
ISSN 0974 - 9373 
 
Vol. 18 No.4 (2014)           Journal of International Academy of Physical Sciences      pp. 325- 346 
 

 
 

 

 
Thermal Instability of Compressible and Rotating 

Viscoelastic Rivlin-Ericksen Fluid Permeated 
 with Suspended Particles Saturating Porous 

 Media in Hydromagnetics 
 

Veena Sharma, Priti Bala and Sumit Gupta  
Department of Mathematics and Statistics  

Himachal Pradesh University Summer Hill, Shimla -171 005 (India)  
E-mail: veena_math_hpu@yahoo.com  

 
Abhishek Sharma 

Department of Civil Engineering  
Bahra University Waknaghat, Solan (India) 

 
 

(Received November 25, 2014) 
 
  

Abstract: This paper deals with the instability of the plane interface 
between two uniform, superposed, electrically conducting and counter-
streaming viscoelastic fluids saturating porous media in the presence of 
horizontal magnetic field. The rheology of the viscoelastic fluid is 
described by Walters’ (modelB′ ). The effects of medium porosity, 
surface tension and square of the Alfvén velocity, on the growth rate 
(both the real and the imaginary) of the most unstable mode have been 
investigated numerically. In the absence of surface tension, perturbations 
transverse to the direction of streaming are found to be unaffected by the 
presence of streaming if the perturbations in the direction of streaming 
are ignored. For perturbations in all other directions, there exists 
instability for a certain wave number range. The simultaneous presence 
of the magnetic field and the surface tension are able to suppress this 
Kelvin-Helmholtz instability for small wavelength perturbations and the 
medium porosity has critical strength to suppress the instability on the 
real growth rates of the most unstable mode. However, in case of 
imaginary growth rates of the most unstable modes remain uninfluenced 
by the increase in surface tension, the square of the Alfvén velocity and 
medium porosity. All these results have been computed numerically and 
depicted graphically. 
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A detailed account of the onset of thermal instability (B nard 
convection) of a Newtonian fluid, under varying assumptions of 
hydrodynamics and hydromagnetics have been given by Chandrasekhar1. 
Motivation for the study of certain effects of particles immersed in the fluid 
such as: particle heat capacity, particle mass fraction and thermal force is 
due to the fact that the knowledge concerning fluid particle mixture is not 
commensurate with their industrial and scientific importance. Further 
motivation is provided by recalling decades-old concentration between the 
theory for the onset of convection and experiment. The theory agrees with 
experimental determinations of the onset of convection in liquid layers 
confined between two horizontal rigid surfaces. Chandra2 observed a 
contradiction between the theory and his experiments for the onset of 
convection in fluids heated from below. He performed his experiment in an 
air layer and found that the instability depended on the depth of the layer. A 
Bénard type cellular convection with fluid descending at the cell centre was 
observed when the predicted gradients were imposed, for layers deeper than 
10mm. A convection which was different in character from that in deeper 
layer occurred at much lower gradients than predicted if the layer depth was 
less than 7mm and Chandra called this motion columnar instability. He 
added an aerosol to mark the flow pattern. A complete survey of subsequent 
experimental studies, which confirms Chandra’s result, can be found in 
report by Jones3 on effect of different aerosols on stability. Those effects 
which he felt may be important are thermal forces, electrostatic charges, 
evaporation condensation and buoyancy forces. Jones concluded that 
columnar instability is not an example of simple phase natural convection 
and that it is moist likely due to the unique properties of aerosol 
suspensions. There has been no analysis to determine the effect of the 
aerosol itself on stability and experiments have shown effects to be 
important. 

 

Theoretically, discussions of columnar instability have given by Sutton4 
and Segel and Stuart5. Motivated by interest in fluid particles mixtures 
generally and columnar instability in particular, Scanlon and Segel6 
investigated some of the continuum effects of particles on Benard 
convection. They have found that the critical Rayleigh number was reduced 
solely because the heat capacity of pure gas was supplemented by that of the 
particles. The effect of suspended particles was found to destabilize the 
layer, i.e. to lower the critical temperature gradient. Sharma and Rani7 have 
studied the double-diffusive convection with fine dust and have found that 
the suspended particles (fine dust) have destabilizing influence on the 
system.  
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Lapwood8 has studied the convective flow in a porous medium using 
linearized stability theory. The Rayleigh instability of a thermal boundary 
layer in flow through a porous medium has been considered by Wooding9. 
Scanlon and Segel6 have considered the effect of suspended particles on the 
onset of Bénard convection and found that the critical Rayleigh number was 
reduced solely because the heat capacity of the pure gas was supplemented 
by that of the particles. The suspended particles were thus found to 
destabilize the layer. Sharma10 has studied the effect of rotation on thermal 
instability of a viscoelastic fluid. Sharma11 studied the thermal instability in 
compressible fluids in the presence of rotation and magnetic field. 

 

There are many elastico-viscous fluids that cannot be characterized by 
Maxwell’s constitutive relations or Oldroyd’s constitutive relations or 
Walters’ (modelB′ ) constitutive equations. One such class of fluids is 
Rivlin-Ericksen elastico-viscous fluids we are interested therein. Rivlin and 
Ericksen12 have proposed a theoretical model for such elastic-viscous fluids. 
Such and other class of polymers are used in the manufacture of parts of 
space-crafts, aeroplanes, tires, belt conveyers, ropes, cushions, foam, 
plastics, engineering equipments etc. Recently, polymers are used in 
agriculture, communication appliances and biomedical applications. 

 

The fluid is often not pure but contains suspended particles. On the other 
hand, the multiphase fluid systems are concerned with the motions of a 
liquid or gas containing immiscible inert identical particles. Of all 
multiphase fluid systems observed in nature, blood flow in arteries, flow in 
rocket tubes, moment of inert solid particles in atmosphere, sand or other 
particles in sea or ocean beaches are the most common examples of 
multiphase fluid systems. 

 

When the fluids are compressible, the equations governing the system 
become quite complicated. Spiegel and Veronis13 simplified the set of 
equations governing the flow of compressible fluids under the assumption 
that the depth of the fluid layer is much smaller than the scale height as 
defined by them, and the motions of infinitesimal amplitude are considered. 
The Boussinesq approximation can be best summarized by two statements: 

 
 

(1) The fluctuations in density which appear with the advent of motion 
result principally from thermal effects. 

 

(2) In the equations for the rate of change of momentum and mass, 
density variation may be neglected except when they are coupled to 
the gravitational acceleration in the buoyancy force. 

 
 

The flow of a fluid through a homogeneous and isotropic porous 
medium is governed by Darcy’s law which states that the usual viscous and 



 
328                       Veena Sharma, Priti Bala Sumit Gupta and Abhishek Sharma 
 
 
 
 

viscoelastic terms in the equations of motion of Rivlin-Ericksen fluid is 

replaced by the resistance term '

1

1
q

k t
µ µ

 ∂ − +  ∂  
, where µ  and 'µ are the 

viscosity and viscoelasticity of the incompressible Rivlin-Ericksen fluid, 1k  
is the medium permeability and q  is the Darcian (filter) velocity of the 
fluid. 

 
 

Moreover, the rotation of the Earth distorts the boundaries of a 
hexagonal convection cell in a fluid through a porous medium and the 
distortion plays an important role in the extraction of energy in the 
geothermal regions. The problem of thermal instability of a fluid in a porous 
medium is of importance in geophysics, soil sciences, ground water 
hydrology and astrophysics. The scientific importance of the field has also 
increased because hydrothermal circulation is the dominant heat transfer 
mechanism in the development of young oceanic crust [Lister14]. 
 

Magnetic field plays important roles in astrophysical situation, chemical 
engineering etc. Sharma10 have studied the effect suspended particles on the 
onset of Bénard convection in hydromagnetics and have found that the 
magnetic field has an inhibiting effect on the onset of Bénard convection, 
whereas the influence of the suspended particles is to destabilize the layer. 
Another application of the result of flow through a porous medium in the 
presence of magnetic field is in the geothermal region.  Also, the rotation of 
the earth distorts the boundaries of a hexagonal convection cell in a fluid 
through a porous medium and the distortion plays an important role in the 
extraction of energy in the geothermal regions. Rana and Kumar15 have 
studied the incompressible Rivlin-Ericksen rotating fluid permeated with 
suspended particles and variable gravity field in porous medium. 

 
 

Keeping in mind the importance and applications of uniform magnetic 
field, the present paper deals with the effect of uniform vertical magnetic 
field on the thermal instability of compressible and rotating viscoelastic 
Rivlin-Ericksen fluids permeated with suspended particles saturating 
homogeneous porous media. The present problem also finds its usefulness 
in thermal instability of such electrically conducting colloidal suspensions in 
the presence of magnetic field especially in ground water hydrology and 
astrophysics (interstellar atmospheres).  

 
2. Formulation of the Problem and Perturbation Equations 

 

An infinite horizontal layer of compressible, electrically conducting 
Rivlin-Ericksen viscoelastic fluid layer of thickness d  permeated with 
suspended particles is considered bounded by the planes 0z=  and z d=  in an 
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isotropic and homogeneous medium of porosity ε  and medium 
permeability 1k . This layer is heated from below so that, a uniform 
temperature gradient ( | / |)dt dzβ = is maintained. The fluid-particle is acted on 
by a uniform vertical rotation (0,0, )Ω= Ω , a gravity force (0,0, )g g= −  and a 
uniform vertical magnetic field (0,0, )H H= − . The equations of motion and 
continuity governing the flow, using Boussinesq approximation are 

 

(1)  '

1

1 1 1
( . ) 1 ( )

4
eq

q q p g q H H
t k t

µδ ρ ν ν
ε ρ ρ π ρ

 ∂ ∂   + ∇ = ∇ − + − + + ∇× ×    ∂ ∂    
  

   
' 2

( ) ( )d

K N
q q q

ρε ε
+ − + ×Ω  , 

 
 

 (2)  . 0q∇ = .  
 

where , , , , ( , ), ( , ),dp T q q x t N x tρ ν and 'ν denote fluid pressure, density, 
temperature, filter (seepage) of fluid velocity (initially zero), suspended 
particles velocity, suspended particles number density, kinematic viscosity 
and kinematic viscoelasticity, respectively. ' '6K π µη= , 'η  being particle 
radius, is the Stoke’s drag coefficient. Assuming uniform particle size, 
spherical shape and small relative velocities between the fluid and particles, 
the presence of particles adds an extra force term in the equations of motion 
(1), proportional to the velocity difference between the particles and the 
fluid. Since the force exerted by the fluid on the particles is equal and 
opposite to that exerted by the particles on the fluid, there must be an extra 
force term, equal in magnitude but opposite in sign, in the equations of 
motion for the particles. The effects due to pressure, gravity, Darcy's force 
and magnetic field on the particles are small and so are ignored. 
 

If mN  is the mass of particles per unit volume, then the equations of 
motion and continuity for the particles, under the above assumptions, are 

 

(3)   '1
( . ) ( )d

d d d

q
mN q q K N q q

t ε
∂ + ∇ = − ∂ 

,    

 

(4)    .( ) 0d

N
Nq

t
ε ∂ +∇ = ∂ 

.    

 

If , ,v ptc c T  and 'q  denote the heat capacity of fluid at constant volume, 

heat capacity of the particles, temperature and thermal conductivity of the 
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viscoelastic fluid, respectively and assuming that the particles and the fluid 
are in thermal equilibrium, then the  equation of heat conduction gives 

 

(5)   [ ]0 0(1 ) ( . ) .s s pt d

T
c c c q T mNc q T

t tυ υρ ε ρ ε ρ ε∂ ∂ + − + ∇ + + ∇ ∂ ∂ 
 

 

' 2q T= ∇ .  
  
The Maxwell’s equations yield 
 

(6)   2( . )
H

H q H
t

ε εη∂ = ∇ + ∇
∂

,   

 
 

(7)   . 0H∇ = ,   
 

where η  is the electrical resistivity. 
 

The equation of state for the fluid is 
 
 

(8)   0 0[1 ( )]T Tρ ρ α= − − , 
 
 

where 0 0,Tρ  and α are the density, temperature  and the coefficient of 
thermal expansion; the subscript zero refers to values at the reference level 

0z= . The kinematic viscosity v , kinematic viscoelasticity v′ , electrical 
resistivity η and coefficient of thermal expansion α are all assumed to be 
constants. The initial stationary state of the system is taken to be quiescent 
layer (no settling) with a uniform particle distribution 0N  and is therefore, a 
state in which the velocity, particle velocity, temperature, density, pressure 
and particle number density at a point in the fluid are given by  
 
 
 

(9)   0 0(0,0,0), (0,0,0), , (1 ),dq q T T z zβ ρ ρ αβ= = = − = +  
 
 

 

2

0 0 0,
z

p p g z N N
z

α βρ  
= − + = 

 
(constant). 

 

 

The character of the equilibrium of this stationary state can be 
determined by disturbing the system slightly and then, following its further 
evolution. Let ( , , ), ( , , ), , , ,dq u v w q l r s p Nδρ δ θ  and ( , , )x y zh h h h  denote the 

perturbations in fluid velocity (zero initially), particle velocity (zero 
initially), density ( )zρ , pressure ( )p z , temperature T , number density 0N  
and vertical magnetic field (0,0, )H H= respectively. 
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The change in density pδ  caused mainly by the perturbation θ  in 
temperature is given by 

 
 
 

(10)  0δρ αρ θ=− .  
 

Using the linear theory by neglecting the products and higher order of 
perturbations; retaining only linear terms and Boussinesq approximation, the 
equations (1)-(7) in the linearized perturbation form become 
 
 

(11)  '

0 1

1 1 1q
p g q

t k t
δ αθ υ υ

ε ρ
∂ ∂ = ∇ − − + ∂ ∂ 

 
 

        
'

0

0 0

2
( ) ( ) ( )

4
e

d

K N
h H q q q

µ
πρ ρ ε

+ ∇× × + − + ×Ω ,  

 
 
 

(12)  . 0q∇ = , 
 

(13)  2( ) ( )
p

g
E h w hs

t c

θε β κ θ
 ∂+ = − − + ∇  ∂  

, 

 

(14)  2( . )
h

H h
t

ε υ εη∂ = ∇ + ∇
∂

,   

 

(15)  . 0h∇ = ,  
 

(16)  '
0 0( )d

d

q
mN K N q q

t

∂ = −
∂

, 

 

where 0(1 ) /s s fE c cε ε ρ ρ= + −  is a constant. s scρ  and 0, fcρ  stand for density 

and specific heat of solid (porous matrix) material and fluid, respectively. 
  

   
0 0

, ,pt

f f

c mN q
h f f

c c
κ

ρ ρ
= = = . 

 
 

Eliminating z -component of particle velocity i.e., s  from equations (13) 
and (16), we obtain 
 

(17)  2
'

1 ( ) 1
p

m g m
E h h w

K t t c K t
ε κ θ β

 ∂ ∂ ∂     + + − ∇ = − + +       ∂ ∂ ∂      
. 

 
 

Applying the curl operator twice to equation (11), we get 
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(18)   
'

2 0
' '' '

0

1 2
1 1

K Nm m w m
H

K t t K t z z K t

ζ ξη ζ ζ
ε ε ερ

∂ ∂ ∂ ∂ Ω ∂ ∂      + = + ∇ + + +      ∂ ∂ ∂ ∂ ∂ ∂      
, 

 
 

and 
 

(19) 
2 2 2

20
' '' 2 2

0 1

1
1 1

m w m
g w

K t t K t x y k

δρ υ
ε ρ

   ∂ ∂∇ ∂ ∂ ∂   + = + + − − ∇      ∂ ∂ ∂ ∂ ∂       
 

 

2 0
'

0 0

2
,

4
e

z

H K N m
h

z x K t

µξ ζ
ε π ρ ερ
Ω ∂ ∂ ∂  − + ∇  ∂ ∂ ∂  

 

 
 

where ξ  and ζ  are the z-component of vorticity and the current density, 
respectively. Eliminating , , , ,d x yq u v h h  and pδ  from equations (11)-(16) 

and after a little algebra, we obtain 
 

(20)   ( )' 2 ' 2
0 0'' ''

1

1 / 1
m m

mN K w w
t K t K t k t

ερ υ υ
∂ ∂ ∂ ∂     + + ∇ + + + ∇    ∂ ∂ ∂ ∂     

 

 
 

22 2

2 2
0

( )
2 0

4
e zH h

g
x y x z

µ εθ θ ξε α
π ρ

  ∂ ∇∂ ∂ ∂ − + − + Ω =  ∂ ∂ ∂ ∂  
. 

 
 

The z -component of equation (14) yields  
 

(21)  2 .z

w
h H

t z
ε η∂ ∂ − ∇ = ∂ ∂ 

  

 

Since the fluid under consideration is confined between two horizontal 
planes    0z=  and z d= , the fluid quantities must satisfy certain boundary 
conditions. Further, because the bounding surfaces are fixed and are 
maintained at fixed temperature, we must have 
 
 

(22)  0w θ= =  at 0z=  and z d= .    
 

The boundary conditions (22) are independent of the nature of the surfaces. 
Let’s take the boundaries as free surfaces, though little artificial. It is the 
most appropriate to find the exact solutions for stellar atmospheres; on 
which tangential stresses do not act, i.e. 
 
 

 

(23)  0xz y zT T= =  ,   
 

where i jT  denote the stress tensor acting in the direction of jx  per unit area 

on the element to surface normal to ix . The conditions (23) are equivalent to  
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(24)  0xz

u w
T

z x
µ ∂ ∂ = + = ∂ ∂ 

,  
 

and  
 

(25)  0y z

v w
T

z y
µ  ∂ ∂= + = ∂ ∂ 

.  

 

Now, as w  vanishes for all x  and y  on the boundaries, it follows from 
equation (24) and (25) that 
 
 

(26 )  0
u v

z z

∂ ∂= =
∂ ∂

.  

 

Differentiating equation (12) with respect to z  and using (26), implies 
 

 

(27)  
2

2
0

w

z

∂ =
∂

.      

 

Since medium adjoining the fluid is a perfect conductor, 
 
 

 

(28)  0zh

z

∂ =
∂

.       
 

Thus the boundary conditions appropriate to the problem are  
 

 

(29)  
2

2
0zhw

w
z z

θ∂∂= = = =
∂ ∂

 at 0z=  and z d= .   

 
 

 
 

3. Dispersion Relation 
 

Now an arbitrary perturbation is analyzed into a complete set of normal 
modes and then the stability of these modes is examined individually. For 
the system of equations (17)-(21), analysis can be made in terms of two-
dimensional periodic waves of assigned wave number. Thus we ascribe all 
the quantities describing the perturbation dependence on , ,x y z  and t   of 
the form 
 

(30)   [ ] [ ] ( ), , , , ( ), ( ), ( ), ( ), ( ) expz x yw h W z z Z z X x K z ik x ik y ntθ ξ ζ = Θ + + ,  
 

 where xk  and yk  are wave numbers along x and y  directions respectively, 
2 2 1/2( )x yk k k= + is the resultant wave number of the disturbances and n  is the 

growth rate, which is in general a complex constant.  
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Using expression (30), equations (17) - (21) in the non-dimensional form  
 

Become 
 

(31) 2 2 2 2 2 2

1 0

(1 )
( ) 1 ( ) ( )

1 4
e

l

Hdf F
D a D a W D a DK

p p v

µσ σ
ε στ πρ
   −− + − − − −  +  

 

2 3
29 2

0
d d

a DZ
v v

α θ
ε

Ω+ + = ,  

 

(32)  2 2

1 0

(1 ) 2
( ) 1

1 4
e

l

HdF f d
D a Z DX Dw

p p v v

µσ σ
στ π ρ ε

  − Ω− − + = +  +  
,  

 

(33)  2 2
2( )

Hd
D a p K DWσ

εη
 

− − = − 
 

,     

 

(34)  2 2
2( )

Hd
D a p X DZσ

εη
 

− − = −  
 

,     

 

(35)  
2

2 2
1 1 1 1

( 1)
(1 ) ( ) ( )

d G
p D a Ep H p W

G

βστ σ στ
κ

−+ − − Θ= − + ,     

 

where 2
1, , /a k d nd p vσ κ= = = is the thermal Prandtl number,  2 ( / )p v η=  is the 

magnetic Prandtl number,  ' 2/F v d=  is the dimensionless kinematic 

viscoelasticity, /pG c gβ= is the dimensionless compressibility, 2
1/lp k d=  is 

the dimensionless medium permeability, 0 0 0 0/ , /pt vh mN c c f mNρ ρ= = , 
2/m kdτ κ= . We have expressed the coordinators , ,x y z  in new units of 

length d , time t  in the new unit of length 2/d κ and let 1 1 ,H h= +  
2

1 / , / , / , /v d x x d y y d z z dτ τ ∗ ∗ ∗= = = =  and /d d dz∗= . Stars have been omitted 
hereafter, for convenience. 
 

The appropriate boundary conditions (29) using the expression (30), for 
which equations (31) - (35) must be solved, transform to  

 
 

(36)     2 0, 0, 0, 0, 0W D W DZ DX K= = = Θ = = =  at 0z =  and 1z = .      
    

 

Applying the operator   

     2 2 2 2 2 2 2
1 2

1

(1 )
( )( ) ( ) 1

1l

F f
D a Ep D a p D a

p p

σσ σ σ
στ

  −− − − − − − +  +  
 

 

 to equation (31) and then eliminating , ,Z XΘ  and K  by using equations 
(31) - (35), we obtain  
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(37)   
2 2

2 2 2 2 2
2 2

1 2

(1 ) ( )
( ) 1 ( )

1 ( )l

f F Q D a
D a D a W D W

p p D a p

σ σ
ε στ σ
   − −− + − − +  + − −  

 

    

   

1
2

2 2 2
2 2

1 2

(1 )
( ) 1

1 ( )A
l

p f D
T D a Q D W

p p D a p

σ σ
στ σ

−
  −+ − − + +  + − −  

 

 

 2 1 1
2 2

1 1

1
0

(1 )( )

H pG
Ra W

G p D a E p

στ
στ σ

   +−− =   + − −   
, 

 

where 
2 2

04
e H d

Q
v

µ
π ρ η

= is the Chandrasekhar number and 
4g d

R
v

α β
κ

= is the  
 

Rayleigh number. 
 
 

Making use of boundary conditions (36) in equation (31), we obtain 
 

 
(38)    4 0D W =  at 0z=  and 1z = .    
 

 

Differentiating equations (31) respectively w.r.t z , using the boundary 
conditions (38), it can be shown that all even order derivatives of W must 
vanish for  0z=  and 1z =  and hence, the proper solution of  W characterizing 
the lowest mode is  
 
(39)    0 sinW W zπ= ,       
 
where  0W  is a constant. 
 

Substituting this solution in equation (36), required charactestic equation is 
 

 

(40) 
2

1 1

1

1
(1 ) 1

1

i i Ff
x W

ip p

σ π σ
ε στ

  −+ + +  +  
  

 

2
1 1 1

1 12 2
1 1 2

1 (1 )

(1 )(1 ) (1 )

H i pG x
R x W Q W

G i p x i p x ip

π σ τ
π στ π σ σ

 +− + − −   + + + + +  
 

 
1

2
1 1 1

2 2
1 1 2 1

1
1 0

1 (1 )A

i F i Qf
T W

p i p x i p

π σ σ
ε π σ τ π σ

−
  −+ − + + =  + + +  

,   

where    
1

2
2

1 1 12 4 2 2 2
, , , , , .A

A l

TQ R a
Q R T i x P P

σσ π
π π π π π

= = = = = =  
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4. Stability of the System and Oscillatory Modes 
 

Here we examine the possibility of oscillatory modes, if any, on the 
Rivlin-Ericksen elastico-viscous fluid due to the presence of suspended 
particles, compressibility, viscoelasticity, medium permeability, rotation and 
magnetic field. Multiplying equation (31) by *W (the complex conjugate of 
W and integrating over the vertical range ofand using equations (32)-(35) 
together with the boundary conditions (36), we get  
 
 

(41) *
1 2 3 2 4*

1 0

(1 )
1 ( )

1 4
e

l

f F
I I I p I

p p v

µ εησ σ σ
ε σ τ π ρ
  −+ + − + + 

 

 

    
*2 *

* 21
5 1 6 7*

1 1

(1 ) (1 )

1 ( ) l

pg a G F
I Ep I d I

v G H p P

σ τακ σσ
β σ τ

+ +   − + +    − +  
 

 

2
* *

8 9 2 10*
1 0

1 0
1 4

e df
I I p I

p v

µ εησ σ
σ τ π ρ

 
 + + + + =   +  

,        

 

where 
1 1

2 2 2 2 2 2 2 4 2
1 2

0 0

(| | | | ) , (| | 2 | | | | ) ,I DW a W dz I D W a DW a W dz= + = + +∫ ∫      

 

1 1
2 2 2 2 4 2 2 2 2

3 4

0 0

(| | 2 | | | | ) , (| | | | ) ,I D K a DK a K dz I DK a K dz= + + = +∫ ∫   

 

1 1 1
2 2 2 2 2 2 2

5 6 7

0 0 0

(| | | | ) , | | , (| | | | ) ,I D a dz I dz I DZ a Z dz= Θ + Θ = Θ = +∫ ∫ ∫  

 

1 1 1
2 2 2 2 2

8 9 10

0 0 0

| | , (| | | | ) , | |I Z dz I DX a X dz I X dz= = + =∫ ∫ ∫ . 

 

The integrals1 10I I− are all positive definite. Putting *
iiσ σ=  in the imaginary 

part of equation (41), we obtain 
 

(42)  1 2 2 42 2
1 0

1
1

1 4
e

i
i l

f F
I I p I

p p v

µ εησ
ε σ τ π ρ
  

+ + −  +  
 

    
 

2 2 22
1 5 1 1 1 1 6

2 2 2
1 1

( 1) ( )

1
i

i

H I H p H p Ig a G

v G H p

τ σ τακ
β σ τ

− + −  − + 
 

 
 

2
2 *

7 9 2 102 2
1 0

1 0
1 4

e

l i

dF f
d I I p I

p p v

µ εησ
σ τ π ρ

   
+ + + + =  +    

. 
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Equation (42) implies that iσ  may be zero or non-zero, which means that the 
modes may be non-oscillatory or oscillatory. In the absence of magnetic 
field and suspended particles, equation (42) reduces to 
 

(43) 2 *
1 2 7 82 2 2 2

1 1

1
1 1 0

1 1i
i l l i

f F F f
I I d I I

p p p p
σ σ

ε σ τ σ τ

     + + + + + =     + +       
. 

 

The term inside the bracket is positive definite. Thus 0iσ = , which means 
that oscillatory modes are not allowed and the principle of exchange of 
stabilities is valid. The magnetic field and suspended particles introduce 
oscillatory modes into the systems which were non-existent in their absence.  

  
5. The Stationary Convection 

 

When the instability sets in as stationary convection, the marginal state 
will be characterized by1 0σ = . Putting 1 0σ = , equation (40) reduces to 
 

(44) 
2

1 1 2
1 1

1 (1 ) (1 )

1 (1 )A

G x x P x
R Q T

G xH P x PQ

    + + + = + +     − + +      
, 

 
which expresses the modified Rayleigh number 1R  as a function of 
dimensionless wave number x  and the parameters 1 1, , ,G H Q P  and 

1AT . 

The cases 1G <  and 1G=  are irrelevant here as they correspond to negative 
and infinite values of critical Rayleigh numbers in the presence of 
compressibility. The viscoelastic parameter F vanishes with1σ and therefore, 
the visco-elastic Rivlin-Ericksen fluid behaves like an ordinary Newtonian 
fluid.  
In the absence of magnetic field, the equation (44) reduces to 
 

(45)  
2

1
1

1 (1 )
.

1 (1 )A

G x x P
R T

G xH P x

    + + = +     − +      
                     

 
To study the effects of suspended particles, magnetic field, rotation, 

medium permeability and compressibility on the system, we examine the 
nature of

11 1 1 1 1 1/ , / , / , /AdR dH dR dQ dR dT dR dP  and 1/dR dG  analytically. 

Equation (44) yields 
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(46)   
1

2
1

12 2
1 1 1

1 (1 ) (1 )

1 (1 )A

dR G x x P x
Q T

dH G xH P x PQ

    + + + = − + +     − + +      
, 

 

the negative sign implies that, for a stationary convection, the suspended 
particles have destabilizing effect on the system.  
Equation (44) depicts that 
 

(47)   
1

2
1

2 2
1 1 1

1 (1 )
1

1 (1 )A

dR G x P x
T

dQ G xH x PQ

    + + = −     − + +      
,   

 

which shows that magnetic field has stabilizing effect in the absence of 
rotation.  
 

In the presence of rotation, magnetic field will have a destabilizing effect 

if
1

2
1

2

(1 )

(1 )A

x PQ
T

P x

+ +>
+

, and stabilizing effect if 
1

2
1

2

(1 )

(1 )A

x PQ
T

P x

+ +<
+

. 

 

To study the effect of rotation, we examine the nature of
11/ AdR dT . From 

equation (44), we obtain   
 

(48)  
1

1
2

1 1

1 (1 )

1 (1 )A

dR G x P x

dT G xH x PQ

    + + =      − + +      
.    

 

For analyzing the effect of permeability, we examine the nature of 1dR

dP
. 

Equation (44) yields 
 

(49)  
1

2 2
1

2 2 2
1 1

1 (1 ) (1 )
1

1 (1 )A

dR G x P x
T

dP P G xH x PQ

  + + = − −   − + +    
.   

 

It is clear from equation (48) that, for stationary convection, the medium 
permeability has destabilizing effect on the system in the absence of 
rotation.  

In the presence of rotation, it has stabilizing effect if 
1

2
1

2

(1 )

(1 )A

x PQ
T

P x

+ +>
+

 and 

destabilizing effect if 
1

2
1

2

(1 )

(1 )A

x PQ
T

P x

+ +<
+

. 

Equation (44) also yields 
 

(50)  
1

2 2
1

12 2 2
1 1

1 1 (1 ) (1 )

( 1) (1 )A

dR x x P x
Q T

dG G xH P x PQ

    + + += − + +    − + +    
, 
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which is always negative implying thereby the destabilizing effect of 
compressibility on the system. 
 

 

It is not feasible to find the critical non-dimensional wave numbers from 
the dispersion relation given by equation (44). Therefore, to find the critical 
thermal Rayleigh number in the presence of parameters 1 1, , ,G H Q P and

1AT , 

equation (44) has been examined numerically using the software 
Mathematica version 5.2. 

 
 

6. Numerical Results and Discussion 
 
 

We have plotted the variation of Rayleigh number  for  stationary 
convection with respect to wave number using equation (44), for fixed 
permissible values of the dimensionless parameters 

1
10, 30,AG T= =  

1 30, 0.2, 0.5Q P ε= = =  and 1 1.01H = . These are the permissible values for 
the respective parameters and are in good agreement with the corresponding 
values used by Chandrasekhar1 and many authors while discussing various 
hydrodynamic and hydromagnetic stability problems. 
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Figure 1:  The variation of Rayleigh number 1R  with wave number x  for three values  

            of suspended particles  1 1.01, 1.05, 1.1H =  for fixed permissible values of  

    other parameters 
1 110, 30, 30, 0.2, 0.5AG T Q P ε= = = = = . 
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Figure 2: The variation of Rayleigh number 1R  with wave number x  for three values  

    of suspended particles 1 1.01, 1.05, 1.1H =  for fixed permissible values of other      

parameters
1

10, 30, 0.2, 0.5AG T P ε= = = = in the absence of magnetic field. 
 

Figures 1 and 2 correspond to three values of the suspended particles          

1 1.01, 1.05, 1.1H = , in the presence and absence of magnetic field, 
respectively. The graphs show that Rayleigh number decreases with the 
increase in suspended particles for a fixed wave number depicting thereby 
the destabilizing effect on the system. It is also clear from the graphs that 
the critical wavenumber and critical Rayleigh number decrease with the 
increase in suspended particles. 
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Figure 3: The variation of Rayleigh number 1R  with wave number x  for three values of 

magnetic field 1 10, 20, 30Q =  for fixed permissible values of other parameters 

1 110, 30, 1.01, 0.2, 0.5AG T H P ε= = = = = . 
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Figures 3 corresponds to three values of the Chandrasekhar number 

1 10, 20, 30Q =  accounting for magnetic field satisfying the condition 

1

2
1

2

(1 )

(1 )A

x PQ
T

P x

+ +<
+

, respectively. The graph shows that Rayleigh number 

increases with the increase in 1Q for a fixed wave number. The critical wave 
number and critical Rayleigh number also increase with the increase in 1Q . 
Thus magnetic field has large enough stabilizing effect on the system. 
 

Figure 4 corresponds to three values of the Chandrasekhar number 

1 10, 20, 30Q =  accounting for magnetic field satisfying the condition 

1

2
1

2

(1 )

(1 )A

x PQ
T

P x

+ +>
+

, respectively. The graph shows that Rayleigh number 

decreases with the increase in 1Q  for a fixed wave number. The critical 
wave number and critical Rayleigh number also increase with the increase 
in 1Q . Thus magnetic field has destabilizing effect on the system.  
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Figure 4: The variation of Rayleigh number 1R  with wave number x  for three values of 

magnetic field  1 10, 20, 30Q =  for fixed permissible values of other  

parameters 
1 110, 1000, 1.01, 0.2, 0.5AG T H P ε= = = = = . 

 
Figures 5 and 6 correspond to three values of the rotation parameter 

1
10, 20, 30AT = , in the presence and absence of magnetic field, respectively. 

The graphs show that Rayleigh number increases with the increase in 
rotation parameter for a fixed wave number depicting thereby the stabilizing 
effect on the system in the presence of magnetic field as well as in the 
absence of magnetic field. However, the critical wave number and Rayleigh 
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numbers increase with the increase in rotation parameter in the absence of 
magnetic field. 
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Figure 5: The variation of Rayleigh number 1R  with wave number x  for three values of 

rotation parameter  
1

10, 20, 30AT =  for fixed permissible values of 

other parameters 1 110, 30, 1.01, 0.2, 0.5G Q H P ε= = = = = . 
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Figure 6: The variation of Rayleigh number 1R  with wave number x  for three values of 

rotation parameter 
1

10, 20, 30AT =  for fixed permissible values of other parameters 

110, 1.01, 0.2, 0.5G H P ε= = = =  in the absence of magnetic field. 

 
 

Figures 7-9 correspond to three different values of the medium 
permeability parameter 1.5, 2, 2.5P = , in the presence and absence of 
magnetic field respectively. The graph shows that Rayleigh number 
decreases/increases with the increase in medium permeability for a fixed 
wave number depicting thereby the destabilizing / stabilizing effect on the 
system in the presence/absence of magnetic field. In the absence of 
magnetic field, the reverse effect may also occur for large wave numbers, as 
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has been depicted in figure 4, implying thereby that the medium 
permeability has a stabilizing effect on the short wavelengths of the 
perturbations. 
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Figure 7: The variation of Rayleigh number 1R  with wave number x  for three values of 

medium permeability  1.5, 2, 2.5P =  for fixed permissible values of  
other parameters

1 1 110, 30, 30, 1.01, 0.2, 0.5AG T Q H P ε= = = = = = . 
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Figure 8: The variation of Rayleigh number 1R  with wave number x  for three values of 

medium permeability  1.5, 2, 2.5P =  for fixed permissible values of  
other parameters 

1 110, 30, 1.01, 0.2, 0.5AG T H P ε= = = = = . 
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Figure 9: The variation of Rayleigh number 1R  with wave number x  for three values of 

medium permeability  1.5, 2, 2.5P =  for fixed permissible values of  
other parameters  

1 110, 1000, 1.01, 0.2, 0.5AG T H P ε= = = = = . 

 
It is clear from the graphs that the Rayleigh number decreases with the 
increase in medium permeability in the absence of magnetic field satisfying 

the condition  
1
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Figure 10: The variation of Rayleigh number 1R  with wave number x  for three values of 

compressibility parameter  100, 500, 1000G =  for fixed permissible values of  
other parameters

1 1 160, 50, 1.01, 2, 0.5AT Q H P ε= = = = = . 
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Figure 10 corresponds to three values of the compressibility parameter                  
100, 500, 1000G= , respectively. The graph shows that Rayleigh number 

decreases slightly with the increase in the compressibility parameter for a 
fixed wave number depicting thereby very little destabilizing effect of the 
compressibility parameter on the system.  
 

Conclusions 
 
 

The thermal instability of compressible Rivlin-Ericksen elastico-viscous 
rotating fluid permeated with suspended particles saturating porous media in 
the presence of uniform magnetic field has been investigated analytically 
and numerically. The dispersion relation, including the effects of rotation, 
suspended particles, compressibility, medium permeability, magnetic field 
and viscoelasticity on the thermal instability of a Rivlin-Ericksen fluid is 
derived. From the analysis of the results, the principal conclusions drawn 
are as follow:  

 

(i)  For the case of stationary convection, Rivlin-Ericksen elastico-viscous 
fluid behaves like an ordinary Newtonian fluid as elastico-viscous 
parameter F vanishes with 1σ .  

 

(ii)   The effect of compressibility and the suspended particles is to 
destabilize the system, thereby postponing onset of thermal instability.  

 

(iii) Rotation parameter has always stabilizing effect on the system. 
 

(iv)  Magnetic field has stabilizing effect on the system in the absence of 
rotation whereas in the presence of rotation, it has destabilizing effect if 

1

2
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2

(1 )

(1 )A

x PQ
T

P x

+ +>
+

 and stabilizing effect if 
1

2
1

2

(1 )

(1 )A

x PQ
T

P x

+ +<
+

 which is 

supported by figures 3 and 4. 
 

(v)  The medium permeability has always destabilizing effect on the system 
in the absence of rotation whereas in the presence of rotation it has 

stabilizing effect if 
1

2
1

2

(1 )

(1 )A

x PQ
T

P x

+ +<
+

 and destabilizing effect if 

1

2
1

2

(1 )

(1 )A

x PQ
T

P x

+ +>
+

. 

 

(vi)  The presence of rotation, compressibility, medium permeability, 
magnetic field and viscoelasticity introduce oscillatory modes.  
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