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Abstract : An aspect of nucleus of polytropes has been analytical studied 
under the concept of a sphere of uniform density defined by the polytrophic 
indices n tending to zero )0( n and to minus one )1( n .The 

generalized form of the structure equation (2.9), (2.10) and (2.11) in 

    vuvu pp ,,, and   vu , , respectively, represent the plane 

symmetric (N=0), cylindrical (N=1) and spherical (N=2) configurations. It 
describes the nucleus of polytropic stars incorporating the solutions for 

0n and 1n , and extents of the immediate neighborhood of the 
origin, (eqs. (2.13), (3.9) and (3.10)). And, more interestingly, the 
geometrical size of n=2 configuration is found to be 


1p 3.86789962  3/4 ,3.39601184  3/5 and 3.202300313

 2  (eqn. (3.14)).

Keywords: Stellar structure/ polytropic stars / unified study / uniform 
density model / analytic study

1.  Introduction

The study of self-gravitating polytropic and isothermal spheres, 
cylinders and sheets, in static equilibrium, under the concept of Newtonian 
gravitation theory (classical) dates back to the Emden’s1, Eddington’s 2, 
Milne’s3, and Chandresekhar’s4 well known researches. The self-gravitating 
polytropic and isothermal sheets, such as, the Saturn ring system and the 
Laplacian-disc cosmogonies, have been considered by Spitzer5, Ledoux6,
and Gold Reich and Lynden-Bell7. Some new ideas to the study of 
polytropic, and isothermal cylinders have been lately added by Ostriker 8, 9

and Srivastava10. Harrison and Lake11 and the author 12 tackled the problem 
of polytropic and isothermal plane-symmetric configurations from 
viewpoint of the ease with which the equations of hydrostatic equilibrium 
could be solved.
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        The behavior of solutions of the Lane-Emden equations of index n, 
which controls the distribution of physical variables, has been studied in the 
immediate neighborhood of the origin by Hopf13, Fowler14 and 
Chandrasekhar for n3, n3, and n3, respectively. It is well understood so 
far from some of these studies that the polytropic indices n0 and 1 
represent , respectively, the liquid and gaseous states of a polytrope of 
uniform density and governing the origin. And the behavior of solutions is 
the same whatever be the index of a polytrope. Since the nucleus includes 
the immediate neighborhood of the origin, it will be of our interest to study 
it in somewhat more detail. In the light of this new concept of uniform 
density 0n and 1n , the author12 has been able to determine the 
maximum limiting density15 and the maximum value of mass of a star16. He 
17 has further extended the Lyttleton’s work18 pertaining to the structure of a 
planet.

Srivastava10 studied the structure of a cylindrical polytrope and has 
shown that the natural variables “r” and “P” are, however, most suitable for 
studying the structure. Some valuable contributions have further been made 
by the author and others towards the discussion of classical (Newtonian) as 
well as relativistic aspects of problems on polytropic structures., for 
example, under Newtonian (classical) treatment- (i) Lane-Emden equation 
of index 5 and Pade`approximants19 , (ii) transformation of the generalized 
isothermal Lane- Emden equation and Pade` approximation20 , (iii) 
planetary structures: an analytical approach21 , (iv) self- consistent fields in 
atoms22, (v)structure of uniformly rotating isothermal gas    cylinder23 , (vi) 
the equilibrium of uniform slowly rotating polytropes24, (vii) 
thermodynamic equilibrium of star clusters25 ,  (viii) transformation of the 
equations  of equilibrium for isothermal plane-symmetric     configuration 26 

; and under relativistic treatment- (ix) structure of white dwarfs27 , (x) 
neutron star models28 , (xi)relativistic features of stellar structures29, and 
(xii) relativistic non –rotating isothermal gas cylinders30.These references 
contain a fair proportion of new materials. And, the above mentioned recent 
works bring out clearly the application and importance of Pade/(2,2) 
approximation technique in solving the differential equations (ordinary or 
partial) analytically which are of astrophysical importance.

2.  Generalized Structure Equations in Different Planes

Our generalized form of the fundamental equation of hydrostatic 
equilibrium is given by
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(2.1) 4 ,

N

N

d r dP
G

r dr dr
 


 

  
 

                       

where N is constant and it takes the values 0, 1, and 2 respectively, for 
plane-symmetric, cylindrical and spherical configurations and other symbols 
have their usual meanings. Define the variables  (density) and P (pressure) 
by

(2.2)           
1 1 1

1 1 1 1,n nn n nP P K K K    
       ,            

where K and n are constants; n is usually called the polytropic index; K 
depends on the entropy per nucleon and chemical composition but does not 
depend on radius or on central density and  defines the central density 
at. Equation (2.1) can be expressed in p , P ,- , - and  , -
planes in the form

1 1
1
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d d
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,         

11
(2.4)
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d d

d d
  

  
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,              

(2.5)
1 N n
N

d d

d d  

 
  

 
  

 
,                             

respectively which are all equivalent to equation (2.1),
where the dimensionless variables P, , and  are connected with the 
natural variable r by

(2.6)

1
2 2

1

;
4

n
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P P P

K
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G
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


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,      

(2.7)      

1

2( 1)
;

4

K n
r

Gn    

     

,                           
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  (2.8)    

1
1 21

( 1)
;

4

nK n
r

G  
  



 
    

  

,                    

respectively, the suffixes “P”, “”, and “” attached with the physical 
variables mean the variables in which the fundamental equation of 
hydrostatic equilibrium (2.1) has been expressed. In view of the homology 
theorem1, it is possible to derive the following first-order differential 
equations equivalent to the generalized LEE in ( , ) , ( , )p pu v u v  -and 

( , )u v  -planes:

  ( 1) ( 1)
2.9   ,

(1 )( 1) ( 1)
P P P P

P P

u dv n u v n

v du N n n u nv

   


    
      

 
(1 )

2.10   ,
(( 1) )

u dv n N v nu

v du n N v u
   

   

  


  
                         

and

  1
2.11   

1

u dv N u v

v du N u nv
   

   

  


  
.                                      

The locus of points at which the solution-curves have horizontal 
tangents is given by 

      2.12                 n 1 1 1u v n n      .                                       

The locus of points at which the solution-curves have vertical tangents is 
given by

   2.13               n 1 u + n v = (1+N) (n+1).            

The two loci (2.12) and (2.13) intersect at points
        

          

    
,

1
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

 n

NNn
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   2 1
2.14

1

n
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n





, }0)1{( n .                                    

Similar interpretations follow for equations (2.10) and (2.11).

3.  Nucleus of Polytropic Stars

      In order that some progress could be made towards the study of 
immediate neighborhood of the origin, we shall give below the expressions 
representing the extent of the magnitude of the immediate neighborhood of 
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the origin in which the solutions for n tending to zero (n and minus one 
(n -) hold for N=0, 1, and 2 configurations.
(a) Solutions for n -1 for N=0, 1 and 2 Configurations- Substituting n= -1 
in above equation (2.9), we obtain an unique closed-form solution

 3.1 v Cu      (C=constant).                                       

for N= 0, 1, and 2 configurations. Obviously, this equation represents a 
straight line passing through the origin, and makes an angle tan-1C with u -

axis. The  ,u v  -variables are of immense importance for the positive 

quadrant ( u  0, 0v  ) contains only such parts of ( ,  )-solutions which 

are of astrophysical interest.
(b) Solutions for n 0 for N = 0, 1 and 2 Configurations. 
Case 1. Putting N= 0, n= 0 in equation (2.9), we obtain closed-form 
solution:

    2/3.2 1 2Pv u C u


 
     (C/=constant)                

Case 2. If we put N= 1, n= 0 in equation (2.9), then we have the following 
explicit solution:

    / /

4 1
3 .3

2 lo g
4 2

2

v
u u

C
u


 




  

   

                   

(C//=constant)                                                             
Case 3. For N= 2, n= 0, we have the following approximate analytical 
solution of equation (2.9):

         
11 2 3

23
/// 1 3 3

4 7

4 3 5 3 80 3
3.4 2 1 3

3 3.5 3 .4 3 .11

u u uu
v C u u



  
  

               
      

(C///=constant). 
(c) The Extent of the Immediate Neighborhood of the Origin- We would 
like now to obtain an expression giving the range of the immediate 
neighborhood of the origin for which the solution in (3.1) holds.
The generalized form of the series solution of equation (2.1), near the origin 
P=0), satisfying the boundary conditions 

 3.5     (0) 1;   0
d

d


   at 0                                       

is given by (retaining terms up to 8 only).
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                                                                                

The constants 1 2 3, ,a a a and 4a are given by 

 12

1
1 


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a
,     

 
   22

1314
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
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2 2 2

3 2 3

2 3 16 17 2 12 18
3.7  

48 1 1 3 5

n N N n N N
a

n N N N

      
   

,    

                       NNnNN

nKJnIn
a





75131384 324

23

4

                ,1488755613224

118965988165622812(
2

34567





NN

NNNNNI

                20162856138828020 234  NNNNJ ,

                720804332604 234  NNNNK ).
With the help of the series solution (3.6) we can express physical variables 
u and v as function of P and thus there will be just one curve in 

 ,u v  -plane. This curve (not drawn) corresponds to E-solutions which are 

included in the homology formula   n  . Let there are  ,u n   and 

 ,v n   “E-curves”. The points at which “E-curve” and the solution given 

by equation (3.1) intersect are given by 

     
2 2 ( 1)

3.8     
1 1

c n

c n n
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
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/ /
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18 1

3.10
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2 9 2
9

c
n

c
c



  
 
 

  
 

   (N=2).                           

As in previous work (eqn. 3.8)25, the expression in equation (3.9) or in 
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(3.10) gives the values of P for different values of n up to which the 
solution   in equation (3.1) is relevant. For given C or C``,  increases, and 

for n , its values from eqs. (3.9) and (3.10) are

 
1

/ 2

/
3.11 2

3 1

c

c


 
   

                                              

and

               

  











3
292

18
//

//

//

c
c

c

,
respectively. For n-1; P which establishes the fact that for all 
polytropes in P,P-plane, the immediate neighborhood of the origin is 
governed by the solution for n-1. The pressure, density and temperature 
distributions are given by the equations (2.9), (2.10) and (2.11) respectively.
(d) Numerical Results, Interpretations and Implications

Follow the usual procedure, as also applied elsewhere, we may obtain 
Pade/(2,2) approximation for the series equation (3.6) in the form of rational 
function, given by       

(3.12)           
2 4

22 2 4

1

1
p p

p p

A B

C D

 


 

  
   

  
,     

equating the expression (3.6) and (3.12), it is easy to compute the numerical 
values of the constant coefficients
A/, B/, C/ and D/ 

/
1

/ CaA  ,
//

12
/ DCaaB  , 

 



 4132/ aaaa
C

,

 




2
342/ aaa

D
;             

(3.13)         2
1 3 2a a a   .                                                          

Vanishing of the numerator of the expression in equation (3.12) (since 
P ( )p o  at 1p p  ), would define the geometrical size 1p (boundary 

value), that is,

(3.14)          B/2+A/+1=0 (
2

1
 

).                                             

would lead to give
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 
 
 
 

1

3.867989962 4 3 ,

3.15 3.396011484 5 3 ,

3.202300313 2 .


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


 


 
 

                           

(e) E-Solutions Near the Origin ~ 0 - From series expansion in (3.6), we 

have, after neglecting higher order terms than 2 ,

(3.16)            
2

1 0
6

 
     .                                   

and
           

 
     
   
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3 1 3 2 2 3 1
3.17 ~ ~ 3
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  




    
 

   
P.                 

(3.18)      
/ 2

~ 0
3

v P
   




  


                                                              

Hence, Ep-curve passes through the point PEu =3, PEv =0 (Ep0) for all n, 
and N. At this point, the slope of the UPE-curve is given by

(3.19)     
          

2
21 3 1

3 2 2 3 1
9

n N N
n N n N N

  
      .  

It is also clear from equations (3.17) and (3.18) that PEu ( ) = PEu P; 

Pv P= Pv P which means that the solution of astrophysical interest lies 

in the positive quadrant PEu , Pv . The physical meaning of the two 

homology-invariant variables PEu and PEv is very much clear from the 
following equations:

The mass MP interior to P can be expressed as 

(3.20)              2 3 1

0 0 1

4 4
P n

n
n

n

d
M r dr

      
 

 
  



  


  ,      

which, on using (2.3), can be expressed in the form

(3.21)            
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n
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d d
M d
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  
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 
  

 

 
   

 
                                          

3 14
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Nn
p

d

d
 










            
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The mean density is given by

(3.22)                
3

3

4


 

 


 
 


                                                     

which, with the help of foregoing equation (3.21)
can be re-written as

(3.23)                   1 13
n n

n n d

d
 


 




    .                                        

Further, we can express he variable Pu in terms of density    (or mean 

density   and the radial (dimensionless) distance P) of the form 

   
 

   
 

2 2 42 1 11
1 23 1 ..3

3.24

n nn
n nn a a

u
      

   

  
  




    
    

                        

 
 

 
 213

~
n

n

.                                                   
Equations (3.6) and (3.21) enable us to write v (equation (3.18)) in the 

form

(3.25)             
 

 
1 1

11

~

3 n n

v
  

 






 0 .                            

Proceeding as above we may find that

(3.26)                       
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using the expression 

(3.28)                    /
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13 n

 
 

 

  ,                                             

We may find from (3.24) and (3.26), (3.28) and (3.29)
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(3.29)        

1
1 2
1

1

n

nnk
u u

n 




 

 
    
 

                                                               

and
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.                           

This shows that we cannot express u as function of u  and v as 

function of v  for n=0 and n=-1. Further, we find that when n=-1,  =0 or 

 depending on whether K or; for 1,k  is indeterminate (eqn. 

(2.6)). The pressure distribution in the immediate neighborhood of the 
center is given by solution for n tending to minus (eqns (2.9)) and the 
density distribution is given by the solution for n tending to zero (eqn. 
(2.10))

4. Implications and Advantages of the Present Approach

As another example of the application of this modern developed and 
efficient technique, it is suggested that one should at least refer to the 
Sharma’s recent contributions which include the study of (i) 
thermodynamical equilibrium of stars clusters embedded in an isothermal 
configuration 25, (ii) relativistic stellar structures and X-ray transients in 
Ni’s theory of gravity31 , (iii) very massive stellar models in Ni’s theory of 
gravity32  (iv) general relativistic neutron stars33 

Till quite recently, Tiwari and Shalini in their dissertations have studied 
the problems related with structural features of plane- symmetric 
configurations 34  , neutron stars, nebulae, etc, which are fundamentally 
based on the applications of polytropic theory and Pade`(2,2) approximation 
technique. She applies Pade` (2, 2) approximation technique to the Lane 
Emden equation (LEE) of index 1.5 in ( ( ; )  plane and obtains the density 

distribution function 22 0( ) ( )    in simple, compact and rational form 

analogous to the equation (3.12). Values of some important physical 
quantities, such as, 1.5 (  density ) , 1(n   pressure P) and potential 
energy have been tabulated showing the physical characteristics of the 
spherically symmetric nebulae. She further describes the basic physical 
parameters; the radius R, the mass radius (M-R) relation, the central 

condensatation c  (ratio of mean to central density in terms of the Lane 
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–Emden function ( )    [eqn. (3.16)] .Most importantly, she obtains the         

geometrical size 1 =5.99071 which would have otherwise been a very 

difficult task by using known standard numerical methods

The main advantages of the present technique are:

(i) It offers a reasonable approximation to the solution, (ii) it is suitable for 
the use on small computer program, (iii) physical quantities can be 
numerically evaluated with the help of an electronic pocket calculator even 
without use of computer program , and, if however the latter is used, it 
consumes minimum time, hence it is economical too over previously known  
methods, (iv) the geometrical size [eqn. (3.15)] of  the configuration is 
immediately determined from equation (3.12) which , obviously, avoids 
lengthy and cumbersome process of numerical integrations, and ,  (v) it can 
be readily applied to the interdisciplinary  research areas (agricultural or 
pure engineering, biomathematical modellings, environmental and 
biological systems which may quite often involve complicated forms of 
linear or non-linear differential equation

5. Astrophysical Applications

Eddington2, Stoner36 Kothari37,38 Srivastava10, the authors12,15,16 
and many others used the results of a sphere of  uniform  density to  study  
the  minimal  problems of stars  , and other problems19-35 of congnate 
interest ,   using Pade `(2,2) approximation technique, for example, search of 
magnetic field in solar convection envelope39 (in which solution of MHD 
flow equations could be indicative of the occurrence of differential rotation 
or uniform rotation), pulsation in subdwarf B stars 40-42 (which determine 
the internal chemical structure, rotational properties, etc.) and the cluster 
Abell 1367 system 43 (this would provide information about the star 
formation, chemical evolutionary processes , etc

                                     
6. Conclusions

1. An unified analytic study of the nucleus of polytropes N=0 (plane-
symmetric), N=1(cylindrical), and N=2 (spherical) has been made 
following the concept of a sphere of uniform density defined by the 
polytropic index n tending to zero (n) and minus one (n.

2. A unique, explicit solution for n tending to minus one for N=0, 1 and 2 
configurations which govern the center of polytrope, is given by 
equation (3.1). Equations (3.2), (3.3) and (3.4) represent, respectively, 
the solutions for n tending to zero for N=0, 1 and 2 configurations.   



262                                     J. P. Sharma, Sanish Thomas and  W. David

3. The extents of the immediate neighborhood of the center to which the 
solution (3.1) is valid are given by equations (3.8), (3.9) and (3.10), 
respectively, for N=0, 1 and 2 configurations.

4. Using Pade` (2, 2) approximation technique the geometrical size 1


of 
N=2 configuration has been determined, and is given by 

1


=3.867989962 (4/3), 3.3960114844 (5/3) and 3.201230031 
(2).

5. The present analytical Technique is useful for very short computer 
program, and the physical quantities of interest can be numerically 
calculated with the help of an electronic pocket calculator even without 
the use of computer. It can be applied to interdisciplinary field of 
researches which might involve complicated types of linear or non linear 
differential equation

6. Unlike Harrison and Lake11, it is found that the homology invariant 
variables have an important role in the study of nucleus of polytropes.  
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Abstract : An aspect of nucleus of polytropes has been analytical studied under the concept of a sphere of uniform density defined by the polytrophic indices n tending to zero
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1.  Introduction



The study of self-gravitating polytropic and isothermal spheres, cylinders and sheets, in static equilibrium, under the concept of Newtonian gravitation theory (classical) dates back to the Emden’s1, Eddington’s 2, Milne’s3, and Chandresekhar’s4 well known researches. The self-gravitating polytropic and isothermal sheets, such as, the Saturn ring system and the Laplacian-disc cosmogonies, have been considered by Spitzer5, Ledoux6, and Gold Reich and Lynden-Bell7. Some new ideas to the study of polytropic, and isothermal cylinders have been lately added by Ostriker 8, 9 and Srivastava10. Harrison and Lake11 and the author 12 tackled the problem of polytropic and isothermal plane-symmetric configurations from viewpoint of the ease with which the equations of hydrostatic equilibrium could be solved.

*Presented at CONIAPS XI, University of Allahabad, Feb. 20-22, 2010.


        The behavior of solutions of the Lane-Emden equations of index n, which controls the distribution of physical variables, has been studied in the immediate neighborhood of the origin by Hopf13, Fowler14 and Chandrasekhar for n(3, n(3, and n(3, respectively. It is well understood so far from some of these studies that the polytropic indices n(0 and 1 represent , respectively, the liquid and gaseous states of a polytrope of uniform density and governing the origin. And the behavior of solutions is the same whatever be the index of a polytrope. Since the nucleus includes the immediate neighborhood of the origin, it will be of our interest to study it in somewhat more detail. In the light of this new concept of uniform density 
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, the author12 has been able to determine the maximum limiting density15 and the maximum value of mass of a star16. He 17 has further extended the Lyttleton’s work18 pertaining to the structure of a planet.


 Srivastava10 studied the structure of a cylindrical polytrope and has shown that the natural variables “r” and “P” are, however, most suitable for studying the structure. Some valuable contributions have further been made by the author and others towards the discussion of classical (Newtonian) as well as relativistic aspects of problems on polytropic structures., for example, under Newtonian (classical) treatment- (i) Lane-Emden equation of index 5 and Pade`approximants19 , (ii) transformation of the generalized isothermal Lane- Emden equation and Pade` approximation20 , (iii) planetary structures: an analytical approach21 , (iv) self- consistent fields in atoms22, (v)structure of uniformly rotating isothermal gas    cylinder23 , (vi) the equilibrium of uniform slowly rotating polytropes24, (vii) thermodynamic equilibrium of star clusters25 ,  (viii) transformation of the equations  of equilibrium for isothermal plane-symmetric     configuration 26 ; and under relativistic treatment- (ix) structure of white dwarfs27 , (x) neutron star models28 , (xi)relativistic features of stellar structures29, and (xii) relativistic non –rotating isothermal gas cylinders30.These references contain a fair proportion of new materials. And, the above mentioned recent works bring out clearly the application and importance of Pade/(2,2) approximation technique in solving the differential equations (ordinary or partial) analytically which are of astrophysical importance.

2.  Generalized Structure Equations in Different Planes

Our generalized form of the fundamental equation of hydrostatic equilibrium is given by
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where N is constant and it takes the values 0, 1, and 2 respectively, for plane-symmetric, cylindrical and spherical configurations and other symbols have their usual meanings. Define the variables ( (density) and P (pressure) by


(2.2)           
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where K and n are constants; n is usually called the polytropic index; K depends on the entropy per nucleon and chemical composition but does not depend on radius or on central density and ( defines the central density at(((. Equation (2.1) can be expressed in ((p , P( ,-((( ,(( - and ((( ,(( - planes in the form




[image: image15.wmf]11


1


(2.3)


nn


N


nn


P


N


PPP


ddP


PP


dd


x


xxx


-


++


æö


=-


ç÷


èø


,   

      












[image: image16.wmf]1


1


(2.4)


n


N


n


N


dd


dd


r


rrr


r


xrr


xxx


-


æö


=-


ç÷


ç÷


èø


,           

   







 


(2.5)


[image: image17.wmf]1


Nn


N


dd


dd


qqq


q


xqq


xxx


æö


=-


ç÷


èø


,             
                




respectively which are all equivalent to equation (2.1),


where the dimensionless variables (P, ((, and (( are connected with the natural variable r by


 (2.6)
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 respectively, the suffixes “P”, “(”, and “(” attached with the physical variables mean the variables in which the fundamental equation of hydrostatic equilibrium (2.1) has been expressed. In view of the homology theorem1, it is possible to derive the following first-order differential equations equivalent to the generalized LEE in 
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The locus of points at which the solution-curves have horizontal tangents is given by 
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The locus of points at which the solution-curves have vertical tangents is given by
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The two loci (2.12) and (2.13) intersect at points
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Similar interpretations follow for equations (2.10) and (2.11).


3.  Nucleus of Polytropic Stars


      In order that some progress could be made towards the study of immediate neighborhood of the origin, we shall give below the expressions representing the extent of the magnitude of the immediate neighborhood of the origin in which the solutions for n tending to zero (n((( and minus one (n( -() hold for N=0, 1, and 2 configurations.


(a) Solutions for n( -1 for N=0, 1 and 2 Configurations- Substituting n= -1 in above equation (2.9), we obtain an unique closed-form solution
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for N= 0, 1, and 2 configurations. Obviously, this equation represents a straight line passing through the origin, and makes an angle tan-1C with 
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(b) Solutions for n( 0 for N = 0, 1 and 2 Configurations. 


Case 1. Putting N= 0, n= 0 in equation (2.9), we obtain closed-form solution:
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Case 2. If we put N= 1, n= 0 in equation (2.9), then we have the following explicit solution:
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Case 3. For N= 2, n= 0, we have the following approximate analytical solution of equation (2.9):
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 (c) The Extent of the Immediate Neighborhood of the Origin- We would like now to obtain an expression giving the range of the immediate neighborhood of the origin for which the solution in (3.1) holds.


The generalized form of the series solution of equation (2.1), near the origin ((P=0), satisfying the boundary conditions 
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is given by (retaining terms up to 
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With the help of the series solution (3.6) we can express physical variables 
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As in previous work (eqn. 3.8)25, the expression in equation (3.9) or in (3.10) gives the values of (P for different values of n up to which the solution   in equation (3.1) is relevant. For given C or C``, 
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respectively. For n(-1; (P(( which establishes the fact that for all polytropes in ((P,P(-plane, the immediate neighborhood of the origin is governed by the solution for n(-1. The pressure, density and temperature distributions are given by the equations (2.9), (2.10) and (2.11) respectively.


(d) Numerical Results, Interpretations and Implications


Follow the usual procedure, as also applied elsewhere, we may obtain Pade/(2,2) approximation for the series equation (3.6) in the form of rational function, given by       


(3.12)          
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equating the expression (3.6) and (3.12), it is easy to compute the numerical values of the constant coefficients


A/, B/, C/ and D/ 
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Vanishing of the numerator of the expression in equation (3.12) (since P
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(e) E-Solutions Near the Origin 
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Hence, Ep-curve passes through the point
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It is also clear from equations (3.17) and (3.18) that 
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The mass M((P( interior to (P can be expressed as 


(3.20)
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(3.21) 
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The mean density is given by


(3.22)   
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                                                    which, with the help of foregoing equation (3.21)


can be re-written as


 (3.23)      
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Equations (3.6) and (3.21) enable us to write 
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This shows that we cannot express 
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 for n=0 and n=-1. Further, we find that when n=-1, 
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 is indeterminate (eqn. (2.6)). The pressure distribution in the immediate neighborhood of the center is given by solution for n tending to minus (eqns (2.9)) and the density distribution is given by the solution for n tending to zero (eqn. (2.10))

4. Implications and Advantages of the Present Approach

 
As another example of the application of this modern developed and efficient technique, it is suggested that one should at least refer to the Sharma’s recent contributions which include the study of (i) thermodynamical equilibrium of stars clusters embedded in an isothermal configuration 25, (ii) relativistic stellar structures and X-ray transients in Ni’s theory of gravity31 , (iii) very massive stellar models in Ni’s theory of gravity32  (iv) general relativistic neutron stars33 


Till quite recently, Tiwari and Shalini in their dissertations have studied the problems related with structural features of plane- symmetric configurations 34  , neutron stars, nebulae, etc, which are fundamentally based on the applications of polytropic theory and Pade`(2,2) approximation technique. She applies Pade` (2, 2) approximation technique to the Lane Emden equation (LEE) of index 1.5 in (
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in simple, compact and rational form analogous to the equation (3.12). Values of some important physical quantities, such as, 
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 pressure P) and potential energy have been tabulated showing the physical characteristics of the spherically symmetric nebulae. She further describes the basic physical parameters; the radius R, the mass radius (M-R) relation, the central condensatation 
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  [eqn. (3.16)] .Most importantly, she obtains the         geometrical size 
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=5.99071 which would have otherwise been a very difficult task by using known standard numerical methods


The main advantages of the present technique are:


(i) It offers a reasonable approximation to the solution, (ii) it is suitable for the use on small computer program, (iii) physical quantities can be numerically evaluated with the help of an electronic pocket calculator even without use of computer program , and, if however the latter is used, it consumes minimum time, hence it is economical too over previously known  methods, (iv) the geometrical size [eqn. (3.15)] of  the configuration is immediately determined from equation (3.12) which , obviously, avoids lengthy and cumbersome process of numerical integrations, and ,  (v) it can be readily applied to the interdisciplinary  research areas (agricultural or pure engineering, biomathematical modellings, environmental and biological systems which may quite often involve complicated forms of linear or non-linear differential equation


5. Astrophysical Applications


 Eddington2, Stoner36 Kothari37,38 Srivastava10, the authors12,15,16 and many others used the results of a sphere of  uniform  density to  study  the  minimal  problems of stars  , and other problems19-35 of congnate interest ,   using Pade `(2,2) approximation technique, for example, search of magnetic field in solar convection envelope39 (in which solution of MHD flow equations could be indicative of the occurrence of differential rotation or uniform rotation), pulsation in subdwarf B stars 40-42 (which determine the internal chemical structure, rotational properties, etc.) and the cluster Abell 1367 system 43 (this would provide information about the star formation, chemical evolutionary processes , etc


6. Conclusions


1. An unified analytic study of the nucleus of polytropes N=0  (plane-symmetric), N=1(cylindrical), and N=2 (spherical) has been made following the concept of a sphere of uniform density defined by the polytropic index n tending to zero (n(() and minus one (n((((.


2. A unique, explicit solution for n tending to minus one for N=0, 1 and 2 configurations which govern the center of polytrope, is given by equation (3.1). Equations (3.2), (3.3) and (3.4) represent, respectively, the solutions for n tending to zero for N=0, 1 and 2 configurations.   


3. The extents of the immediate neighborhood of the center to which the solution (3.1) is valid are given by equations (3.8), (3.9) and (3.10), respectively, for N=0, 1 and 2 configurations.


4. Using Pade` (2, 2) approximation technique the geometrical size 
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 of N=2 configuration has been determined, and is given by 
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=3.867989962 (((4/3), 3.3960114844 (((5/3) and 3.201230031 (((2).


5. The present analytical Technique is useful for very short computer program, and the physical quantities of interest can be numerically calculated with the help of an electronic pocket calculator even without the use of computer. It can be applied to interdisciplinary field of researches which might involve complicated types of linear or non linear differential equation


6. Unlike Harrison and Lake11, it is found that the homology invariant variables have an important role in the study of nucleus of polytropes.  
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