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Abstract: Let ℜ  be a Galois ring of characteristic p
α  where p  is a 

prime and a
 
is a natural number. In this paper a relation between 

reversible cyclic codes and reversible complement cyclic codes has 

been determined. The reversible complement cyclic codes have 

applications in DNA-based computations. 
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1. Introduction 
 

The Galois ring ( , )a
GR p mℜ = is a Galois extension of ap

Ζ of degree 

m, where p is a prime and a is a natural number. The Galois ring of 

characteristic ap and cardinality amp , where m is a natural number, is 

isomorphic to the ring [ ] / ( )ap
u f uΖ  where ( )f u  is a monic basic 

irreducible polynomial of degree m in [ ]ap
uΖ

1, 2
. 

 

 A cyclic code over a ring R is a linear code which is invariant under 

cyclic shifts. The cyclic codes of length n over a ring R under a linear 

map can be considered as ideals of [ ]/ 1nR x x< − > . Thus the tuple 

0 1 1( , ,..., )nc c c c −=  can be identified with the polynomial 
1

0 1 1( ) ...
n

nc x c c x c x
−

−= + + + . Moreover, the reversible complement cyclic 

codes have wide applications in the field of DNA-based computations. 

For reference see 
3-8

. 
 

 This paper is organized as follows. In Section 2, a necessary and 

sufficient condition for a reversible cyclic code to be a reversible 

complement cyclic code has been obtained, thereby extending a result of 
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Bennenni
3
 to Galois rings. In Section 3, examples are given to illustrate 

the result obtained in Section 2. We have identified reversible 

complement cyclic codes in the list given by Abualrub
9
 for single 

generator reversible cyclic codes of length 4 over 4Ζ . 

 

2. Reversible and Reversible Complement Cyclic Codes 
 

Let ( , ) [ ]/ ( )a

a

p
GR p m u f uℜ= ≅ Ζ < > be a Galois ring and 

[ ]/ 1n

n
x xℜ =ℜ < − > . 

 

Remark 1:  It can be easily seen that for every element e in ℜ  there 

exists an element e  such that 
2 1

1 ...
m

e e u u u
−

+ = + + + + . We shall call e  

the complement of e. Clearly ( )e e= . 
 

Definition 1: A cyclic code C of length n over a ring R is called 

reversible if 1 1 0( ,..., , )
n

c c c−  belongs to C whenever 0 1 1( , ,..., )
n

c c c C− ∈ . 
 

Definition 2: A cyclic code C of length n over a ring R is called 

reversible complement code if 
1 1 0( ,..., , )

n
c c c C− ∈ whenever 

0 1 1
( , ,..., )

n
c c c C

−
∈  . 

 
 

The element 
1 1 0

( ,..., , )
n

c c c
−

, represented as a polynomial ( ( ))
RC

c x , is called 

reversible complement of )(xc . 
 

Definition 3: The reciprocal polynomial of ( ) [ ]f x R x∈  denoted as 
*( )f x  is defined as ( )deg ( )*( ) (1 / )

f x
f x x f x=  . 

 

     Remark 2: It is easy to prove that * *(( ( )) ) ( ( ))RC RCc x c x= for )(xc in C. 
 

Lemma 1: Let C be a reversible complement cyclic code over ℜ  of 

length n. Then C is reversible. 
 

Proof:  Let 2 1( ) 1 ... m
g u u u u

−= + + + +  and 0( )x  be the zero polynomial 

in 
n

ℜ . Then 0( )x C∈  and hence (0( ))RCx C∈ . 
 

i.e.    2 1( )(1 ... )n ng u x x C− −+ + + ∈ . 
 

Let 0 1( ) ...
t

t
c x c c x c x= + + + , nt <≤0 , be a polynomial in C.  Then  

 

2 1 2 1

1 0( ( )) ( )(1 ... ) ( ... )RC n t n t n n

t
c x g u x x c x c x c x

− − − − − −= + + + + + + +
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belongs to C. Therefore, 1( )(1 ... ) ( ( ))n RCg u x x c x C−+ + + − ∈ . 

Moreover,  
1 1 2 1

1 0
1 1

1 0

( )(1 ... ) ( ( )) ( ... )

( ... )

n RC n t n n

t
n t t t

t

g u x x c x c x c x c x

x c c x c x

− − − − −

− − −

+ + + − = + + +

= + + +  
 

Therefore, Cxcxccx
tt

t

tn
∈+++

−−−
)...(

0

1

1

1
. 

 

As C is cyclic, Cxcxcc
tt

t
∈+++

−
)...(

0

1

1
. 

  

So, Cxc ∈)(
* . Hence C is a reversible cyclic code. 

 

Lemma 2:  Let C be a reversible cyclic code over ℜ  of length n such 

that Cxxxxuuu
nnm

∈+++++++++
−−−

)...1)(...1(
12212

. Then C is a 

reversible complement cyclic code. 
 

 

Proof:  Let 
t

t
xcxccxc +++= ...)(

10
, nt <≤0 , be a polynomial in C. 

As C is cyclic,  
 

   
1 1 2 1

0 1( ( )) ...
n t n t n n

t tx c x c x c x c x C
− − − − − −

−= + + + ∈ . 
 

Moreover,    Cxxxug
nn

∈++++
−−

)...1)((
12

 
 

where  12
...1)(

−
++++=

m
uuuug . 

 

Therefore,  2 1 1 2 1

0 1( )(1 ... ) ( ... ) .n n n t n n

t tg u x x x c x c x c x C
− − − − − −

−+ + + + − + + + ∈
 

 

i.e.    2 1 1 *

0
( )(1 ... ) ( ... ) ( ( )) .n t n t n RC

t
g u x x c x c x c x C− − − − −+ + + + + + = ∈

 
 

As C is reversible, * *(( ( )) )RCc x C∈ . This together with Remark 2 implies 

that ( ( ))RC
c x C∈ . Hence C is a reversible complement cyclic code. 

Lemmas 1 and 2 combine to give the following theorem: 
 

Theorem 1:  A cyclic code C is a reversible complement cyclic code 

of length n over ℜ  if and only if C is a reversible cyclic code of length n 

over ℜ  and Cxxuuu
nm

∈+++++++
−−

)...1)(...1(
112

. 

 

3. Illustration 
 

The single generator reversible cyclic codes over )1,2(
2

4
GR=Ζ  

of 

length 4 as ideals of 2 4

4 (2 ,1)/ 1GR xℜ = < − >
 

have been obtained by 

Abualrub
1
. With the help of following examples, we illustrate that the 
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class of reversible complement cyclic codes over 
4

Ζ
 
of length 4 is a 

proper subset of the class of reversible cyclic codes over 
4

Ζ  of length 4. 

Example 1: The reversible cyclic code >++=< 32
2

xxC of length 4 

over )1,2(
2

GR  is reversible complement and Cxxx ∈+++ )1(
23 . 

Example 2: The reversible cyclic code >+=< 3
2

xC  of length 4 over 

)1,2(
2

GR  is not reversible complement cyclic code and 

Cxxx ∉+++ )1(
23

. 

In Table 1, we provide the complete list of single generator reversible 

cyclic codes and reversible complement cyclic codes of length 4 over 

)1,2(
2

GR . 
 

Table 1: Single generator reversible and reversible complement 

cyclic codes of length over )1,2(
2

GR . 
 

Sr. No Reversible Reversible Complement 

1. >< 1  Yes 

2. >+< 1x  Yes 

3. >+< 3x  Yes 

4. >+< 1
2

x  Yes 

5. >+< 3
2

x  No 

6. >++< 12
2

xx  No 

7. >++< 32
2

xx  Yes 

8. >+++< 1
23

xxx  Yes 

9. >+++< 33
23

xxx  No 

10. >+++< 2222
23

xxx  No 

11. >+< 22
2

x  No 

12. >+< 22x  No 

13. >< 2  No 
 

 
4. Conclusion 

 

In this paper a necessary and sufficient condition for a reversible 

cyclic code to be a reversible complement cyclic code has been obtained.  
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