any polynomial with leading coefficient of the type $p^{u}h$ (*h* unit) such that $u < s_{l-2}$. Then leading coefficient of $r_1(x)$ (referring back to equation (3.2)) is of the type $p^{u}h$ (*h* unit) such that $u \ge s_{l-2}$.

Let leading coefficient of $r_1(x)$ be equal to $p^{u_3}t_3(t_3 \text{ unit})$ where $u_3 \ge s_{l-2}$. If $u_3 \ge s_l$, then kill the highest degree term of $r_1(x)$ by using $p^{s_l}q_l(x)$. If $s_l > u_3 \ge s_{l-1}$, then kill the highest degree term of $r_1(x)$ by using $p^{s_{l-1}}q_{l-1}(x)$. If $s_{l-1} > u_3 \ge s_{l-2}$, then kill the highest degree term of $r_1(x)$ by using $p^{s_{l-2}}q_{l-2}(x)$. The successive remainder is either zero or is of the same type. Continuing in the same way, kill the highest power of the remainder by using $p^{s_l}q_l(x)$ or $p^{s_{l-1}}q_{l-1}(x)$ or $p^{s_{l-2}}q_{l-2}(x)$ to obtain the multiples of $p^{s_l}q_l(x)$ various successive remainders as or $p^{s_{l-1}}q_{l-1}(x)$ or $p^{s_{l-2}}q_{l-2}(x)$. Moreover, at some stage degree of remainder becomes less than degree of $p^{s_i}q_i(x)$, which implies that remainder is zero. This further implies that $c(x) \in \langle p^{s_l} q_l(x), p^{s_{l-1}} q_{l-1}(x), p^{s_{l-2}} q_{l-2}(x) \rangle$.

If code *C* contains polynomials with leading coefficient of the type $p^{u}h$ (*h* unit) such that $u < s_{l-2}$, then again choose minimal degree polynomial in *C* among all those polynomials in *C* with leading coefficient of the type $p^{u}h$ (*h* unit) such that $u < s_{l-2}$. Continuing in this way, we shall get a sequence of generators $p^{s_{l-3}}q_{l-3}(x)$, $p^{s_{l-4}}q_{l-4}(x)$,...for *C*. This process must come to an end in finite no of steps, because the sequence s_i is a decreasing sequence of non negative numbers. Thus, in a finite number of steps, we obtain that $C = \langle p^{s_1}q_1(x), p^{s_2}q_2(x), ..., p^{s_{l-1}}q_{l-1}(x), p^{s_l}q_l(x) \rangle$

where $0 \le s_1 \le s_2 \le ... \le s_{l-1} \le s_l$ and $p^{s_i}q_i(x)$ is a minimal degree polynomial in *C* among all polynomials in *C* with leading coefficient of the type $p^u a$, where $(a, p) = 1, u < s_{i+1}$, and $q_i(x)$ is monic for $1 \le i \le 1$.

We summarize the results of the Lemmas 3.1 to 3.4 in Theorem 3.5. The Theorem follows from these Lemmas because

1) All cyclic codes of length p^k over Z_{p^m} are covered by one of these

Lemmas and

2) The number of generators in all the cases is less than or equal to m.

Theorem 3.5: *m* Cyclic codes of length $n = p^k$ over Z_{p^m} are generated as ideals of $R = Z_{p^m}[x] / \langle x^n - 1 \rangle$ by at most elements.

References

- 1. T. Abualrub and R. Oehmke, Cyclic codes of length 2^e over Z_4 , Discrete Applied Mathematics, **128** (2003) 3 9.
- Arpana Garg and Sucheta Dutt, Cyclic codes of length 2^k over Z₈, Scientific Research Open Journal of Applied Science, Oct - 2012 world Congress on Engineering and Technology, 2 (2012) 104 - 107.
- 3. Arpana Garg and Sucheta Dutt, Cyclic codes of length 2^k over Z_{2^m} , International Journal of Engineering Research and Development, **1**(2012) 34 37.
- A.R. Calderbank and N.J.A. Sloane, Modular and p-adic cyclic codes, *Designs Codes* and Cryptography, 6 (1995) 21 - 35.
- 5. T. Blackford, Cyclic codes over Z_4 of oddly even length, *Discrete Applied Mathematics*, **128** (2003) 27 46.
- 6. Steven T. Dougherty and San Ling, Cyclic Codes Over Z_4 of Even Length, *Designs*, *Codes and Cryptography*, **39** (2006) 127 153.
- 7. S.T. Dougherty and Y. H. Park, On Modular cyclic codes, *Finite Fields and Their Applications*, **13** (2007) 31 57.
- 8. Shi Minjia and Zhu Shixin, Cyclic Codes Over The Ring Z_{p^2} Of Length p^e , Journal Of Electronics (China), **25** (2008) 636 640.
- 9. H.M. Kiah, K.H. Leung and S. Ling, Cyclic codes over $GR(p^2, m)$ of length p^k , *Finite Fields and Their Applications*, **14** (2008) 834 846.
- 10. I.S.Luthar and I.B.S.Passi, *Algebra volume 2 Rings*, Narosa Publishing House, first edition, 2002.
- 11. F.J. MacWilliams and N.J.A. Sloane, *The Theory of Error-Correcting Codes*, Ninth impression, North-Holland, Amsterdam, 1977.