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Abstract: This paper deals with the instability of the plangrface
between two uniform, superposed, electrically catidg and counter-
streaming viscoelastic fluids saturating porous iméa the presence of
horizontal magnetic field. The rheology of the wslastic fluid is
described by Walters’ (modBl). The effects of medium porosity,
surface tension and square of the Alfvén velodty,the growth rate
(both the real and the imaginary) of the most Wistanode have been
investigated numerically. In the absence of surfaosion, perturbations
transverse to the direction of streaming are faonoe unaffected by the
presence of streaming if the perturbations in tinection of streaming
are ignored. For perturbations in all other dimus$, there exists
instability for a certain wave number range. Thawtaneous presence
of the magnetic field and the surface tension &e & suppress this
Kelvin-Helmholtz instability for small wavelengttefurbations and the
medium porosity has critical strength to suppréssihstability on the
real growth rates of the most unstable mode. Howewe case of
imaginary growth rates of the most unstable modesain uninfluenced
by the increase in surface tension, the squarkeoftfvén velocity and
medium porosity. All these results have been coeghuumerically and
depicted graphically.

Keywords. Thermal instability, Rivlin-Ericksen fluids, Sumpded
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1. Introduction
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A detailed account of the onset of thermal insibil(Bénard
convection) of a Newtonian fluid, under varying wsptions of
hydrodynamics and hydromagnetics have been givelChgndrasekhar
Motivation for the study of certain effects of pele¢s immersed in the fluid
such as: particle heat capacity, particle masdifra@and thermal force is
due to the fact that the knowledge concerning fladgticle mixture is not
commensurate with their industrial and scientiflfoportance. Further
motivation is provided by recalling decades-old @mtration between the
theory for the onset of convection and experimé&he theory agrees with
experimental determinations of the onset of coneactn liquid layers
confined between two horizontal rigid surfaces. @h& observed a
contradiction between the theory and his experimdot the onset of
convection in fluids heated from below. He perfodnins experiment in an
air layer and found that the instability dependadte depth of the layer. A
Bénard type cellular convection with fluid descerglat the cell centre was
observed when the predicted gradients were impdsethyers deeper than
10mm. A convection which was different in charadtem that in deeper
layer occurred at much lower gradients than predidtthe layer depth was
less than 7mm and Chandra called this motion cotunnstability. He
added an aerosol to mark the flow pattern. A cote@ervey of subsequent
experimental studies, which confirms Chandra’s ltestan be found in
report by Jonéson effect of different aerosols on stability. Thosffects
which he felt may be important are thermal foraglectrostatic charges,
evaporation condensation and buoyancy forces. Jaoesluded that
columnar instability is not an example of simpleaghé natural convection
and that it is moist likely due to the unique pmiies of aerosol
suspensions. There has been no analysis to deteren effect of the
aerosol itself on stability and experiments havewsh effects to be
important.

Theoretically, discussions of columnar instabiligve given by Suttdn
and Segel and StuartMotivated by interest in fluid particles mixtures
generally and columnar instability in particularcalon and Sedel
investigated some of the continuum effects of plsi on Benard
convection. They have found that the critical Reglenumber was reduced
solely because the heat capacity of pure gas wasdesuented by that of the
particles.The effect of suspended particles was found toattdste the
layer, i.e. to lower the critical temperature geadi Sharma and Rdrhiave
studied the double-diffusive convection with finestland have found that
the suspended particles (fine dust) have destadglimfluence on the
system.
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Lapwood has studied the convective flow in a porous medisimg
linearized stability theory. The Rayleigh instalyilof a thermal boundary
layer in flow through a porous medium has been idensd by Woodingy
Scanlon and Seddhave considered the effect of suspended particighe
onset of Bénard convection and found that thecaditRayleigh number was
reduced solely because the heat capacity of the gas was supplemented
by that of the particles. The suspended particlesewthus found to
destabilize the layer. Sharthhas studied the effect of rotation on thermal
instability of a viscoelastic fluid. Sharfiatudied the thermal instability in
compressible fluids in the presence of rotation rmwaginetic field.

There are many elastico-viscous fluids that cartmeotharacterized by
Maxwell's constitutive relations or Oldroyd’s coitstive relations or
Walters’ (modeB') constitutive equations. One such class of fluisls
Rivlin-Ericksen elastico-viscous fluids we are mat&ted therein. Rivlin and
Erickser¥ have proposed a theoretical model for such efageous fluids.
Such and other class of polymers are used in theufaeture of parts of
space-crafts, aeroplanes, tires, belt conveyerpesto cushions, foam,
plastics, engineering equipments etc. Recentlyyrpefts are used in
agriculture, communication appliances and biomedaipplications.

The fluid is often not pure but contains suspenagaticles. On the other
hand, the multiphase fluid systems are concerndll thie motions of a
liquid or gas containing immiscible inert identicglarticles. Of all
multiphase fluid systems observed in nature, blibmd in arteries, flow in
rocket tubes, moment of inert solid particles ima@sphere, sand or other
particles in sea or ocean beaches are the most conmeramples of
multiphase fluid systems.

When the fluids are compressible, the equationsgng the system
become quite complicated. Spiegel and Verdnsamplified the set of
equations governing the flow of compressible fluiggler the assumption
that the depth of the fluid layer is much smalleart the scale height as
defined by them, and the motions of infinitesimapditude are considered.
The Boussinesq approximation can be best summabizédo statements:

(1) The fluctuations in density which appear witle advent of motion
result principally from thermal effects.

(2) In the equations for the rate of change of mutom@ and mass,
density variation may be neglected except when #reycoupled to
the gravitational acceleration in the buoyancydorc

The flow of a fluid through a homogeneous and @utr porous
medium is governed by Darcy’s law which states thatusual viscous and
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viscoelastic terms in the equations of motion ofliRiEricksen fluid is

ot
viscosity and viscoelasticity of the incompressiBiglin-Ericksen fluid, k,

is the medium permeability and is the Darcian (filter) velocity of the
fluid.

Moreover, the rotation of the Earth distorts theurmaries of a
hexagonal convection cell in a fluid through a psranedium and the
distortion plays an important role in the extractiof energy in the
geothermal regions. The problem of thermal insitgiuif a fluid in a porous
medium is of importance in geophysics, soil sciencground water
hydrology and astrophysics. The scientific impocwiof the field has also
increased because hydrothermal circulation is thmidlant heat transfer
mechanism in the development of young oceanic ¢rister].

Magnetic field plays important roles in astrophgsisituation, chemical
engineering etc. SharMdave studied the effect suspended particles on the
onset of Bénard convection in hydromagnetics anee Haund that the
magnetic field has an inhibiting effect on the dnsieBénard convection,
whereas the influence of the suspended particlés destabilize the layer.
Another application of the result of flow throughparous medium in the
presence of magnetic field is in the geothermaibreg Also, the rotation of
the earth distorts the boundaries of a hexagonavexdion cell in a fluid
through a porous medium and the distortion playsrgrortant role in the
extraction of energy in the geothermal regions. &Rand Kumdf have
studied the incompressible Rivlin-Ericksen rotatiihgd permeated with
suspended particles and variable gravity fieldarops medium.

replaced by the resistance t{m?(l—(mp aﬂq, where ¢ and y are the
1

Keeping in mind the importance and applicationsioform magnetic
field, the present paper deals with the effect mfarm vertical magnetic
field on the thermal instability of compressibledarotating viscoelastic
Rivlin-Ericksen fluids permeated with suspended tipl@s saturating
homogeneous porous media. The present problemfiati® its usefulness
in thermal instability of such electrically condungj colloidal suspensions in
the presence of magnetic field especially in growader hydrology and
astrophysics (interstellar atmospheres).

2. Formulation of the Problem and Perturbation Equations

An infinite horizontal layer of compressible, elécally conducting
Rivlin-Ericksen viscoelastic fluid layer of thickee d permeated with
suspended particles is considered bounded by #megt=0 and z=d in an
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isotropic and homogeneous medium of porosity and medium
permeabilitk,. This layer is heated from below so that, a umifor

temperature gradien®(=|dt/dz|)is maintained. The fluid-particle is acted on
by a uniform vertical rotatio@=(0,0,Q), a gravity forceg=(0,0,-g) and a
uniform vertical magnetic field =(0,0-H ). The equations of motion and
continuity governing the flow, using Boussinesqragpmation are

1[ aq 1 op) 1 .aj U
1 = —+(q.0)q |==0p-g| I+—= [-—| v+V — [q+———(OxH )xH
(1) g[at (q )q} ,P g( pJ kl(v v 4ﬂp( xH )x

K'N 2
+E(% —q) +E(qu) ,
(2) 0Og=0.

wherep, 0,T,q,9, (X,t),N (x,t)v andv denote fluid pressure, density,
temperature, filter (seepage) of fluid velocity ifjedly zero), suspended
particles velocity, suspended particles number idlgngnematic viscosity
and kinematic viscoelasticity, respectiveli =6run, n being particle
radius, is the Stoke’s drag coefficient. Assumingfarm particle size,
spherical shape and small relative velocities betwée fluid and particles,
the presence of particles adds an extra force iretine equations of motion
(1), proportional to the velocity difference betwethe particles and the
fluid. Since the force exerted by the fluid on tparticles is equal and
opposite to that exerted by the particles on thil flthere must be an extra
force term, equal in magnitude but opposite in signthe equations of
motion for the particles. The effects due to pressgravity, Darcy's force
and magnetic field on the particles are small andrs ignored.

If mN is the mass of particles per unit volume, thendfaations of
motion and continuity for the particles, under dt®ve assumptions, are

0 ,
(3) mN{a—Ot"%(od-D)od}K N(g-q,),

N _
4) ‘9{E+D.(Nod )}—0.

If ¢.c,.T andq denote the heat capacity of fluid at constant maly
heat capacity of the particles, temperature andrthleconductivity of the
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viscoelastic fluid, respectively and assuming that particles and the fluid
are in thermal equilibrium, then the equation edthconduction gives

(5) [ace+nc (1—8)]%+p09 (@.0)T+mNc,, (8%% DJT
= qOT.
The Maxwell's equations yield

(6) £Z—T=(H.D)q+£/7D2H ,
(7) 0.H=0,

where is the electrical resistivity.

The equation of state for the fluid is

(8) pP=pl-a(T-T,)I,

whereg,, T, and aare the density, temperature and the coefficiegnt o
thermal expansion; the subscript zero refers toesht the reference level
z=0. The kinematic viscosityv, kinematic viscoelasticity/, electrical
resistivity nand coefficient of thermal expansianare all assumed to be
constants. The initial stationary state of the exysts taken to be quiescent
layer (no settling) with a uniform particle diswioon N, and is therefore, a
state in which the velocity, particle velocity, teemature, density, pressure
and particle number density at a point in the fland given by

9) 9=(0,0,0),q,=(0,0,0)T=T,-5z .0=p, tafz )

2
p=n)—gpo[2+a’gzz J N=N,(constant).

The character of the equilibrium of this stationastate can be
determined by disturbing the system slightly anehthfollowing its further
evolution. Let q(u,v,w),q,(,r,s),d0,0p,8,N andh(h,h h,) denote the
perturbations in fluid velocity (zero initially), apticle velocity (zero
initially), densityp(z), pressure(z), temperatureT , number densityN,
and vertical magnetic fielth =(0,0,H )respectively.
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The change in densityp caused mainly by the perturbatiah in
temperature is given by

(10) o=-ap,b .

Using the linear theory by neglecting the produat&l higher order of
perturbations; retaining only linear terms and Bossq approximation, the
equations (1)-(7) in the linearized perturbatiomfdecome

1091 1 .9

11 ——="—T[10p—-gafd— —

(1) et p, Y kl(UJrUan
+He Oxtpert +5 10 (g, ~q)+2(gx),
41, A £

(12) [0.g=0,

(13) (E+h£)%:[,6’—gJ(w—hs)+KD26’,
ot C,

(14) 5% = (H.O)u+enrh,

(15) 0.h=0,
aq .

(16) N E=KN(A-q,),

where E=e+(1-€)p,6. /g, ¢ IS a constantpc and p,c, stand for density
and specific heat of solid (porous matrix) matesiadl fluid, respectively.

Eliminating z-component of particle velocity i.es from equations (13)
and (16), we obtain

m 9 0 _ r7lo=l g9 |(MO
(17) (K—at+1J[(E+h£)a 'qn }H—(,B CJ(K' at+1+hjw_

Applying the curl operator twice to equation (1d/g get
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(18) (m_a +1J1%=(m£+1j[nDZZ+HE+ 2 aw} KN, ( m 9 j{ ,

Kot Jeat \K ot 0z € 9z| ep, \K ot
and
2 2 2
(19) (mg.ﬂJlaD—W:(mgﬂ_j g a_+a_2 —% _£D2W
Kot )& ot K’ ot X oy 0 ) Kk
2000 3y Km0,
& 0z A4mp, 0x &, \K ot

where ¢ and { are the z-component of vorticity and the curreendity,
respectively. Eliminatingg,, u,v, h,,h, and dp from equations (11)-(16)
and after a little algebra, we obtain

(20) ﬂ[ﬂ.LthoK'/po}(uzw){miﬂj E(WQJDZW
ot K at Kot )|k ot
2 2 2
ae{22.99) pat a0
o oy’) 4mp,  Ox 0z

The z-component of equation (14) yields

0 ow
21 &l—-nlCh |=H—.
@) e[§-nn)=n
Since the fluid under consideration is confinedwssin two horizontal
planes z=0 and z=d, the fluid quantities must satisfy certain bourdar
conditions. Further, because the bounding surfaes fixed and are
maintained at fixed temperature, we must have

(22) w=0=¢ atz=0 andz=d.

The boundary conditions (22) are independent oititere of the surfaces.
Let’'s take the boundaries as free surfaces, thdittdgh artificial. It is the
most appropriate to find the exact solutions fallat atmospheres; on
which tangential stresses do not act, i.e.

(23) sz: O:Tyz !

where T, denote the stress tensor acting in the directfow, goer unit area
on the element to surface normalXo The conditions (23) are equivalent to
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odu ow
24 T,=u| —+— | =0,
4) T, ”(az ax)
and

ov ow
25 T =u| —+—|=0.
O

Now, asw vanishes for allx and y on the boundaries, it follows from
equation (24) and (25) that

0z 0z

Differentiating equation (12) with respect toand using (26), implies

o°w_
27 2 2=0.

Since medium adjoining the fluid is a perfect coetdy,

dh
28 2 =0
(28) P

Thus the boundary conditions appropriate to thélera are

2
(29) Wza—w=ﬂ=6=0 at z=0 and z=d .
07 0z

3. Dispersion Relation

Now an arbitrary perturbation is analyzed into anptete set of normal
modes and then the stability of these modes is meathindividually. For
the system of equations (17)-(21), analysis camhbée in terms of two-
dimensional periodic waves of assigned wave numbaus we ascribe all
the quantities describing the perturbation depecelem x,y, z andt of

the form
(30)  [W8.£.¢.h]=[W(2).0@).Z @)X K)K €) extikx+ik y+nt),

wherek, andk, are wave numbers alongand y directions respectively,
k=(ki+k3)"?is the resultant wave number of the disturbancesraiis the
growth rate, which is in general a complex constant
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Using expression (30), equations (17) - (21) inrtbe-dimensional form
Become

(31) (D?- az){g[h J J— A=F9) (- az)}w——”eHd (D*-a?DK
4oV

e\ ltpor n
2 3
+Qa'd 20+ 2Qd DZ=0.
v VE
(32) {—(1_Fa)(D2— a’)-o| 1+ f HZz HHd DX+ 20d Dw,
n I+por 4oV VE
(33) (D*-a’-po)K = —(H—dj DW,
én
(34) (D*-a*-po)X=- (H—dJ DZ,
érn
2 -_—
@) @ ©E-a-epoe=-L- ED wporw,

where a=kd, o=nd?, p=v/«is the thermal Prandtl numbeg,=(v/5) is the
magnetic Prandtl number, F=v/d* is the dimensionless kinematic
viscoelasticity, G=c,B/gis the dimensionless compressibilitg,=k,/d* is
the dimensionless medium permeabilityp=mN,c, /0,6, f=mN,/p,,
r=mk/kd’. We have expressed the coordinatory,z in new units of
length d, time t in the new unit of lengthd®’/kand let H =1+h,

r,=rv/d? xX'=x/d, y'=y/d, Z’=z/d and d=d/dz’. Stars have been omitted
hereafter, for convenience.

The appropriate boundary conditions (29) usingekgression (30), for
which equations (31) - (35) must be solved, tramsfto

(36)  W=DW=0, DZ=0,0=0,DX= 0K= (atz=0 and z=1.

Applying the operator

2_ 2 2 .2 4 (@-Fo), 2 _a_ f
(D*-a*~Epo)(D*-a*-p,o) {—n (D*a? a(1+1+plarﬂ

to equation (31) and then eliminati®y Z, X and K by using equations
(31) - (35), we obtain
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37) (D az){f(h f J— F9) pe- az)}W+MD2\N
€ 1+p,or ] (D*-a*-p,0)

+TA{—(1_pa)(D2—a2)—a[l+ f J+Q _b }DZ\N
n Wpor) ~(D-a-po)

R G-1 H,+p,or W=0
G (1+ plaT)(Dz_ aZ_E pla) ,

242 4
where Q= #Hd is the Chandrasekhar number aﬁadM is the
4rrpvn VK

Rayleigh number.
Making use of boundary conditions (36) in equa(i®i), we obtain

(38) D*W=0 at z=0 and z=1.

Differentiating equations (31) respectively w.rzt using the boundary
conditions (38), it can be shown that all even pmdkerivatives ofw must
vanish for z=0 and z=1 and hence, the proper solution @f characterizing
the lowest mode is

(39) W=W, sin7z,

where W, is a constant.
Substituting this solution in equation (36), regdicharactestic equation is

(40) (1+x){ﬂ(1+ | +1_in2F01ﬂW
£ I+ip,or p

_RIX(G—lj{ _ H1+i772p101.r : }W— (1+.x) W
G )| i’ por) @+ x+im’po) (L+x+ip,o)

. . _1
., 1-i7?Fag, _ig, 1 f N .Q W= o,
P e\ Wirtpor) (Wx+imp,o))

_Q _R T . o __a __
where Ql_?1 Rl_F’ TAl—?AZ, |0-1—?, X—? P—7T2F|>
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4. Stability of the System and Oscillatory Modes

Here we examine the possibility of oscillatory medé any, on the
Rivlin-Ericksen elastico-viscous fluid due to theegence of suspended
particles, compressibility, viscoelasticity, medipermeability, rotation and

magnetic field. Multiplying equation (31) by (the complex conjugate of
W and integrating over the vertical rangeasfd using equations (32)-(35)
together with the boundary conditions (36), we get

o f (1-Fo) H.EN .
41) —|1+ l,+ l,——=——(l;+pgo |
( ) 8[ 1+p10_*TJ 1 n 2 47T,Q)V( 3 pza 4)

_gaka’( G\ (+poT)
pv \G-1)(H,+po7)-

(1+Fo’)

|7

I5+Epla*le]+d2{

2
|+ HeEdr

+J| 1+ .
( 1+ p,o r} ° 4mgyl®

+pza*lloﬂ=0,

where I1:J1.(|DW|2+a2W F)dz,lzzj (PW f+ 2°DW ¥a‘w 99z
,=[(D*KF+22° DK f+a’K fdiz 1,=] OK Fa’K 19z

l,=[(DOf+a’ )z I.=] P fdz I,=[ ®Z ¥a°Z 19z

1

=] 12 ez, 1,=[ (DX Fra? K 2 10=] X Az

0

The integrals, -1, are all positive definite. Putting=ig in the imaginary
part of equation (41), we obtain

1 f F HEN
42 o|—|lt——s— I, +—I,——= I
( ) ||:£( 1+ plzo_izz_j 1 p| 2 47T,OOV p2 4

__gakaz( G jr(HfﬂJg(Hl+pfOfrﬁH1pﬂe
pv G- H,+p7or?

2
+d? £|7+J*(l+ ]; 2 ]|9+,Ue€/7d Poliop [=0.
P 1+pfo’r)”  Anpy
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Equation (42) implies that; may be zero or non-zero, which means that the

modes may be non-oscillatory or oscillatory. In @d@sence of magnetic
field and suspended particles, equation (42) resltece

(43) 0}|:1(1+;j I:I ,+d {—I +0 (14-%}'8}}0'
e 1+pio’r R n +poT

The term inside the bracket is positive definittu3c, =0, which means

that oscillatory modes are not allowed and theqgipie of exchange of
stabilities is valid. The magnetic field and sugpesh particles introduce
oscillatory modes into the systems which were nxstent in their absence.

5. The Stationary Convection

When the instability sets in as stationary conwegtihe marginal state
will be characterized by =0. Puttingg; =0, equation (40) reduces to

(G Y[1+x (1+xY P (1+x)
(44) R (G 1}( J{Ql T((1+x)2+PQ1H'

which expresses the modified Rayleigh numb®Rr as a function of
dimensionless wave number and the parameters, H,, Q,,P and T, .

The casess<1 and G=1 are irrelevant here as they correspond to negative

and infinite values of critical Rayleigh numbers the presence of
compressibility. The viscoelastic paramekevanishes witla, and therefore,

the visco-elastic Rivlin-Ericksen fluid behaveselien ordinary Newtonian
fluid.
In the absence of magnetic field, the equation (ddlices to

(G \(1+x)| @+xY P
(45) R_(G—J(XHJ{ P +T’*[(1+x)ﬂ'

To study the effects of suspended particles, magrietid, rotation,
medium permeability and compressibility on the syst we examine the
nature otiR/dH,, dR/dQ, dR/dT, , dR,/dP anddR/dG analytically.

Equation (44) yields
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dR,_ ( G [ 1+x (1+xY P (1+x)
() dH, (G—j(foJ{Qﬁ P +TA1[(1+X)2+PQJ’

the negative sign implies that, for a stationarpwaxtion, the suspended
particles have destabilizing effect on the system.
Equation (44) depicts that

2
(a7) de:( G j 1+X 1-T, P (21+x) .,
dQ, \G-1){ xH, A+x)+PQ;
which shows that magnetic field has stabilizingeeffin the absence of
rotation.
In the presence of rotation, magnetic field wilvbaa destabilizing effect

(1+x+PQ,Y (1+x+PQ,Y
P2(1+x) P2(L+x)

To study the effect of rotation, we examine theurebfdR,/dT, . From

if T, > , and stabilizing effect if, <

equation (44), we obtain

drR, [ G \[1+x P(2+x)
(48) dT, _(G—J[XHJ K (1+x)2+PQlﬂ'

For analyzing the effect of permeability, we examthe nature of(;%.

Equation (44) yields

we)  Pe- )8 [1-TA1(—P29+X) H .
dp P\G-1) xH, (I+x)y+PQ;

It is clear from equation (48) that, for stationaynvection, the medium
permeability has destabilizing effect on the systemthe absence of

rotation.
2
In the presence of rotation, it has stabilizingeffif T, > % an
1 X
2
destabilizing effect ifT, < (1+)§+—PQl)
L P(1+x)

Equation (44) also yields

s0) R 12(1”}{@1“1”)2”/«( Pz(ﬂ)zﬂ,
dG  (G-17 xH, P '\ (L+xY +PQ;
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which is always negative implying thereby the de#itang effect of
compressibility on the system.

It is not feasible to find the critical non-dimeoisal wave numbers from
the dispersion relation given by equation (44).r€fme, to find the critical
thermal Rayleigh number in the presence of parasi&eH,, Q,, PandT, ,

equation (44) has been examined numerically usihg software
Mathematica version 5.2.

6. Numerical Results and Discussion

We have plotted the variation of Rayleigh numbeor fstationary
convection with respect to wave number using eqnatd4), for fixed
permissible values of the dimensionless parametersio, T, =30,

Q,=30,P=0.2, = 0.f and H, =1.01. These are the permissible values for

the respective parameters and are in good agreenithrthe corresponding
values used by Chandrasekhand many authors while discussing various
hydrodynamic and hydromagnetic stability problems.

18000 +

17000

16000

15000 +

R 14000 -

13000 +

12000 +
11000 +

10000

9000 +

8000 T T T T T T T T 1
00 05 10 15 20 25 30 35 40 45

Figure1: The variation of Rayleigh numbey, with wave numberx for three values
of suspended particlag =1.01, 1.05, 1. for fixed permissible values of
other parameters=10, T, =30, Q=30,P = 0.2,6= 0.
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Figure 2: The variation of Rayleigh numbex, with wave numberx for three values
of suspended particlag =1.01, 1.05, 1.. for fixed permissible values of other
parameters=10, T, =30, P = 0.2, ¢ = 0.in the absence of magnetic field.

Figures 1 and 2 correspond to three values of tispennded particles
H,=1.01,1.05,1., in the presence and absence of magnetic field,
respectively. The graphs show that Rayleigh nundmareases with the
increase in suspended particles for a fixed wavebau depicting thereby
the destabilizing effect on the system. It is attgar from the graphs that
the critical wavenumber and critical Rayleigh numblecrease with the
increase in suspended particles.
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Figure 3: The variation of Rayleigh numbex, with wave numberX for three values of
magnetic fieldQ, =10, 20, 3¢ for fixed permissible values of other parameters
G=10, T, =30, H,=1.0L,P = 02,6= 0.
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Figures 3 corresponds to three values of the Claelhar number
Q,=10, 20, 3C accounting for magnetic field satisfying the cdiaoh
(1+x+PQ,Y
AS T Sa o
' P*(1+x)
increases with the increase @for a fixed wave number. The critical wave
number and critical Rayleigh number also increash the increase i1, .
Thus magnetic field has large enough stabilizirigatfon the system.

, respectively. The graph shows that Rayleigh numbe

Figure 4 corresponds to three values of the Chae#lrear number
Q,=10, 20, 3C accounting for magnetic field satisfying the cdiuat
(L+x+PQ,Y
P
' P*(1+x)
decreases with the increase @ for a fixed wave number. The critical

wave number and critical Rayleigh number also iaseewith the increase
in Q,. Thus magnetic field has destabilizing effect loa $ystem.

, respectively. The graph shows that Rayleigh numbe
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Figure 4: The variation of Rayleigh numbex, with wave numberx for three values of
magnetic field Q,=10, 20, 3c for fixed permissible values of other
parameterss=10, T, =1000, H,= 1.0LP = 0.2,£= O.

Figures 5 and 6 correspond to three values of tt&tion parameter
T, =10, 20, 3¢, in the presence and absence of magnetic fiefghertively.

The graphs show that Rayleigh number increases thighincrease in
rotation parameter for a fixed wave number depicthrereby the stabilizing
effect on the system in the presence of magnetid fas well as in the
absence of magnetic field. However, the critical@&vaumber and Rayleigh



342 Veena Sharma, Priti BEaenit Gupta and Abhishek Sharma

numbers increase with the increase in rotationrpater in the absence of
magnetic field.
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Figure5: The variation of Rayleigh numbex, with wave numbeix for three values of
rotation parameterr, =10, 20, 30 for fixed permissible values of

other parameters=10, Q,=30,H,=101,P= 0.2,= 0.
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Figure 6: The variation of Rayleigh numbet, with wave numbeix for three values of
rotation parameter, =10, 20, 30 for fixed permissible values of other parameters

G=10, H,=1.0L, P= 0.2,¢ = 0.in the absence of magnetic field.

Figures 7-9 correspond to three different values tltdé medium
permeability paramet&=1.5, 2, 2.5, in the presence and absence of
magnetic field respectively. The graph shows thatyl&gh number
decreases/increases with the increase in mediumeadility for a fixed
wave number depicting thereby the destabilizingabitizing effect on the
system in the presence/absence of magnetic fieldthé absence of
magnetic field, the reverse effect may also ocoutdrge wave numbers, as
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has been depicted in figure 4, implying therebyt thhe medium
permeability has a stabilizing effect on the shesvelengths of the
perturbations.
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Figure 7: The variation of Rayleigh numbex, with wave numbeix for three values of

medium permeabilityp =1.5, 2, 2.5 for fixed permissible values of
other parameters=10, T, =30, Q;= 30, H,= 1.01,P= 0.2¢= O.
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Figure 8: The variation of Rayleigh numbex, with wave numbeix for three values of
medium permeabilityp =1.5, 2, 2.¢ for fixed permissible values of
other parameters=10, T, =30, H,=1.01,P = 0.2,6= O0..
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Figure 9: The variation of Rayleigh numbeat, with wave numbeix for three values of

medium permeabilityp =1.5, 2, 2.5 for fixed permissible values of
other parameterss=10, T, =1000, H,= 1.0L,P= 02s= O.

It is clear from the graphs that the Rayleigh numibecreases with the
increase in medium permeability in the absence ajmetic field satisfying

. 1+x+PQ Y
the condition T, < (Z—Q) :
' P(1+x)
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Figure 10: The variation of Rayleigh numbey, with wave numberx for three values of
compressibility paramete =100, 500, 100 for fixed permissible values of
other parametens =60, Q,=50, H,=1.01,P= 2,£= 0..
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Figure 10 corresponds to three values of the cossfiity parameter
G=100, 500, 100, respectively. The graph shows that Rayleigh numbe
decreases slightly with the increase in the congtrésy parameter for a
fixed wave number depicting thereby very little teddizing effect of the
compressibility parameter on the system.

Conclusions

The thermal instability of compressible Rivlin-Besen elastico-viscous
rotating fluid permeated with suspended particksarating porous media in
the presence of uniform magnetic field has beemstigated analytically
and numerically. The dispersion relation, includihg effects of rotation,
suspended particles, compressibility, medium pebiliga magnetic field
and viscoelasticity on the thermal instability ofRavlin-Ericksen fluid is
derived. From the analysis of the results, theqyped conclusions drawn
are as follow:

(i) For the case of stationary convection, Rivlin-Esien elastico-viscous
fluid behaves like an ordinary Newtonian fluid ass#ico-viscous
parameteF vanishes witlo, .

(i) The effect of compressibility and the suspendedtighes is to
destabilize the system, thereby postponing onstttesimal instability.

(i) Rotation parameter has always stabilizingeetfon the system.
(iv) Magnetic field has stabilizing effect on the systen the absence of

rotation whereas in the presence of rotation, st destabilizing effect if

S (x+ PQ,)’ (1+x+PQ,)°
M P(1+x) P?(1+x)
supported by figures 3 and 4.

and stabilizing effect ifT, < which is

(v) The medium permeability has always destabilizifigot on the system
in the absence of rotation whereas in the presefhagetation it has
(1+x+PQ,)*

and destabilizing effect if
P?(1+X)

stabilizing effect if T, <

_ @rx+PQ)’

T
M PY(l+x)

(vi) The presence of rotation, compressibility, mediyarmeability,
magnetic field and viscoelasticity introduce ostory modes.
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