Cyclic Codes of Length $\boldsymbol{p}^{\boldsymbol{k}}$ over $\boldsymbol{Z}_{\boldsymbol{p}} \boldsymbol{m}$

Arpana Garg and Sucheta Dutt

Department of Applied Sciences
PEC University of Technology
Chandigarh, India.
Email: arpanapujara@gmail.com, suchetapec @ yahoo.co.in
(Received May 05, 2015)

Abstract

In this paper, the structure of cyclic codes over $Z_{p^{m}}$ of length $n=p^{k}$ for any prime p and natural numbers m and k is studied as ideals of $Z_{p^{m}}[x] /<x^{n}-1>$. It is proved that cyclic codes of length $n=p^{k}$ over $Z_{p^{m}}$ are generated as ideals of $Z_{p^{m}}[x] /\left\langle x^{n}-1>\right.$ by at most m elements.

MSC: 94B15, 94B05, 94B60.

Keywords: Cyclic codes, Ideals, Minimal Degree Polynomial, Principal ideal Ring.

1. Introduction

Let R be a commutative finite ring with identity. A linear code C over R of length n is defined as an R-submodule of R^{n}. A cyclic code C over R of length n is a linear code such that any cyclic shift of a codeword is also a codeword, that is, whenever $\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}\right)$ is in C then so is $\left(c_{n-1}, c_{0}, c_{1}, c_{2}, \ldots, c_{n-2}\right)$. The one-one correspondence between cyclic codes of length $n=p^{k}$ over $Z_{p^{m}}$ and ideals of $Z_{p^{m}}[x] /<x^{n}-1>$ is well known (Here p is prime and k and m are natural numbers).

The structure of cyclic codes over Z_{4} of length 2^{e} is given by T . Abualrub ${ }^{1}$. This result is extended to cyclic codes over Z_{8} of length 2^{k} by Arpana Garg and Sucheta Dutt ${ }^{2}$, where it is proved that cyclic codes over Z_{8} of length 2^{k} are generated by at most three elements. This result is further generalized to cyclic codes of length 2^{k} over $Z_{2^{m}}$ and it is proved that cyclic codes over the ring $Z_{2^{m}}$ of length 2^{k} as ideals of $Z_{2^{m}}[x] /<x^{n}-1>$, where $n=2^{k}$ are generated by at most m elements ${ }^{3}$.

In this paper, we study the structure of cyclic codes of length $n=p^{k}$ over $Z_{p^{m}}$ as ideals of the ring $Z_{p^{m}}[x] /<x^{n}-1>$ and prove that cyclic codes of length $n=p^{k}$ over $Z_{p^{m}}$ are generated by at $\operatorname{most} m$ elements.

2. Preliminaries

Codewords of a cyclic code of length n over a ring R can be represented by polynomials over R modulo $x^{n}-1$. Thus any codeword ($c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}$) can be represented by a polynomial $c(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n-1} x^{n-1}$ over the ring R.

Definition 2.1: The content of the polynomial

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{l} x^{l}
$$

where a_{i} 's belong to $Z_{p^{m}}$, is defined as the greatest common divisor of $a_{0}, a_{1}, a_{2}, \ldots, a_{l}$.

Consider the ring $Z_{p^{n}}[x] /<x^{n}-1>$ where p is prime and m, n are natural numbers. It is known that this ring is a principal ideal domain for $m=1$. However, for $m>1$ and $n=p^{k}$, the ideal of $Z_{p^{m}}[x] /\left\langle x^{n}-1\right\rangle$ generated by $p, x+p-1$ cannot be generated by a single element. Therefore $Z_{p^{m}}[x] /<x^{n}-1>$ is not a principal ideal ring for $m>1$ and $n=p^{k}$.

3. Generators of cyclic codes over $\boldsymbol{Z}_{p^{m}}$ of length \boldsymbol{p}^{k} as ideals of $Z_{p m}[x] /<x^{n}-1>$

Lemma 3.1: Let C be an ideal of the ring $Z_{p^{m}}[x] /<x^{n}-1>$ where $n=p^{k}$. If the minimal degree polynomial $g(x)$ in C is monic, then C is generated as an ideal by $g(x)$.

Proof: Let $g(x)$ be the minimal degree polynomial in C such that the leading coefficient of $g(x)$ is a unit. Let $c(x)$ be a polynomial in C. Then, by division algorithm there exists $q(x)$ and $r(x)$ over $Z_{p^{m}}$ such that
$c(x)=g(x) q(x)+r(x) \quad$ where $\quad r(x)=0$ or $\quad \operatorname{deg} r(x)<\operatorname{deg} g(x)$. Now $r(x)=c(x)-g(x) q(x) \in C, \quad$ as $\quad C \quad$ is an ideal. If $r(x) \neq 0$, then $\operatorname{deg} r(x)<\operatorname{deg} g(x)$, which is a contradiction to the choice of degree of $g(x)$. Therefore $r(x)=0$, that is, every polynomial $c(x)$ in C is a multiple of $g(x)$. Hence C is generated by $g(x)$.

Lemma 3.2: Let C be an ideal of the ring $\left.Z_{p^{m}}[x] /<x^{n}-1\right\rangle$ where $n=p^{k}$. Let $g(x)$ be a minimal degree polynomial in C. If the leading coefficient of $g(x)$ is $p^{s} h$ where $1 \leq s \leq m$ and $(p, h)=1$, then the content of $g(x)$ is p^{s}, that is, $g(x)=p^{s} q_{s}(x)$, where $q_{s}(x) \in Z_{p^{m-s}}[x] /<x^{n}-1>$.

Proof: Let $g(x)$ be a minimal degree polynomial in C of degree ' t ' with leading coefficient $p^{s} h$ where $1 \leq s \leq m$ and $(p, h)=1$. Let $g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{t} x^{t}$ be such that $a_{t}=p^{s} h$. We claim that $a_{i} \equiv 0\left(\bmod p^{s}\right)$ for every i. Suppose this is not so. Then there exist some $j<t$ such that $a_{i} \neq 0\left(\bmod p^{s}\right)$. Then $p^{m-s} g(x)$ is a nonzero polynomial of degree less than the degree of $g(x)$ and belongs to C, which contradicts the minimality of degree of $g(x)$ in C. Hence $a_{i} \equiv 0\left(\bmod p^{s}\right)$ for every $\quad i$ and content of $g(x)$ is p^{s}.Therefore $g(x)=p^{s} q_{s}(x)$, where $q_{s}(x) \in Z_{p^{m-s}}[x] /<x^{n}-1>$.

Lemma 3.3: Let C be an ideal of the ring $\left.Z_{p^{m}}[x] /<x^{n}-1\right\rangle$ where $n=p^{k}$. Let $g(x)$ be a minimal degree polynomial in C with leading coefficient $p^{s} h$ where $1 \leq s \leq m$ and $(p, h)=1$. Let all the polynomials in C have leading coefficients of the type $p^{u} h$ such that $u \geq s$ and h is a unit. Then $\left.C=\langle g(x)\rangle=<p^{s} q_{s}(x)\right\rangle$ where $q_{s}(x) \in Z_{p^{m}}[x] /\left\langle x^{n}-1\right\rangle$.

Proof: As $g(x)$ is a minimal degree polynomial in C of degree ' t ' with leading coefficient $p^{s} h$ where $1 \leq s \leq m$ and $(p, h)=1$, by Lemma 3.2, the content of $g(x)$ is $\quad p^{s}$ and $g(x)=p^{s} q_{s}(x)$, where $q_{s}(x) \in Z_{p^{m-s}}[x] /<x^{n}-1>$. We claim that all the polynomials in C are
multiples of $g(x)=p^{s} q_{s}(x)$. If possible, slet there exist polynomials in C which are not divisible by $g(x)$. Out of such polynomials, let $c(x)$ be a minimal degree polynomial. Let $\operatorname{deg} c(x)=v$. As $c(x)$ is not divisible by $g(x)$, there exists $r(x) \neq 0$ such that $c(x)=g(x) d x^{\nu-t}+r(x)$ where $\operatorname{deg} r(x)<\operatorname{deg} c(x)$ and d is an integer. Because C is an ideal, we have $r(x)=c(x)-g(x) d x^{\nu-t} \in C$. As $\operatorname{deg} r(x)<\operatorname{deg} c(x)$ and $r(x) \in C$ we must have $g(x) / r(x)$. This implies $g(x) / c(x)$, which is a contradiction. Therefore all polynomials in C are multiples of $g(x)=p^{s} q_{s}(x)$. Hence $C=<g(x)>=<p^{s} q_{s}(x)>$

Lemma 3.4: Let C be an ideal of the ring $\left.Z_{p^{m}}[x] /<x^{n}-1\right\rangle$ where $n=p^{k}$. Let $p^{s_{l}} q_{l}(x)$ be a minimal degree polynomial in C, where $q_{l}(x)$ is monic. Then $C=<p^{s_{1}} q_{1}(x), p^{s_{2}} q_{2}(x), \ldots, p^{s_{l-1}} q_{l-1}(x), p^{s_{l}} q_{l}(x)>$ where $0 \leq s_{1} \leq s_{2} \leq \ldots \leq s_{l-1} \leq s_{l}$ and $p^{s_{i}} q_{i}(x)$ is a minimal degree polynomial in C among all polynomials in C with leading coefficient of the type $p^{u} a$, where $(a, p)=1, u<s_{i+1}$, and $q_{i}(x)$ is monic for $1 \leq i \leq 1$.

Proof: Let $c(x)$ be any polynomial in C with leading coefficient of the type $p^{u} h$ (h unit). If $u \geq s_{l}$, then kill the highest power of $c(x)$ as follows:

$$
\begin{equation*}
c(x)=p^{s_{l}} q_{l}(x) \cdot d \cdot x^{\operatorname{deg}(c(x))-\operatorname{deg}\left(p^{l} q_{l}(x)\right)}+r(x) \tag{3.1}
\end{equation*}
$$

where either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} c(x)$. As C is an ideal, $r(x) \in C$. If $r(x) \notin C$ and leading coefficient of $r(x))$ is of the type $p^{u} h$ (h unit) such that $u \geq s_{l}$, then further go on killing the highest degree term of the remainder till it is zero or it has leading coefficient of the type $p^{u} h$ (h unit) such that $u<s_{l}$. If remainder become zero at some stage, then $c(x)$ is divisible by $p^{s_{l}} q_{l}(x)$. Moreover, if during the process degree of remainder becomes less than the degree of $p^{s_{l}} q_{l}(x)$, we must have the remainder equal to zero at that stage as $p^{s_{l}} q_{l}(x)$ is a minimal degree polynomial in C. Therefore without loss of generality, we suppose that either $c(x)$ is divisible by $p^{s_{l}} q_{l}(x)$ or

$$
\begin{equation*}
c(x)=p^{s_{l}} q_{l}(x) q(x)+r_{1}(x), \tag{3.2}
\end{equation*}
$$

where $\operatorname{deg} \operatorname{deg}\left(r_{1}(x)\right)>\operatorname{deg}\left(p^{s_{l}} q_{l}(x)\right)$ and leading coefficient of $r_{1}(x)$ is of the type $p^{u} h$ (h unit) such that $u<s_{l}$. Let $g_{1}(x)$ be minimal degree polynomial in C among all polynomials in C with leading coefficient of the type $p^{u} h$ (h unit) such that $u<s_{l}$. Then all polynomials in C with degree less than degree of $g_{1}(x)$ should have leading coefficient of the type $p^{u} h$ (h unit) such that $u<s_{l}$. Let leading coefficient of $g_{1}(x)$ be $p^{s_{l-1}} h_{1}$ (h_{1} unit). Now, we claim that content of $g_{1}(x)$ is $p^{s_{-1}}$. Leading coefficient of $\left(p^{s)}-p^{s_{l-1}}\right) g_{1}(x)$ is $p^{s_{l}} h_{1}\left(h_{1}\right.$ unit). Therefore

$$
\begin{equation*}
\left(p^{s)}-p^{s_{l-1}}\right) g_{1}(x)=p^{s_{l}} q_{l}(x) \cdot d \cdot x^{\operatorname{deg}\left(g_{1}(x)\right)-\operatorname{deg}\left(p^{s^{\prime}} q_{l}(x)\right)}+r^{\prime}(x) \tag{3.3}
\end{equation*}
$$

where $r^{\prime}(x)=0 \operatorname{deg} r^{\prime}(x)<\operatorname{deg}\left\{\left(p^{s}-p^{s_{-1}}\right) g_{1}(x)\right\}=\operatorname{deg} g_{1}(x)$. As C is an ideal, $\quad r^{\prime}(x) \in C$. If $r^{\prime}(x) \neq 0$, then leading coefficient of $r^{\prime}(x)$ must be of the type $p^{u} h$ (h unit) such that $u \geq s_{l}$. Therefore

$$
\begin{equation*}
r^{\prime}(x)=p^{s l} q_{l}(x) \cdot d_{2} \cdot x^{\operatorname{deg}\left(r^{\prime}(x)\right)-\operatorname{deg}\left(p^{s} q_{l}(x)\right)}+r^{\prime \prime}(x) \tag{3.4}
\end{equation*}
$$

where either $r^{\prime}(x)=0$ or $\operatorname{deg}\left(r^{\prime \prime}(x)\right)<\operatorname{deg}\left(r^{\prime}(x)\right)<\operatorname{deg}\left(g_{1}(x)\right)$. As C is an ideal, $r^{\prime \prime}(x) \in C$. Again, if $r^{\prime \prime}(x) \neq 0$, then leading coefficient of $r^{\prime \prime}(x)$ must be of the type $p^{u} h$ (h unit) such that $u \geq s_{l}$. Continuing in this way, we can go on killing the highest degree term of the remainder till degree of the remainder becomes less than degree of $p^{s_{l}} q_{l}(x)$. The situation that the degree of remainder is less than degree of $p^{s_{l}} q_{l}(x)$ cannot arise because $p^{s_{l}} q_{l}(x)$ is a minimal degree polynomial in C and the remainder belongs to C. It follows that at some stage the remainder is zero. This implies that content of $\left(p^{s}-p^{s_{l-1}}\right) g_{1}(x)$ is $p^{s_{l}}$ and therefore the content of $g_{1}(x)$ is $p^{s_{l-1}}$ and $g_{1}(x)=p^{s_{l-1}} q_{l-1}(x)$ (say), where $q_{l-1}(x)$ is a monic polynomial.
Now, if C does not contain any polynomial with leading coefficient of the type $p^{u} h$ (h unit) such that $u<s_{l-1}$, then leading coefficient of $r_{1}(x)$ (referring back to equation (3.2)) is of the type $p^{u} h$ (h unit) such that $s_{l}>u \geq s_{l-1}$. Now, kill the highest degree term of $r_{1}(x)$ as follows:

$$
\begin{equation*}
r_{1}(x)=p^{s_{l-1}} q_{l-1}(x) \cdot d_{3} x^{\operatorname{deg}(r(x))-\operatorname{deg}\left(p^{s-1} q_{l-1}(x)\right)}+r_{2}(x) \tag{3.5}
\end{equation*}
$$

where either $r_{2}(x)=0$ or $\operatorname{deg}\left(r_{2}(x)\right)<\operatorname{deg}\left(r_{1}(x)\right)$. As $r_{2}(x) \in C$ and all polynomials in C have leading coefficient of the type $p^{u} h$ (h unit) such that $u \geq s_{l-1}$, leading coefficient of $r_{2}(x)$ is also of the type $p^{u} h$ (h unit) such that $u \geq s_{l-1}$. Let leading coefficient of $r_{2}(x)$ be equal to $p^{u_{1}} t_{1}$ (t_{1} unit) where $u_{1} \geq s_{l-1}$. If $u_{1} \geq s_{l-1}$, then kill the highest degree term of $r_{2}(x)$ by using $p^{s_{l}} q_{l}(x)$ and if $s_{l}>u \geq s_{l-1}$, then kill the highest degree term of $r_{2}(x)$ by using $p^{s_{L-1}} q_{l-1}(x)$. The successive remainder is either zero or is of the same type. Continuing in the same way, kill the highest power of the remainder by using $p^{s_{l}} q_{l}(x)$ or $p^{s_{l-1}} q_{l-1}(x)$ to obtain the various successive remainders as multiples of $p^{s_{l}} q_{l}(x)$ or $p^{s_{l-1}} q_{l-1}(x)$. Moreover, at some stage degree of remainder becomes less than degree of $p^{s_{l}} q_{l}(x)$, which implies that remainder is zero. This further implies that $c(x) \in<p^{s_{l}} q_{l}(x), p^{s_{l-1}} q_{l-1}(x)>$.
If code C contains polynomials with leading coefficient of the type $p^{u} h$ (h unit) such that $u<s_{l-1}$, then choose minimal degree polynomial in C among all those polynomials in C with leading coefficient of the type $p^{u} h$ (h unit) such that $u<s_{l-1}$. Let it be $g_{2}(x)$ with leading coefficient $p^{s_{l-2}} h_{2}\left(h_{2}\right.$ unit). Then all polynomials in C of degree less than degree of $g_{2}(x)$ have leading coefficient of the type $p^{u} h$ (h unit) such that $u \geq s_{l-1}$, We claim that content of $\quad g_{2}(x)$ is $p^{s_{l-2}}$. Now, $p^{s_{l-1} s_{l-2}} g_{2}(x)$ has leading coefficient $p^{s_{l-1}} h_{2}$ (h_{2} unit). Therefore

$$
\begin{equation*}
p^{s_{1-1} s_{l-2}} g_{2}(x)=p^{s_{l-1}} q_{l-1}(x) \cdot d_{4} \cdot x^{\operatorname{deg}\left(g_{2}(x)-\operatorname{deg}\left(p^{s-1} q_{l-1}(x)\right)\right.}+r_{3}(x) \tag{3.6}
\end{equation*}
$$

where either $r_{3}(x)=0$ or $\operatorname{deg} \operatorname{deg}\left(r_{3}(x)\right)<\operatorname{deg}\left(p^{s_{l-1}-s_{l-2}} g_{2}(x)\right)=\operatorname{deg}\left(g_{2}(x)\right)$. As C is an ideal, $r_{3}(x) \in C$. If $r_{3}(x) \neq 0$, then leading coefficient of $r_{3}(x)$ must be of the type $p^{u} h$ (h unit) such that $u \geq s_{l-1}$. Let leading coefficient of $r_{3}(x)$ be equal to $p^{u_{2}} t_{2}\left(t_{2}\right.$ unit). If $u_{2} \geq s_{l}$ then kill the highest degree term of $r_{3}(x)$ by using $p^{s_{l}} q_{l}(x)$ and if $s_{l}>u_{2} \geq s_{l-1}$ then kill the highest degree term of $r_{3}(x)$ by using $p^{s_{l-1}} q_{l-1}(x)$. The successive remainder is either zero or is of the same type. Continuing in the same way, kill the highest power of the remainder by using $p^{s_{l}} q_{l}(x)$ or $p^{s_{l-1}} q_{l-1}(x)$ to obtain the various
successive remainders as multiples of $p^{s_{l}} q_{l}(x)$ or $p^{s_{l-1}} q_{l-1}(x)$. Moreover, at some stage degree of remainder becomes less than degree of $p^{s_{l}} q_{l}(x)$, which implies that remainder is zero. This further implies that the content of $p^{s_{l-1} s_{l-2}} g_{2}(x)$ is $p^{s_{l-1}}$. Therefore the content of $g_{2}(x)$ is $p^{s_{l-2}}$ and $g_{2}(x)=p^{s-2} q_{l-2}(x)$ (say), where $q_{l-2}(x)$ is a monic polynomial.
Now, if C does not contain any polynomial with leading coefficient of the type $p^{u} h$ (h unit) such that $u<s_{l-2}$. Then leading coefficient of $r_{1}(x)$ (referring back to equation (3.2)) is of the type $p^{u} h$ (h unit) such that $u \geq s_{l-2}$.

Let leading coefficient of $r_{1}(x)$ be equal to $p^{u_{3}} t_{3}\left(t_{3}\right.$ unit) where $u_{3} \geq s_{l-2}$. If $u_{3} \geq s_{l}$, then kill the highest degree term of $r_{1}(x)$ by using $p^{s_{l}} q_{l}(x)$. If $s_{l}>u_{3} \geq s_{l-1}$, then kill the highest degree term of $r_{1}(x)$ by using $p^{s_{l-1}} q_{l-1}(x)$. If $s_{l-1}>u_{3} \geq s_{l-2}$, then kill the highest degree term of $r_{1}(x)$ by using $p^{s_{l-2}} q_{l-2}(x)$. The successive remainder is either zero or is of the same type. Continuing in the same way, kill the highest power of the remainder by using $p^{s_{l}} q_{l}(x)$ or $p^{s_{l-1}} q_{l-1}(x)$ or $p^{s_{l-2}} q_{l-2}(x)$ to obtain the various successive remainders as multiples of $p^{s_{l}} q_{l}(x)$ or $p^{s_{l-1}} q_{l-1}(x)$ or $p^{s_{l-2}} q_{l-2}(x)$. Moreover, at some stage degree of remainder becomes less than degree of $p^{s_{l}} q_{l}(x)$, which implies that remainder is zero. This further implies that $c(x) \in<p^{s_{l}} q_{l}(x), p^{s_{l-1}} q_{l-1}(x) \cdot p^{s_{l-2}} q_{l-2}(x)>$. If code C contains polynomials with leading coefficient of the type $p^{u} h$ (h unit) such that $u<s_{l-2}$, then again choose minimal degree polynomial in C among all those polynomials in C with leading coefficient of the type $p^{u} h$ (h unit) such that $u<s_{l-2}$. Continuing in this way, we shall get a sequence of generators $p^{s_{l-3}} q_{l-3}(x), p^{s_{l-4}} q_{l-4}(x), \ldots$ for C. This process must come to an end in finite no of steps, because the sequence s_{i} is a decreasing sequence of non negative numbers. Thus, in a finite number of steps, we obtain that $C=<p^{s_{1}} q_{1}(x), p^{s_{2}} q_{2}(x), \ldots, p^{s_{l-1}} q_{l-1}(x), p^{s_{l}} q_{l}(x)>$ where $0 \leq s_{1} \leq s_{2} \leq \ldots \leq s_{l-1} \leq s_{l}$ and $p^{s_{i}} q_{i}(x)$ is a minimal degree polynomial in C among all polynomials in C with leading coefficient of the type $p^{u} a$, where $(a, p)=1, u<s_{i+1}$, and $q_{i}(x)$ is monic for $1 \leq i \leq 1$.

We summarize the results of the Lemmas 3.1 to 3.4 in Theorem 3.5. The Theorem follows from these Lemmas because

1) All cyclic codes of length p^{k} over $Z_{p^{m}}$ are covered by one of these

Lemmas and
2) The number of generators in all the cases is less than or equal to m.

Theorem 3.5: m Cyclic codes of length $n=p^{k}$ over $Z_{p^{m}}$ are generated as ideals of $R=Z_{p^{m}}[x] /<x^{n}-1>$ by at most elements.

References

1. T. Abualrub and R. Oehmke, Cyclic codes of length 2^{e} over Z_{4}, Discrete Applied Mathematics, 128 (2003) 3-9.
2. Arpana Garg and Sucheta Dutt, Cyclic codes of length 2^{k} over Z_{8}, Scientific Research Open Journal of Applied Science, Oct - 2012 world Congress on Engineering and Technology, 2 (2012) 104-107.
3. Arpana Garg and Sucheta Dutt, Cyclic codes of length 2^{k} over $Z_{2^{m}}$, International Journal of Engineering Research and Development, 1(2012) 34-37.
4. A.R. Calderbank and N.J.A. Sloane, Modular and p-adic cyclic codes, Designs Codes and Cryptography, 6 (1995) 21-35.
5. T. Blackford, Cyclic codes over Z_{4} of oddly even length, Discrete Applied Mathematics, 128 (2003) 27-46.
6. Steven T. Dougherty and San Ling, Cyclic Codes Over Z_{4} of Even Length, Designs, Codes and Cryptography, 39 (2006) 127-153.
7. S.T. Dougherty and Y. H. Park, On Modular cyclic codes, Finite Fields and Their Applications, 13 (2007) 31-57.
8. Shi Minjia and Zhu Shixin, Cyclic Codes Over The Ring $Z_{p^{2}}$ Of Length p^{e}, Journal Of Electronics (China), 25 (2008) 636-640.
9. H.M. Kiah, K.H. Leung and S. Ling, Cyclic codes over $G R\left(p^{2}, m\right)$ of length p^{k}, Finite Fields and Their Applications, 14 (2008) $834-846$.
10. I.S.Luthar and I.B.S.Passi, Algebra volume 2 Rings, Narosa Publishing House, first edition, 2002.
11. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, Ninth impression, North-Holland, Amsterdam, 1977.
