Reversible and Reversible Complement Cyclic Codes over Galois Rings

Jasbir Kaur*, Sucheta Dutt and Ranjeet Sehmi

Department of Applied Sciences PEC University of Technology, Chandigarh-160012, INDIA Email: <u>kjasbir03@gmail.com</u>, <u>suchetapec@yahoo.co.in</u>, <u>rksehmi2003@yahoo.co.in</u>

(Received May 02, 2015)

Abstract: Let \Re be a Galois ring of characteristic p^{α} where p is a prime and a is a natural number. In this paper a relation between reversible cyclic codes and reversible complement cyclic codes has been determined. The reversible complement cyclic codes have applications in DNA-based computations.

MSC: 94B15, 94B05, 94B60.

Keywords: Cyclic codes, Reversible cyclic codes, Complement.

1. Introduction

The Galois ring $\Re = GR(p^a, m)$ is a Galois extension of Z_{p^a} of degree m, where p is a prime and a is a natural number. The Galois ring of characteristic p^a and cardinality p^{am} , where m is a natural number, is isomorphic to the ring $Z_{p^a}[u]/f(u)$ where f(u) is a monic basic irreducible polynomial of degree m in $Z_{p^a}[u]^{1,2}$.

A cyclic code over a ring *R* is a linear code which is invariant under cyclic shifts. The cyclic codes of length *n* over a ring *R* under a linear map can be considered as ideals of $R[x]/\langle x^n-1\rangle$. Thus the tuple $c = (c_0, c_1, ..., c_{n-1})$ can be identified with the polynomial $c(x) = c_0 + c_1 x + ... + c_{n-1} x^{n-1}$. Moreover, the reversible complement cyclic codes have wide applications in the field of DNA-based computations. For reference see ³⁻⁸.

This paper is organized as follows. In Section 2, a necessary and sufficient condition for a reversible cyclic code to be a reversible complement cyclic code has been obtained, thereby extending a result of Bennenni³ to Galois rings. In Section 3, examples are given to illustrate the result obtained in Section 2. We have identified reversible complement cyclic codes in the list given by Abualrub⁹ for single generator reversible cyclic codes of length 4 over Z_4 .

2. Reversible and Reversible Complement Cyclic Codes

Let $\Re = GR(p^a, m) \cong \mathbb{Z}_{p^a}[u] / \langle f(u) \rangle$ be a Galois ring and $\Re_n = \Re[x] / \langle x^n - 1 \rangle$.

Remark 1: It can be easily seen that for every element *e* in \Re there exists an element \overline{e} such that $e + \overline{e} = 1 + u + u^2 + ... + u^{m-1}$. We shall call \overline{e} the complement of *e*. Clearly $\overline{(e)} = e$.

Definition 1: A cyclic code C of length n over a ring R is called reversible if $(c_{n-1},...,c_1,c_0)$ belongs to C whenever $(c_0,c_1,...,c_{n-1}) \in C$.

Definition 2: A cyclic code C of length n over a ring R is called reversible complement code if $(\overline{c}_{n-1},...,\overline{c}_1,\overline{c}_0) \in C$ whenever $(c_0,c_1,...,c_{n-1}) \in C$.

The element $(\overline{c}_{n-1},...,\overline{c}_1,\overline{c}_0)$, represented as a polynomial $(c(x))^{RC}$, is called reversible complement of c(x).

Definition 3: The reciprocal polynomial of $f(x) \in R[x]$ denoted as $f^*(x)$ is defined as $f^*(x) = x^{\deg(f(x))} f(1/x)$.

Remark 2: It is easy to prove that $((c^*(x))^{RC})^* = (c(x))^{RC}$ for c(x) in C.

Lemma 1: Let C be a reversible complement cyclic code over \Re of length n. Then C is reversible.

Proof: Let $g(u) = 1 + u + u^2 + ... + u^{m-1}$ and 0(x) be the zero polynomial in \Re_n . Then $0(x) \in C$ and hence $(0(x))^{RC} \in C$.

i.e. $g(u)(1+...+x^{n-2}+x^{n-1}) \in C$.

Let $c(x) = c_0 + c_1 x + \dots + c_t x^t$, $0 \le t < n$, be a polynomial in C. Then

$$(c(x))^{RC} = g(u)(1 + x + \dots + x^{n-t-2}) + (\overline{c_t}x^{n-t-1} + \dots + \overline{c_1}x^{n-2} + \overline{c_0}x^{n-1})$$

belongs to C. Therefore, $g(u)(1+x+...+x^{n-1})-(c(x))^{RC} \in C$. Moreover,

$$g(u)(1+x+...+x^{n-1}) - (c(x))^{RC} = (c_t x^{n-t-1} + ... + c_1 x^{n-2} + c_0 x^{n-1})$$

= $x^{n-t-1}(c_t + ... + c_1 x^{t-1} + c_0 x^t)$

Therefore, $x^{n-t-1}(c_t + ... + c_1 x^{t-1} + c_0 x^t) \in C$.

As *C* is cyclic, $(c_t + ... + c_1 x^{t-1} + c_0 x^t) \in C$.

So, $c^*(x) \in C$. Hence *C* is a reversible cyclic code.

Lemma 2: Let C be a reversible cyclic code over \Re of length n such that $(1+u+u^2+...+u^{m-1})(1+x+x^2+...+x^{n-2}+x^{n-1}) \in C$. Then C is a reversible complement cyclic code.

Proof: Let $c(x) = c_0 + c_1 x + \dots + c_t x^t$, $0 \le t < n$, be a polynomial in C. As C is cyclic,

$$x^{n-t-1}(c(x)) = c_0 x^{n-t-1} + \dots + c_{t-1} x^{n-2} + c_t x^{n-1} \in C.$$

Moreover, $g(u)(1 + x + ... + x^{n-2} + x^{n-1}) \in C$

where $g(u) = 1 + u + u^2 + ... + u^{m-1}$.

Therefore, $g(u)(1+x+...+x^{n-2}+x^{n-1})-(c_0x^{n-t-1}+...+c_{t-1}x^{n-2}+c_tx^{n-1}) \in C.$

i.e.
$$g(u)(1+x+...+x^{n-t-2})+(\overline{c_0}x^{n-t-1}+...+\overline{c_t}x^{n-1})=(c^*(x))^{RC}\in C.$$

As *C* is reversible, $((c^*(x))^{RC})^* \in C$. This together with Remark 2 implies that $(c(x))^{RC} \in C$. Hence *C* is a reversible complement cyclic code. Lemmas 1 and 2 combine to give the following theorem:

Theorem 1: A cyclic code C is a reversible complement cyclic code of length n over \Re if and only if C is a reversible cyclic code of length n over \Re and $(1+u+u^2+...+u^{m-1})(1+x+...+x^{n-1}) \in C$.

3. Illustration

The single generator reversible cyclic codes over $Z_4 = GR(2^2, 1)$ of length 4 as ideals of $\Re_4 = GR(2^2, 1)/\langle x^4 - 1 \rangle$ have been obtained by Abualrub¹. With the help of following examples, we illustrate that the class of reversible complement cyclic codes over Z_4 of length 4 is a proper subset of the class of reversible cyclic codes over Z_4 of length 4.

Example 1: The reversible cyclic code $C = \langle x^2 + 2x + 3 \rangle$ of length 4 over $GR(2^2, 1)$ is reversible complement and $(x^3 + x^2 + x + 1) \in C$.

Example 2: The reversible cyclic code $C = \langle x^2 + 3 \rangle$ of length 4 over $GR(2^2, 1)$ is not reversible complement cyclic code and $(x^3 + x^2 + x + 1) \notin C$.

In Table 1, we provide the complete list of single generator reversible cyclic codes and reversible complement cyclic codes of length 4 over $GR(2^2,1)$.

Table 1: Single generator reversible and reversible complement cyclic codes of length over $GR(2^2, 1)$.

Sr. No	Reversible	Reversible Complement
1.	<1>	Yes
2.	< <i>x</i> +1 >	Yes
3.	< <i>x</i> + 3 >	Yes
4.	$< x^{2} + 1 >$	Yes
5.	$< x^{2} + 3 >$	No
6.	$< x^{2} + 2x + 1 >$	No
7.	$< x^{2} + 2x + 3 >$	Yes
8.	$< x^{3} + x^{2} + x + 1 >$	Yes
9.	$< x^{3} + 3x^{2} + x + 3 >$	No
10.	$< 2x^{3} + 2x^{2} + 2x + 2 >$	No
11.	$< 2x^{2} + 2 >$	No
12.	< 2 <i>x</i> + 2 >	No
13.	< 2 >	No

4. Conclusion

In this paper a necessary and sufficient condition for a reversible cyclic code to be a reversible complement cyclic code has been obtained.

Acknowledgements

The author (Jasbir Kaur) gratefully acknowledges the World Bank funded TEQIP II for financial support.

References

- 1. B. R. McDonald, Finite Rings with Identity, Marcel Dekker, New York, 1974.
- **2.** Z. X. Wan, *Finite fields and Galois rings*, World Scientific Publishing Company, 2011.
- **3.** T. Abualrub, A. Ghrayeb and X. N. Zeng, Construction of cyclic codes over *GF*(4) for DNA computing, *J. Franklin Inst.*, **343** (2006) 448-457.
- **4.** A. Bayram, E. S. Oztas and I. Siap, Codes over F_4+vF_4 and some DNA applications, *Des. Codes Cryptogr.*, (2015) DOI: 10.1007/s10623-015-0100-8.
- 5. N. Bennenni, K. Guenda and S. Mesnager, New DNA cyclic codes over rings, *arXiv.org*, arXiv:1505.06263[cs.IT], (2015).
- **6.** K. Guenda and T. A. Gulliver, Construction of cyclic codes over F_2+uF_2 for DNA computing, *Appl. Algebra Engrg. Comm. Comput.*, **24(6)** (2013) 445-459.
- 7. I. Siap, T. Abualrub and A. Ghrayeb, Cyclic DNA codes over the ring $F_2[u]/\langle u^2-1\rangle$ based on the deletion distance, *J. Franklin Inst.*, **346** (2009) 731-740.
- 8. B. Yildiz and I. Siap, Cyclic codes over $F_2[u]/\langle u^4 1 \rangle$ and applications to DNA codes, *Comput. Math Appl.*, 63 (2012) 1169-1176.
- **9.** T. Abualrub, Reversible cyclic codes over Z₄, *Australasian J. Combinatorics*, **38** (2007) 195-205.
- 10. J. L. Massey, Reversible codes, Inform. Control, 7(3) (1964) 369-380.