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Abstract:In this paper, we have proved coupled coincidence point results 

for pair ofmappings in partially ordered G-metric spaces. We have 

defined weak compatibility in this context to ensure the uniqueness of the 

coupled common fixed point. There are several corollaries which extend 

some existing results of coupled coincidence points and coupled fixed 

points. The main theorem is illustrated with an example. An application is 

established to solve some integral equation. The example demonstrates 

that our main result is an actual improvement over the results which are 

generalized. 
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1. Introduction 

The Banach contraction principle is most celebrated fixed point theorem. 

Mustafa and Sims
1, 2

 introduced a improved version of the generalized 

metric space structure, which they called it as G-metric spaces and establish 

Banach contraction principle in this work. For more details on G-metric 

spaces, one can refer to the papers
1-11

. Fixed point theorems in partially 

ordered G-metric spaces have been considered in
8
.            

Studies on coupled fixed point problems in partially ordered metric 

spaces have received considerable attention in recent years. One of the 

reason of this interest is their potential applicability. Specifically, Bhaskar 

and Lakshmikanthan
12 

 established coupled fixed point for mixed monotone 

operator in partially rdered metric spaces. Afterward, Lakshmikanthan and 
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Ciric
13

 extended the results
12

 of by furnishing coupled coincidence and 

coupled fixed point theorem for two commuting mappings having mixed g-

monotone property. In a subsequent series, B. S. Choudhary and A. kundu
14

 

introduced the concept of compatibility and proved the result of
13

 under 

different set of condition. 

Recently, Choudhary and Maity
15

 published coupled fixed point results 

in partially ordered G-metric spaces. Motivated by
12-15

 we introduce the 

notion of weak compatibility in partially ordered G-metric spaces and utilize 

this to prove a coupled fixed point result for mixed g-monotone mapping. 

An illustrative example is discussed which shows that the above mentioned 

improvements are actual. 

 

2. Mathematical Preliminaries 

Let (X, ≼) be partially ordered set and F: X → X be a mapping from 

X to itself. The mapping F is said to be non-decreasing if for all x1, x2∈ X, 

x1≤x2 implies F(x1) ≤ F(x2) and non-increasing, if for all x1, x2∈ X, x1≤ x2 

implies F(x1) ≥ F(x2). 

In 2004, Mustafa and Sims
2
 introduced the concept of G-metric spaces 

as follows: 

Definition 2.1: Let X be a nonempty set and let :      G X X X R
+× × → be 

a function satisfying the following axioms
2
: 

(G1)  ( ), ,   0G x y z =  if     x y z= = , 

(G2)  ( )0 , , G x x y< ,  for all ,  x y X∈  with    x y≠ ,  

(G3)  ( ) ( ), ,   , , G x x y G x y z≤ , for all , ,  x y z X∈  with    z y≠ ,  

(G4)  ( ) ( ) ( ), ,   , ,   , ,  G x y z G x z y G y z x= = =… (symmetry in all three 

variables), 

(G5)  ( ) ( ) ( ), ,   , ,   , ,   , , , G x y z G x a a G a y z for all x y a z X≤ + ∈ (rectangle 

inequality), 

then the function G is called a generalized metric on X and the pair (X,G) is 

called a G-metric space. 
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Definition 2.2: Let (X,G) be a G-metric space and let { }nx  a sequence of 

points in X, a point x in X is said to be the limit of the sequence { }nx ,

( )
,

lim , ,   0n m
m n

G x x x
→∞

= , and one says that sequence { }nx is G-convergent to x. 

Thus, that if   lim  
n n

n

x x or x x
→∞

=→  in a G-metric space (X, G), then if for each 

�> 0, there exists a positive integer ℕ such that ( ), ,   n mG x x x ε<  for all m, n 

≥ ℕ.
2 

 

Proposition 2.1:Let (X, G) be a G-metric space. Then the following are 

equivalent
2
:   

(1) {    -   ,}nx is G convergent to x  

(2) ( ), ,   0   ,n nG x x x as n→ →∞  

(3) ( ), ,  0   ,nG x x x as n→ →∞  

(4) ( ), ,  0  ,  .m nG x x x as m n→ →∞  

Definition 2.3: 
4
If (X,G) and (X1,G1) be two G-metric space and let

( ) ( )1 1 : ,   ,f X G X G→  be a function, then f is said to be G-continuous at a 

point 0x X∈ if given ε > 0, there exists δ > 0, such that for ,x y X∈ and 

( )0 , ,   G x x y δ<  implies ( )1 0 ,( ) ( ) ( ),  G f x f x f y ε< . A function f is G-

continuous at X if and only if it is G-continuous at all 0x X∈  or function f is 

said to be G-continuous at a point 0x X∈  if and only if it is G-sequentially 

continuous at 0x , that is, whenever { }nx is G-convergent to 0x , { })( nf x is G-

convergent to 0( )f x . 

 

Definition 2.4: 
2
Let (X, G) be a G-metric space. A sequence { }nx is 

called G-Cauchy if, for each 0ε > , there exists a positive integer N such that

( ), ,   n m lG x x x ε< for all , , ;n m l ≥ ℕ ( ) . .  , ,  0n m li e if G x x x →  as 

, ,n m l →∞ . 

 

Proposition 2.2: 
2
If (X,G) is a G-metric space then the following are 

equivalent: 

(1)     ,{ }nThe sequence x is G Cauchy−  
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(2) ( ) 0,        , ,    n m lfor each a positive integer N such that G x x xε ε> ∃ <

  , ,  .for all n m l ≥ℕ  

 

Proposition 2.3: 
2
Let (X,G) be a G-metric space. Then the function G(x, 

y, z) is jointly continuous in all three of its variables. 
 

Definition 2.5: 
2
A G-metric space (X,G) is called a symmetric G-metric 

space if 
 

( ) ( ), ,   , , G x y y G y x x= for all ,   .  x y X∈  
 

Proposition 2.4: 
2
Every G-metric space (X,G) will defines a metric 

space (X,dG) by 
 
 

(i)  ( ) ( ) ( ),   , ,   , ,    ,   .Gd x y G x y y G y x x for all x y in X= +
 

 
 

If (X,G) is a symmetric G-metric space, then 
 
 

(ii)  ( ) ( ),   2 , ,    ,   . Gd x y G x y y for all x y in X=
 

 
 

However, if (X,G) is not symmetric, then it follows from the G-metric 

properties that 
 

(iii) ( ) ( ) ( )3

2/ , ,   ,   3  , ,    ,   .GG x y y d x y G x y y for all x y in X≤ ≤  

 

Definition 2.6: 
12

A G-metric space (X, G) is said to be G-complete if 

every G-Cauchy sequence in (X,G) is G-convergent in X.  
 

Proposition 2.5: 
12

A G-metric space (X,G) is G-complete if and only if 

(X,dG) is a complete metric space. 
 

Definition 2.7:
 12

Let (X, ≼) be partially ordered set and : F X X X× →  be 

a mapping. The mapping : F X X X× →  is said to have mixed monotone 

property if F is monotone non-decreasing in its first argument and is 

monotone non-increasing in its second argument, that is, if for all 

1 2 ,   ,x x X∈ 1 2x x≤  implies ( ) ( )1 2, , F x y F x y≤ for y X∈  and for all 
1 2, ,y y X∈

1 2y y≤  implies ( ) ( )1 2, , F x y F x y≥ for x X∈ . 

Definition 2.8: (Mixed g-monotone property
13

) Let (X, ≼) be partially 

ordered set and : F X X X× → and :g X X→ be two mappings. F has mixed 

g-monotone property if  F is monotone g-non-decreasing in its fist argument 
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and is monotone g-non-increasing in its second argument, that is, if for all 

1 2 ,   ,x x X∈ 1 2g x g x≤  implies ( ) ( )1 2, , F x y F x y≤ for y X∈  and for all 

1 2, ,y y X∈ 1 2g y g y≤  implies ( ) ( )1 2, , F x y F x y≥ for x X∈ . 

Definition 2.9: 
12

An element ( , )x y X X∈ ×  is called a coupled fixed 

point of mapping : F X X X× → if ( , )F x y x=  and  ( ,  )F y x y= . 

Definition 2.10: 
12

An element ( , )x y X X∈ ×  is called a coupled 

coincident point of mapping : F X X X× →  and :g X X→  if ( , )F x y gx=

and ( ),   gF y x y= . 

Definition 2.10: 
15

Let (X, G) be a G-metric space. A mapping

: F X X X× → is said to be continuous if for any two G-convergent sequence 

{ }nx and { }ny converging to x and y respectively, { })( ,n nF x y is G-convergent 

to ,( )F x y . 

Using the concept of continuous, mixed monotone property and coupled 

fixed point, Choudhary and Maity
15

 introduce the following theorem: 

Theorem 2.1: Let (X, ≼) be partially ordered set and let G be a G-

metric on X such that (X, G) is a complete G-metric space. Let F : X × X → 

X be a continuous mapping having mixed monotone property. Assume that 

there exist k ∈ [0, 1) such that for x, y, u, v, w, z ∈ X, the following holds: 

( ) [ ]( ) ( ) ( ) ( ) (, , , , ,  , ,   ), , 
2

k
G F x y F u v F w z G x u w G y v z≤ + for all x ≽ u ≽ 

w and y ≼ v ≼ z where either u ≠ w or v ≠ z. 

If there exist x0 and y0∈ X, such that x0≼F(x0, y0) and y0≽F(y0, x0), then F 

has coupled coincidence in X, that is, there exist x, y ∈ X such that 

( , )x F x y= and  ),(y F y x= . 

In a sequel, very recently Aydi et al. generalized the above theorem 

using commutative mappings and g-mixed monotone property in the 

following way: 

Theorem 2.2: Let (X, ≼) be partially ordered set and G-be a G-metric 

on X such that (X, G) is a complete G-metric space. Suppose that there exist 

  ,φ Φ∈ : F X X X× → and :g X X→  such that 

( )
( , , ) ( , , )

, , ,( ) ( ) ( , ,  
2

)  
G gx gu gw G g y gv gz

G F x y F u v F w z ϕ
+ 

≤  
 
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for all x, y, u, v, w, z ∈ X, with gw ≼ gu ≼ gx and gy ≼ gv ≼ gz. Suppose 

also that F is continuous and has the mixed g-monotone property,

( ) ( )F X X g X× ⊆ and g is continuous and commute with F. If there exist x0 

and y0∈ Xsuch that g(x0) ≼ F(x0, y0) and F(y0, x0) ≼ g(x0), thenF and g have 

a coupled coincidence points, that is,  there exist (x, y)∈ X × X such that 

( ) ( , )g x F x y= and (( )) , g y F y x= . 

We define a notion of compatibility in the following: 

Definition 2.12: The mappings F and g where : F X X X× → and 

:g X X→ , are said to be compatible if 

( )( ( )) ( ) (lim , , , , ,   0)n n n n n n
n

G g F x y F g x g y F g x g y
→∞

=  

and 

( )lim ,( ( )) ( ) ( ) , , , ,   0.n n n n n n
n

G g F y x F gy gx F gy gx
→∞

=  

whenever{ }nx and { }ny  are sequences in X, such that lim ( , )n
n

nxF y
→ ∞

lim ( )
n

n
g x x

→ ∞
= = and lim ( , ) lim y( )n n n

n n
yF x g y

→ ∞ → ∞
= = , for all , x y X∈ are satisfied. 

 

Definition 2.13: 
13

We say that mappings : F X X X× → and :g X X→

are commutative if ( ) ( ),   ( , )g F x y F gx g y=  for all x, y ∈ X. 

We denote by Φ the set of function [ ) [ ): 0,   0, φ +∞ → +∞  satisfying 

(a) ( ) { }1 { }0   0 ,−φ =  

(b) ( )t t for all t 0,φ < >  

(c) 
r t

lim r t for all .( t 0)
+→

φ < >  

 Lemma 2.1: ([20]) Let ϕ∈ Φ. For all t > 0, we have lim 0.( )n

n

tφ
→ ∞

=  

Definition 2.14: The mappings F and g where : F X X X× → and 

:g X X→ , are said to be weakly compatible if they commute at there 

coincidence points, that is if  

( ),   F x y g x= for some x ∈ X, then ,  ),( ( )F gx g y g F x y=  

and 
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( ),   F y x g y= for some x ∈ X, then ,  ),( ( )F g gx g Fy y x= . 

 

3. Main Results 
 

Theorem 3.1: Let (X, ≼) be partially ordered set and G be a G-metric 

on X such that (X, G) is a G-metric space. Also suppose that : F X X X× →  

and :g X X→ are such that F has mixed g-monotone property on X 

satisfying 

 

(3.1) ( ), , , , ,  ( ( ) , ( ) ( , ) ( ( ( )G F x y F u v F w z max G g x gu g wϕ ϕ≤  
 

    
( ))) ( ( ( ) ( )), , , , , ,  ),G g y gv gz max G g x gu g w G g y gv g zφ−  

 

for all x, y, u, v, w, z ∈ X, with gw ≼ gu ≼ gx and gy ≼ gv ≼ gz, where either 

u ≠ w or v ≠ z and φ and ϕ are altering distance functions.Suppose

( ) ( )F X X g X× ⊆ and g(X) is complete subset of X. Also suppose X satisfy 

the following property: 

 

(i)  { }       ,   n n nif x is a non decreasing sequence such that x x then x x− → �

  ,for all n
 

 
 

(ii)  { }         ,  n n nif y is a non increasing sequence such that y y then y y− → �

for all n. 
 

If there exist x0, y0∈ X such thatg(x0) ≼F(x0, y0) and g(y0) ⋟ F(y0, x0),then 

there exist x, y ∈ X such that ( ) ( , )g x F x y= and  (  ) ,( )g y F y x= ,i. e. F and g 

have a coupled coincidence points. 

Proof: Let x0, y0 be such that gx0≼F(x0, y0) and gy0≽F(y0, x0). Since 

( ) ( )F X X g X× ⊆ , we can choose 1 1, x y X∈ such that ( )1 0 0 , gx F x y=  and 

( )1 0 0 , g y F y x= . Again we can choose 2 2, x y X∈ such that ( )2 1 1 , gx F x y=

and 2 1 1)  ( ,g y F y x= . Continuing like this we can construct two sequences 

{ }ngx and { }ng y such that 

(3.2)  ( )1 1 ,   n n ngx F x y− −= and ( )1 1 ,    n n ng y F y x− −= for all n ≥ 0. 

We shall prove that for all n ≥1,  
 

(3.3)           1,n n
gx gx +�
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and 
 

(3.4)           
1n ng y g y +� . 

 

Since gx0≼F(x0, y0) and gy0≽F(y0, x0) and 1 0 0 )  ( ,gx F x y= and

1 0 0)  ( ,g y F y x= , we have gx0 ≼gx1 and gy0≽ gy1;  that is, (3.3) and (3.4) 

hold for n = 0. 

We presume that (3.3) and (3.4) holds for some n > 0. As F has mixed g-

monotone property and 1 1,n n n ngx gx g y g y+ +� � , from (3.2), we have 
 
 

(3.5)       1 1 ( , , ) ( )n n n n ng x F x y F x y+ += �  and 1 1 , , ( ) ( ).n n n n ng y F y x F y x+ += �  

 
 

also for the same reason, we have 
 
 

(3.6)     1 1 1 2, ),( ) (  n n n n nF x y F x y gx+ + + +=� and 1 1 1 2( ) ( ), , .n n n n nF y x F y x g y+ + + +=�  
 

From (3.3) and (3.4), we have that 1 2 1 2 .n n n ngx gx and g y g y+ + + +� �  

Then by mathematical induction it follows that (3.3) and (3.4) holds for n ≥ 

0. Therefore  
 
 

(3.7)             0 1 2 3 1n ngx gx gx gx gx g x +… …� � � � � �  

 

(3.8)           0 1 2 3 1n ng y g y g y g y g y g y +… …� � � � � �  

 

If for some n, we have ( ) ( )1 1,   , n n n ng x g y g x g y+ + = , then ( ) , n n ng x F x y=  and 

( ) , n n ngy F y x= , that is, F and g have a coincidence point. So from now we 

assume ( ) ( )1 1,   , n n n ng x g y g x g y+ + ≠ for all n ∈ N, that is we assume that 

either ( )1  , n n n ng x F x y g x+ = ≠ or ( )1  , n n n ng y F y x g y+ = ≠ .  

From (3.1), we have 
 

(3.9)  ( ) ( )( )1 1 1 1, , , , , , ,(  ) ( ) ( ) ( )n n n n n n n n nG g x g x g x G F x y F x y F x yϕ ϕ+ + − −=  

1 1

1 1

( ( ( ) ( )))

( ( ( ) ( )))

, , , , , 

, , , , , .

n n n n n n

n n n n n n

max G g x g x g x G g y g y g y

max G g x g x g x G g y g y g y

ϕ

φ
− −

− −

≤

−  

 

As ϕ ≥ 0, 

 

( )1 1 1 1, , , , ( ) ( ( ( ) ( ))),, , , n n n n n n n n nG g x g x g x max G g x g x g x G gy gy gyϕ ϕ+ + − −≤
 

and, using the fact that φ is non-decreasing, we have 
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(3.10)         ( )1 1 1 1( ( ) (, )).,  , , , , , n n n n n n n n nG g x g x g x max G g x g x g x G gy gy gy+ + − −≤  
 

Repeating the same argument ones obtain 
 

(3.11)         ( )1 1 1 1( ( ) (, )).,  , , , , , n n n n n n n n nG gy gy gy max G gy gy gy G g x g x g x+ + − −≤  

 

By (3.10) and (3.11), we have 
 

1 1 1 1

1 1

, , ,( ( ) ( ))

( ( )

, ,

, , , , , ) ( ) ,
n n n n n n

n n n n n n

max G g x g x g x G gy gy gy

max G gy gy gy G g x g x g x
+ + + +

− −≤  

 

and, thus, the sequence
1 1 1 1( ( ) (, ,  )), , ,n n n n n nmax G g x g x g x G gy gy gy+ + + + is non-

negative decreasing. This implies that there exists r ≥ 0 such that 
 

(3.12)  
1 1 1 1

( ( )lim , , , , ,   .( ))
n n n n n n

n

max G g x g x g x G gy gy gy r+ + + +
→∞

=  

 

It is easily seen that if [ ) [ ): 0,   0. ϕ ∞ → ∞ is non-decreasing, ( ( , )) max a bϕ

( ( ) ( )) , max a bϕ ϕ= for [ 0 ), ,a b∈ ∞ . Taking in to account this and (3.9) - 

(3.12), we get 
 

( ) ( )( )1 1 1 1( ), , ( ), , , n n n n n nmax G g x g x g x G gy gy gyϕ ϕ+ + + +  

( ) ( )( )1 1 1 1( ) ( ), , , , ,  n n n n n nmax G g x g x g x G gy gy gyϕ + + + +=  

1 1( ( ( ), , , ( ) ), , )n n n n n nmax G gx gx gx G gy gy gyϕ − −≤  

1 1( ( ( ), , , ( ) ), , )n n n n n nmax G gx gx gx G gy gy gyφ − −−  

 

Letting n →∞ in the above inequality and using (3.12), we have 
 

( ) ( ) ( ( ) )  r r r rϕ ϕ φ ϕ≤ − ≤  
 

this implies that  ( 0) rφ = . Sinceϕ is an altering distance function, r = 0 

and, consequently 
 

1 1 1 1
lim  , , , ,( ( ) ( ) 0,),   

n n n n n n
n

max G g x g x g x G gy gy gy+ + + +
→ ∞

=  

or 
 

(3.13)  
1 1 1 1

lim , ,  ( ) , ,   ( 0.)
n n n n n n

n

G g x g x g x G gy gy gy+ + + +
→ ∞

= =  

Next, we show that { }ng x and { }ng y are Cauchy sequences in G-metric 

spaces (X, G).Assume to the contrary that at least one of above sequence is 
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not a Cauchy sequence. This gives that ( )
,

lim , , 0n m m
m n

G g x gx gx
→ ∞

ք or

( )
,

lim , , 0n m m
m n

G gy gy gy
→ ∞

ք , and consequently 

 

,

lim ( , , ),( ( ) , ), 0.
n m m n m m

m n

max G g x g x g x G gy gy gy
→ ∞

ք  

 

This means that there exist ε > 0 for which we can find subsequences 

{ }( )m k
x  and { }( )n k

x  with   ( ) ( )n k m k k> ≥  such that 

 

(3.14)           ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ), , , , ,  .n k m k m k n k m k m kmax G g x g x g x G gy gy gy ε≥  
 

 

Further, we can choose ( )n k corresponding to ( )m k in such a way that it 

is smallest integer with  ( () )n mk k>  and satisfying (3.14). 
 
 

(3.15)  ( ) ( )( )( ) ( ) ( ) ( ) ( )1 1 ( )1 1, , , , , .n k m k m k n k m k m kmax G gx gx gx G gy gy gy ε− − − − <  
 

 

By contractive condition, (3.1), we get 
 

(3.16)  
( )( ) ( )((

( ) ( )))
( ) 1( ) ( ) ( ) 1

( ) 1 ( ) 1 ( ) 1 ( 1

(

)

), ,  , , 

, , , 

n k m k m k n k n k

m k m k m k m k

G g x gx g x G F x x

F x x F x x

ϕ ϕ − −

− − − −

=
 

              

((
))

((
))

( ) 1 ( ) 1 ( ) 1

( ) 1 ( ) 1 ( ) 1

( ) 1 ( ) 1 ( ) 1

( ) 1 ( ) 1 ( ) 1

( )

( )

, , , 

, , 

( , , , 

, , 

)

( )

n k m k m k

n k m k m k

n k m k m k

n k m k m k

max G gx gx gx

G gy gy gy

max G gx gx gx

G gy gy gy

ϕ

φ

− − −

− − −

− − −

− − −

≤

−
 

 

and 
 

(3.17)        
( )( ) ( )((

( ) ( )))
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 1 1 1( )

, , , ,

, , , 

n k m k m k n k n k

m k m k m k m k

G gy gy gy G F y x

F y x F y x

ϕ ϕ − −

− − − −

=

 

      
( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

( ( ( ) ( ))), , , , , 

, ( ( , , ,( ) ( )) , )

n k m k m k n k m k m k

n k m k m k n k m k m k

max G gy gy gy G g x gx g x

max G gy gy gy G gx g x gx

ϕ

φ
− − − − − −

− − − − − −

≤

−
 

 
By (3.17) and (3.18), we get 

 

294 Vizender Sihag and Ramesh Kumar Vats



  
 

 

 

(3.18) ( ) ( )( )( )( ) ( ) ( ) ( ) ( ) ( ), , , , , 
n k m k m k n k m k m k

max G g x gx gx G gy gy gyϕ  

( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

( ( ( ) ( ))), , , , ,

( (

 

, , , , , ( ) ( )))

n k m k m k n k m k m k

n k m k m k n k m k m k

max G gy gy gy G gx gx gx

max G gy gy gy G gx gx gx

ϕ

φ
− − − − − −

− − − − − −

≤

−

 
 

On the other hand, the rectangle inequality and (3.15) give us 
 

(3.19)  
( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

(

1 1

) ( ) ( )1

, , , , 

 , , 

n k m k m k n k m k m k

m k m k m k

G g x g x gx G g x gx gx

G gx g x gx

− −

−

≤

+
 

( )( )( ) (1 ) , ,  
m k m k m k

G gx gx gx ε−< +  

 

(3.20)  
( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

(

1 1

) ( ) ( )1

, , , , 

 , , 

n k m k m k n k m k m k

m k m k m k

G gy gy gy G gy gy gy

G gy gy gy

− −

−

≤

+
 

( )( )( ) (1 ) , ,  
m k m k m k

G gy gy gy ε−< +  

 

From (3.14), (315), (3.19) and (3.20), we get 
 

( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ), , , , , n k m k m k n k m k m kmax G gx gx gx G gy gy gyε ≤  

( ) ( )( )( ( ) ( ) ( ) () 1 )( ) 1 , , , , ,   m k m k m k m k m k m kmax G gx gx gx G gy gy gy ε− −≤ +  

 

Letting k → ∞ in the inequality and using (3.13), we have 
 

(3.21)  ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )lim , , , , ,  .n k m k m k n k m k m k
k

max G gx gx gx G gy gy gy ε
→ ∞

=  

 

Again, using rectangular inequality and (3.15), we obtain 
 

(3.22)  
( ) ( )

( )
  1   1   1   1( ) ( ) ( ) ( ) (

  1   

) ( )

( ) ( ) ( ) 1

, ,   , , 

 , , 

n k m k m k n k m k m k

m k m k m k

G g x gx gx G gx gx g x

G gx g x gx

− − − −

− −

≤

+
 

 
( )  1( ) ( ) ( )   1 , ,   

m k m k m k
G gx gx gx ε− −< +  

and 

(3.23)  
( ) ( )

( )
  1   1   1   1( ) ( ) ( ) ( ) (

  1   

) ( )

( ) ( ) ( ) 1

, ,   , , 

 , , 

n k m k m k n k m k m k

m k m k m k

G gy gy gy G gy gy gy

G gy gy gy

− − − −

− −

≤

+
 

( )  1( ) (  1)  ( ) , ,   .
m k m k m k

G gy gy gy ε− −< +  
 

By (3.22) and (3.23), we get 
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(3.24)  ( ) ( )( )( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1, , , , , n k m k m k n k m k m kmax G gx gx gx G gy gy gy− − − − − −  

 
( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , , , , .m k m k m k m k m k m kmax G gx gx gx G gy gy gy ε− − − −≤ +  

 

Using the rectangular inequality we have 
 

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

  1   1

  1   1   1

, , , , 

 , , 

n k m k m k n k n k n k

n k m k m k

G gx gx gx G gx gx gx

G gx gx gx

− −

− − −

≤

+
 

( )((  ) ( )) 1 , , 
m k m k m k

G gx gx gx−+  
 

and 

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

  1   1

  1   1   1

, , , , 

 , , 

n k m k m k n k n k n k

n k m k m k

G gy gy gy G gy gy gy

G gy gy gy

− −

− − −

≤

+
 

( )((  ) ( )) 1 , , 
m k m k m k

G gy gy gy−+  
 

and by last two inequalities and 
 

(3.25)  ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) , , , , , n k m k m k n k m k m kmax G gx gx gx G gy gy gyε ≤  

                 
( ) ( )( ) ( ) ( )( )( )  1   1( ) ( )   1   1

, , , , , 
n k n kn k n k n k n k

max G gx gx gx G gy gy gy
− − − −

≤  

( ) ( )( )( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1, , , , , n k m k m k n k m k m kmax G gx gx gx G gy gy gy− − − − − −+

 

( ) ( )( )( ) ( )( )   1 ( ( ) 1 ( ))  , , , , , m k m k m k m k m k m kmax G gx gx gx G gy gy gy− −+  

 

By (3.24) and (3.25) we have 
 

( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

  1   1   1   1

1 ( ) ( ) ( ) ( )  1

– , , , , , 

  , , , , , 

n k n k n k n k n k n k

m k m k m k m k m k m k

max G gx gx gx G gy gy gy

max G gx gx gx G gy gy gy

ε − − − −

− −−
 

( ) ( )( )( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1, , , , , n k m k m k n k m k m kmax G gx gx gx G gy gy gy− − − − − −≤  

( ) ( )( )1 1( ) ( ) ( ) ( ) ( ) 1 ( ) 1, , , , , m k m k m k m k m k m kmax G gx gx gx G gy gy gy− − − −≤
 

 

Letting k →∞ in the last inequality and using (3.13), we obtain 
 

(3.26)   ( ) ( )( )( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1lim , , , , , .n k m k m k n k m k m k
n

max G gx gx gx G gy gy gy ε− − − − − −
→∞

=  

 

296 Vizender Sihag and Ramesh Kumar Vats



  
 

 

 

Finally, letting k → ∞ in (3.18) and using (3.21), (3.26) and the continuity 

of φ and ϕ, we get 
 

   ( ) (  ( ) ) ) (ϕ ε ϕ ε φ ε ϕ ε≤ − ≤  

 

and, consequently, 0(  ) ϕ ε = . Since ϕis altering distance function, ε = 0, 

and this is a contradiction.Therefore, both { }ng x and{ }ng y are Cauchy 

sequences in g(X). From the completeness of g(X),there exist x, y ∈ X such 

that 

(3.27)  ( ) 1lim ,  lim  n n n
n n

F x y g x gx+
→∞ →∞

= = and ( ) 1lim ,  lim  ,n n n
n n

F y x gy gy+
→∞ →∞

= =  

 

By (3.7), (3.8) and (3.12), we have 

 

ngx g x� and .ng y g y�  

For all n ≥ 0, we get 
 

( ) (
)

1 1 1

1

( ) ( ) ( ) (, , , , , , , ( ,)

( ) ), , 

n n n

n

G F x y F x y F x y max G gx g x gx

G gy gy gy

ϕ− − −

−

≤
 

1 1( ( ( ), , , ( ) ), , )
n n

max G gx gx g x G gy gy gyφ − −−

 
 

Letting the limit as n →∞ in the above inequality, using (3.27), we have 
 

( ), , , ,   0;( ) ( )G F x y F x y g x = that is ( , )  gx F x y= . 

Again, we have 
 

( ) (
)

1 1 1

1

, , , , ,   , , , ( ) ( ) ( ) ( ( )

( ),  ) ,

n n n

n

G F y x F y x F y x max G gy gy gy

G g x gx gx

ϕ− − −

−

≤

      ( )( )1 1( ), , , ( , , )n nmax G gy gy gy G g x g x g xφ − −−
 

 

Letting the limit as n →∞ in the above inequality, using (3.27), we have 

 

( ), , , ,   0;( ) ( )G F y x F y x g y = that is   (   .),g y F y x=  

Hence the element ( ), x y X X∈ × , is coupled coincidence point of mapping 

: F X X X× →  and : g X X→ . 
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By setting ( )tϕ = Identity mapping in theorem 3.1, we have following 

corollary. 
 

Corollary 3.2: Let (X, ≼) be partially ordered set and G-be a G-metric 

on X such that (X, G) is a G-metric space. Also suppose that : F X X X× →  

and : g X X→  are such that F has mixed g-monotone property on X such 

that 
 

(3.28)  
(

)
, , , , ,( ( ) ( ) ( ) ( )  , , ,

( , ) , 

G F x y F u v F w z max G gx gu g w

G g y gv g z

≤
 

( ) ( )( )( ), , , , , max G g x gu gw G gy gv gzφ−
 

 

for all x, y, u, v, w, z ∈ X, with gw≼gu≼gx and gy≼gv≼gz, where either u ≠ 

w and v ≠ z and ϕ are altering distance functions. Suppose 

( ) )(  X X g X× ⊆ and g(X) is complete subset of X. Also suppose X satisfy 

the following property: 
 

(i)  if {xn} is a non-decreasing sequence such that xn → x, then xn≼ x for all 

n, 
 

(ii)  if {yn} is a non-increasing sequence such that yn → y, then yn⋟y for all 

n. 
 

If there exist x0, y0∈ X such that g(x0) ≼F(x0, y0)   and  g(y0) ⋟ F(y0, x0), then 

there exist x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y, x), that is F and 

g have a coupled coincidence points. 
 

Again by setting ϕ(t) = 1 –kt, in theorem 3.1, we have following 

corollary. 
 

Corollary 3.3: Let (X, ≼) be partially ordered set and G-be a G-metric 

on X such that (X, G) is a G-metric space. Also suppose that : F X X X× →  

and : g X X→ are such that F has mixed g-monotone property on X such 

that 
 

(3.29)  
( ) ( )((

( )))
, , , , ,   , , , 

, , 

( ) ( ) ( )G F x y F u v F w z k max G gx gu gw

G g y gv gz

≤
 

 

for all x, y, u, v, w, z ∈ X, with gw ≼ gu ≼ gx and gy ≼ gv ≼ gz, where either 

u ≠ w and v ≠ z.Suppose ( ) )(  X X g X× ⊆  and g(X) is complete subset of X. 

Also suppose X satisfy the following property: 
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(i)  if {xn} is a non-decreasing sequence such that xn → x, then xn  ≼ x for 

all n, 
 

(ii)  if {yn} is a non-increasing sequence such that yn → y, then yn  ⋟  y for 

all n. 
 

If there exist x0, y0∈ X such that g(x0) ≼F(x0, y0)   and  g(y0) ⋟ F(y0, x0), then 

there exist x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y, x), that is F and 

g have a coupled coincidence points. 

 

Remark 3.4: Notice that theorem 3.1 of Choudhary and Maity27 which 

is stated here as theorem 2.1is a consequence of corollary 3.3. In fact, the 

contractive condition appearing in theorem 2.1  

( ) ( ) ( )( ) ( ) ( ), , , , ,   , ,   , , 
2

k
G F x y F u v F w z G x u w G y v z≤ +    

for all x ≽ u ≽ w and y ≼ v ≼ z where either u ≠ w or v ≠ z, with k ∈ [0, 1) 

implies 

( ) ( ) ( )( ) ( ) ( )

( ) ( )( )( )

, , , , ,   , ,   , ,  
2

 2 , , , , , 
2

k
G F x y F u v F w z G gx gu gw G gy gv gz

k
max G gx gu gw G gy gv gz

  ≤ +

≤ ×

        ( ) ( )( )( ) , , , , , k max G gx gu gw G gy gv gz=  

 

and, therefore, setting  g = Identity function and applying the corollary 3.3 

we can get the desired result. 
 

Theorem 3.5:Let (X, ≼) be partially ordered set and G-be a G-metric 

on X such that (X, G) is a G-metric space. Also suppose that F: X × X → X 

and g: X → X are such that F has mixed g-monotone property on X 

satisfying 

(3.30)  
( ) ( ) ( ) ( )((

( )))
, , , , ,  , , ,

,

(

 , 

G F x y F u v F w z max G gx gu gw

G gy gv gz

φ≤
 

 

for all x, y, u, v, w, z ∈ X, with gw ≼ gu ≼ gx and gy ≼ g v≼ gz, where either 

u ≠ w and v ≠ z and ϕis altering distance functions. Suppose F(X × X) ⊆ 

g(X) and g(X) is complete subset of X. Also suppose X satisfy the following 

property: 
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(i) if {xn} is a non-decreasing sequence such that xn → x, then xn  ≼  x for 

all n, 
 

(ii) if {yn} is a non-increasing sequence such that yn → y, then yn  ⋟  y for 

all n. 
 

If there exist x0, y0∈ X such that g(x0) ≼F(x0, y0)   and  g(y0) ⋟ F(y0, x0), then 

there exist x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y, x), that is F and 

g have a coupled coincidence points. 
 

Proof: Repeating the similar procedure as in the proof of theorem 3.1, 

the result is obvious. 

 

Remark 3.6 Notice that theorem 3.1 of Aydi et al. [28] which is stated 

here as theorem 2.2 is a consequence of theorem 3.5. In fact, the contractive 

condition appearing in theorem 2.2 

( ) ( ) ( )( )
( , , ) ( , , )

, , , , ,   
2

G gx gu gw G gy gv gz
G F x y F u v F w z ϕ

+ 
≤  

 
 

for all x, y, u, v, w, z ∈ X, with gw≼gu≼gx and gy≼gv≼gz,  implies 

( ) ( ) ( )( )
( , , ) ( , , )

, , , , ,   
2

G gx gu gw G gy gv gz
G F x y F u v F w z ϕ

+ 
≤  

 
 

( ) ( )( )( ), , , , , max G gx gu gw G gy gv gzϕ≤
 

and, therefore, applying the theorem 3.5 we can get the desired result. 

Next our aim is to prove the uniqueness of coupled fixed pointin the 

above theorem. For this, note that if (X, ≼) is partially ordered set, then we 

endow the product space X × X with following partial order: 
 

for ( ) ( ) ( ) ( ), , , , , , , .x y u v X X u v x y x u y v∈ × ⇔� � �  

Theorem 3.7: In addition to the hypotheses of Theorem 3.1, suppose 

that for every , , ,   ( ) ( )x y x y X X
∗ ∗ ∈ × there exist a ( ),   u v X X∈ × such that 

, ,( ( ) ( , ))F u v F v u is comparable to , , ( ( ) ( , ))F x y F y x and , ,( ( ) ( , )) F x y y x
∗ ∗ ∗ ∗

and, also F and g are weakly compatible. Then F and g have a unique 

coupled common fixed point; that is, there exist a unique ( ),   x y X X∈ ×  

such that   ) ,(x gx F x y= = and    ( , )y gy F y x= = . 
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Proof.From theorem 3.1, the set of coupled coincidence point is non-

empty. Suppose ( ), x y and (  ),x y
∗ ∗

are coupled coincidence points of F and 

g; that is,   , ,  ( , )  ) (gx F x y gy F y x= =  and  , ,  ,( ) ) (gx F x y gy F y x
∗ ∗ ∗ ∗ ∗ ∗= = . 

Now we show 
 
 

(3.31)    gx gx
∗=   and     .gy gy

∗=  
 
 

By the assumption, there exist , )(   u v X X∈ × such that ( ), ), ( ( ), F u v F v u  is 

comparable to ( ), ), ( ( ), F x y F y x and , , , .( ( ) ( ))F x y y x
∗ ∗ ∗ ∗

 

Put 0 0 ,  u u v v= = , and choose 1 1, u v X∈ , so that 1 0 0 )  ( ,gu F u v= and

1 0 0( ), .gv F v u=  

Then, repeating the same argument as in the proof of Theorem 3.1, we can 

inductively define sequences { }ngu  and { }ng v  where 

( )1 1 ,   n n ngu F u v− −= and ( )1 1 , n n ng v F v u− −= ,  for all .n N∈  

Hence ( ), , ,( ) ( ) ( , )  F x y F y x g x g y= and ( ) ( )1 1, , ,( ) ( ) , F u v F v u gu g v= are 

comparable. 

Suppose that ( ) ( )1 1, ,   g x g y gu gv� (the proof is similar in other case). 

We claim that ( ) ( ), , n ng x g y gu g v� , for each n ∈ N. 

In fact, we will use mathematical induction. 

Since, we have ( ) ( )1 1, , g x g y gu gv� . Our claim is true for   1n = . We 

presume that ( ) ( ), , n ng x g y gu g v� holds for   1n > . Then, we have 

ng x gu�  and ng y gv� . Using the mixed g-monotone property of F, we 

get 

( ) ( ) ( )1  , , ,   n n n ngu F u v F x v F x y gx+ = =� �  

and 

( ) ( ) ( )1  , , ,   n n n ngv F v u F y u F y x gy+ = =� �  

and this proves our claim. 

Since ngx gu� and ng y gv� , using the contractive condition (3.1), we have 
 

( ) ( ) ( ) ( )( )1 1, ,   , , , , , n n nG gx gx gu G F x y F x y F u vϕ ϕ − −=  
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          1 1 ( ( ( ), , , ( ) ), , )n nmax G gx gx gu G gy gy gvϕ − −≤  

1 1( ( ( ), , , ( ) ), , )n nmax G gx gx gu G gy gy gvφ − −−  
 

As ϕ≥ 0, 

  

 
( ) ( ) ( )( ) ((

))
1 1 1

1

, , , , ,   , , ,

 , ,

( )

 ( )

n n n

n

G F x y F x y F u v max G gx gx gu

G gy gy gv

ϕ ϕ− − −

−

≤
 

 

and, using the fact that φ is non-decreasing, we have 
 

(3.32)  
( ) ( ) ( )( ) (

)
1 1 1

1

, , , , ,   , , ,

, ) 

(

( ,

)
n n n

n

G F x y F x y F u v max G gx gx gu

G gy gy gv

− − −

−

≤
 

 

Repeating the same reasoning we obtain 
 

(3.33)  
( ) ( ) ( )( ) (

)
1 1 1

1

, , , , ,   , , ,

, ) 

(

( ,

)
n n n

n

G F y x F y x F v u max G gy gy gv

G gx gx gu

− − −

−

≤
 

 

Using (3.32) and (3.33), we have 
 

(3.34)  
( ) ( )( ) (

)
1

1

, , , , , ( )

( )

, , ,

, , 

n n n

n

max G gx gx gu G gy gy gv max G gx gx gu

G gy gy gv

−

−

≤
 

 

and thus, the sequence ( ( ), , , ( , , ))n nmax G gx gx gu G gy gy gv is nonnegative 

decreasing. This implies that there exists r ≥ 0 such that 
 

(3.35)  ( ) ( )(lim , , ), , ,   .
n n

n
max G gx gx gu G gy gy gv r

→∞
=  

 

It is easily seen that if [ ) [ ): 0,   0,  ϕ ∞ → ∞  is non-decreasing, 

( )( ) ( ) ( )( ),   , max a b max a bϕ ϕ ϕ= for [ 0 ), ,a b∈ ∞ . Taking into account this 

and (3.32) - (3.35), we get 

 

( ) ( )( ) ( )((
( )))

, , , , ,   , , ,

, , 

n n n

n

max G gx gx gu G gy gy gv max G gx gx gu

G gy gy gv

ϕ ϕ ϕ=

 

( ) ( ))(( )1 1, , , , , 
n n

max G gx gx gu G gy gy gvϕ ϕ− −≤

 

( ) ( )( )( )1 1, , , , , n nmax G gx gx gu G gy gy gvφ ϕ− −−
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Letting n →∞ in the above inequality and using (3.35), we have 
 

   ( ) ( ) ( ) ( )     r r r rϕ ϕ φ ϕ≤ − ≤  
 

this implies that ϕ(r) = 0. Since ϕ is an altering distance function, r ≥ 0 

and, consequently 
 

   (lim  , , , , ,  ( ( ))  0.)
n n

n
max G gx gx gu G gy gy gv

→∞
=  

 

Or 
 

(3.36)  lim , ,  li( ) (m , , 0.)  
n n

n n
G gx gx gu G gy gy gv

→∞ →∞
= =  

 

Repeating the similar argument, we show that 
 

(3.37)  lim , ,  lim( ) ( , ,   0.)
n n

n n
G gx gx gu G gy gy gv∗ ∗ ∗ ∗

→∞ →∞
= =  

 

Using, ( ) ( )( )5 , , , 2 , , G G x x y G x y y≤ , (3.21) and (3.22), we have 

 

( ), , , ,(    , ,) (  )n n nG gx gx gx G gx gu gu G gu gx gx∗ ∗ ∗ ∗≤ +  

( )[ ( )2 , , , , .] 0n nG gx gx gu G gu gx gx as n∗ ∗≤ + → →∞  
 

and 
 

( ), , , ,(    , ,) (  )n n nG gy gy gy G gy gv gv G gv gy gy∗ ∗ ∗ ∗≤ +  

( )[ ( )2 , , , , .] 0n nG gy gy gv G gv gy gy as n∗ ∗≤ + → →∞  

 

Hence   gx gx
∗= and   .g y g y

∗= Thus we proved (3.31). 
 

Since ( )  , g x F x y= and ( )  , g y F y x= , by weak compatibility of F and g we 

have 
 

(3.38)  ( )  ,   ,(  )ggx gF x y F gx gy= =  and ( ) ( )  ,   , .ggy gF y x gF gy gx= =  

 

Denote   gx z= and   .gy w=  Then from (3.38), 

 

(3.39)  ( )  , gz F z w=  and ( )  , .gw F w z=  
 

Then ( ), z w is a coupled coincidence point. Then from (3.38) with  x z
∗ =  and 

 y w
∗ = it follows   g z g x= and   gw g y= , that is, 

 

(3.40)    g z z= and   gw w= . 
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From (3.39) and (3. 40), 
 

( )    , z g z F z w= = and ( )    , w gw F w z= = . 
 

Therefore ( , )z w is a coupled common fixed point of F and g. To prove 

uniqueness, assume that ( , )r s is another coupled common fixed point. Then 

by (3.38) we have 
 

     r gr g z z= = = and       s gs gw w= = = .  
 

 

Corollary 3.8:In addition to the hypotheses of corollary 3.2, suppose 

that for every ( ), , , ( )   x y x y X X∗ ∗ ∈ × there exist a ( ),   u v X X∈ × such that 

( ) ( )( ), , , F u v F v u is comparable to ( ) ( )( ), , , F x y F y x and , ,( ( ) ( , )) F x y y x
∗ ∗ ∗ ∗

and, also F and g are weakly compatible. Then F and g have a unique 

coupled common fixed point; that is, there exist a unique ( ),   x y X X∈ ×

such that ( )    , x g x F x y= =  and ( )    , y g y F y x= = . 

 

Corollary 3.9: In addition to the hypotheses of corollary 3.3, suppose 

that for every , , ,   ( ) ( )x y x y X X
∗ ∗ ∈ ×  there exist a ( ),   u v X X∈ × such that 

( ), ,( ) ( ), F u v F v u is comparable to ( ), ,( ) ( ), F x y F y x and , ,( ( ) ( , )) F x y y x
∗ ∗ ∗ ∗

and, also F and g are weakly compatible. Then F and g have a unique 

coupled common fixed point; that is, there exist a unique ( ),   x y X X∈ ×

such that     ( , ) x gx F x y= = and     ( , ) y gy F y x= = . 
 

Example 3.10: Let [ ]  0, 2X =  be endowed with Euclidean metric 

( ) ( ), ,   |   |  |   |  |   |G x y z x y y z z x= − + − + − , for all , x y X∈ . 

Then, ( ),X ≤ is a partial ordered set with natural ordering of real numbers. 

Let : F X X X× →  and : g X X→  defined as ( )  /2g x x=  for all x X∈  and  

( )

2

, , [0,1],
,  2

0,

x y
if x y x y

F x y

if x y

 −  ∈ ≥ = 
 <

, respectively. 

Clearly, ( )( )F X X g X× ⊆ , also F obeys mixed g-monotone property. 
 

Let { }nx  and { }ny  be two sequences in X definedrespectively by

 2  1/nx n= + and  1 – 1/ny n= . 

then we have by letting n →∞ 
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( )( ) ( )
2

,   2  1/ , 1 – 1/
1 2/

(
2

n n

n
g F x y g F n gn

 +  
=   

 
= +


 

( ) ( ) 1/  4   1/8 1/16  , n ng F gx gy= = ≠ = . 
 

Also, 
 

( ) ( ) ( )1, 0   1/4   1/8 1/16  1, 0 ,gF g F g g= = ≠ =  
 

which shows that the mappings F and g are neither compatible and nor 

commutative. But it is obvious that the mappings are weakly compatible. 

So we can not use the theorem 2.16 for mappings F and g.Also is oblivious 

that, (0, 0) is the coupled fixed point of F and g. 
 

Remark 3.11: It is obvious that if the mapping F and G neither 

compatible and nor commutative, then this example will not be applicable, 

which proves the generality of our result. 

 

4.Applications 

Theorem 4.1: Let [ ]  0, 1Ω =  be bounded open set in 
2 ), (L Ωℝ , the set 

of function on Ω whose square in integrable on Ω . Consider the integral 

equation 
 

(4.1)  ( ( ( ) ( ))) (, ,  , , ( ), ( )( ))p t x t y t q t s x s y s ds=∫ , integration is taken 

over Ω , 
 

where :  P Ω × × →ℝ ℝ ℝ  and :    q Ω × Ω × × →ℝ ℝ ℝ be two mappings. Define 

:      G X X X R
+× × → by 

 

( )
sup sup sup

, ,  
t t t

G x y z x y y z z x
∈Ω ∈Ω ∈Ω

= − + − + − . 

 

Then X is a complete G-metric space. Suppose that there exist a function 

:   G R
+Ω × × →ℝ ℝ satisfying, 

 

(i) ( ( ) ( ) ( ( ( ) ( ))) (, ( , ) , , , , ,  , .( ( ) ( )))p s u t v t q t s w s z s ds G s u t v t foreach s t≥ ≥ ∈Ω∫ . 
 

(ii) ( )( ( ) ( ) ( ( ( ) ( ))), ( , ) , , , ( ( )( , ( )) ) ( ,( ) ( ) .)p s u t v t G s u t v t p s u t v t u t v tα− ≤ −  
 

Then the integral equation (4.1) has solution in
2 ( )L Ω . 
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Proof: Define ( ) ( )( ( ) ( )) ( ( ) ( ), , , ),F x t y t t p t x t y t=
 

and

( )(( ) , , ( ( ))),g x t q t s x s y s ds=∫ , then it is obvious that condition of  

corollary 3.2 are satisfied. Now we can apply corollary 3.2 to obtain the 

solution of integral equation 4.1 
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