On the Flatness of Weakly Symmetric Kähler Manifolds

B. B. Chaturvedi and Pankaj Pandey
Department of Pure and Applied Mathematics Guru Ghasidas Vishwavidyalaya Bilaspur (C.G.), India
Email: brajbhushan25@gmail.com, pankaj.anvarat@gmail.com

(Received Oct. 17, 2014)

Abstract

In this paper, we have studied conformally flat weakly symmetric, concircularly flat weakly symmetric and W_{2}-flat weakly symmetric Kähler manifolds and proved that in such type of manifolds either the scalar curvature vanishes or the manifolds are of recurrent type.

2010 Mathematics Subject Classification: 53C25, 53C55.
Keywords: Weakly symmetric manifold, Kähler manifold, concircularly symmetric manifold, W_{2}-manifold.

1. Introduction

The idea of weakly symmetric manifold is introduced by L. Tamassy and T. Q. Binh ${ }^{1}$. This idea was further extended by M. Prvanovic ${ }^{2}$, F. Malek and M. Samavaki ${ }^{3}$, Tamassy, De and Binh ${ }^{4}$. In 2006, P. N. Pandey and B. B. Chaturvedi ${ }^{5}$ studied almost Hermitian manifold with semi-symmetric recurrent connection and gave some interesting results. In 2000, Tamassy, De and Binh ${ }^{4}$ discussed weakly symmetric and weakly Ricci symmetric Kähler manifolds and showed that if the scalar curvature is non-zero constant then the sum of associated 1 -forms is zero.

An n-dimensional Riemannian manifold M is said to be weakly symmetric if the curvature tensor R of M satisfies

$$
\begin{align*}
\left(\nabla_{X} R\right)(Y, Z, U, V)= & A(X) R(Y, Z, U, V) \tag{1.1}\\
& +B(Y) R(X, Z, U, V)+C(Z) R(Y, X, U, V) \\
& +D(U) R(Y, Z, X, V)+E(V) R(Y, Z, U, X),
\end{align*}
$$

where A, B, C, D, E are simultaneously non-vanishing 1-forms and X, Y, Z, U, V are vector fields. In 1995, Prvanovic ${ }^{2}$ proved that if M be a weakly symmetric manifold satisfying (1.1) then the 1-forms B, C, D, and E are equal i.e. $B=C=D=E$.

In this paper, we have assumed that $B=C=D=E=\omega$ such that $g(X, \rho)=\omega(X)$ and $g(X, \alpha)=A(X)$, for associated vector fields ρ and α
of the 1 -forms ω and A respectively. Therefore, the equation (1.1) can be written as

$$
\begin{align*}
\left(\nabla_{X} R\right)(Y, Z, U, V)= & A(X) R(Y, Z, U, V) \\
& +\omega(Y) R(X, Z, U, V)+\omega(Z) R(Y, X, U, V) \tag{1.2}\\
& +\omega(U) R(Y, Z, X, V)+\omega(V) R(Y, Z, U, X)
\end{align*}
$$

An n (even)-dimensional manifold is said to be Kähler manifold if the following conditions hold:

$$
F^{2}=-X, \quad g(\bar{X}, \bar{Y})=g(X, Y), \quad\left(\nabla_{X} F\right) Y=0,
$$

where F is a tensor field of type $(1,1)$ such that $F(X)=\bar{X}, \mathrm{~g}$ is a Riemannian metric and ∇ is Levi-Civita connection.

2. Conformally flat weakly symmetric Kähler manifold

If M be a weakly symmetric Kähler manifold then the curvature tensor R satisfies

$$
\begin{equation*}
R(\bar{Y}, \bar{Z}, U, V)=R(Y, Z, U, V) \tag{2.1}
\end{equation*}
$$

Taking covariant derivative of equation (2.1), we can write

$$
\begin{equation*}
\left(\nabla_{X} R\right)(\bar{Y}, \bar{Z}, U, V)=\left(\nabla_{X} R\right)(Y, Z, U, V) . \tag{2.2}
\end{equation*}
$$

Using (1.2) in (2.2), we have

$$
\begin{align*}
\omega(Y) R(X, Z, U, V)+\omega(Z) R(Y, X, U, V)= & \omega(\bar{Y}) R(X, \bar{Z}, U, V) \\
& +\omega(\bar{Z}) R(\bar{Y}, X, U, V) \tag{2.3}
\end{align*}
$$

Putting $Z=U=e_{i}, 1 \leq i \leq n$ in (2.3) and summing over i, we get

$$
\begin{equation*}
\omega(Y) S(X, V)+R(X, Y, V, \rho)=\omega(\bar{Y}) S(X, \bar{V})-R(X, \bar{Y}, V, \bar{\rho}) \tag{2.4}
\end{equation*}
$$

We know that the Weyl conformal curvature tensor C on an $n(>3)$ dimensional manifold M is given by

$$
\begin{align*}
C(X, Y, Z, T) & =R(X, Y, Z, T)-\frac{1}{(n-2)}[S(Y, Z) g(X, T) \tag{2.5}\\
- & S(X, Z) g(Y, T)+S(X, T) g(Y, Z)-S(Y, T) g(X, Z)] \\
& +\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, T)-g(X, Z) g(Y, T)] .
\end{align*}
$$

If the manifold be conformally flat then from (2.5) the expression of the Riemannian curvature tensor R is given by

$$
\begin{align*}
R(X, Y, Z, T) & =\frac{1}{(n-2)}[S(Y, Z) g(X, T)-S(X, Z) g(Y, T) \tag{2.6}\\
& +S(X, T) g(Y, Z)-S(Y, T) g(X, Z)] \\
& -\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, T)-g(X, Z) g(Y, T)] .
\end{align*}
$$

Using (2.6) in (2.4), we have

$$
\begin{align*}
& \omega(Y) S(X, Z)+\frac{1}{(n-2)}[\omega(X) S(Y, Z) \\
& -\omega(Y) S(X, Z)+S(X, \rho) g(Y, Z)-S(Y, \rho) g(X, Z)] \\
& -\frac{r}{(n-1)(n-2)}[\omega(X) g(Y, Z)-\omega(Y) g(X, Z)] \tag{2.7}\\
& =\omega(\bar{Y}) S(X, \bar{Z})-\frac{1}{(n-2)}[\omega(\bar{X}) S(Y, \bar{Z})-\omega(Y) S(X, Z) \\
& \quad+S(X, \bar{\rho}) g(\bar{Y}, Z)-S(Y, \rho) g(X, Z)] \\
& \quad+\frac{r}{(n-1)(n-2)}[\omega(\bar{X}) g(Y, \bar{Z})-\omega(Y) g(X, Z)] .
\end{align*}
$$

Substituting $X=Z=e_{i}, 1 \leq i \leq n$ in (2.7) and summing over i, we get

$$
\begin{equation*}
S(Y, \rho)=\frac{r}{2} \omega(Y) \tag{2.8}
\end{equation*}
$$

Also, equation (2.4) can be written as

$$
\begin{equation*}
\omega(Y) S(X, V)+R(X, Y, V, \rho)=\omega(\bar{Y}) S(X, \bar{V})+R(X, \bar{Y}, \bar{V}, \rho) \tag{2.9}
\end{equation*}
$$

Using (2.6) in (2.9), we have

$$
\begin{gather*}
\begin{aligned}
\omega(Y) S(X, Z)-\omega(\bar{Y}) S(X, \bar{Z}) & =\frac{1}{(n-2)}[\omega(Y) S(X, Z) \\
& +S(Y, \rho) g(X, Z)-\omega(\bar{Y}) S(X, \bar{Z}) \\
& -S(\bar{Y}, \rho) g(X, \bar{Z})]
\end{aligned} \tag{2.10}\\
-\frac{r}{(n-1)(n-2)}[\omega(Y) g(X, Z)-\omega(\bar{Y}) g(X, \bar{Z})] .
\end{gather*}
$$

Putting $X=Z=e_{i}, 1 \leq i \leq n$ and taking summation over i, equation (2.10) yields

$$
\begin{equation*}
S(Y, \rho)=\frac{\left(n^{2}-3 n+3\right)}{n(n-1)} r \omega(Y) . \tag{2.11}
\end{equation*}
$$

Now, using (2.8) in (2.11), we get

$$
\begin{equation*}
(n-2)(n-3) r \omega(Y)=0 . \tag{2.12}
\end{equation*}
$$

Since $n>3$, we have $r . \omega(Y)=0$ which implies either $r=0$ or $\omega(Y)=0$.
But if $\omega(Y)=0$ then equation (1.2) reduces to

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, Z, U, V)=A(X) R(Y, Z, U, V), \tag{2.13}
\end{equation*}
$$

which shows that M is a recurrent manifold.
Thus we can state:
Theorem 2.1: Let M be a conformally flat weakly symmetric Kähler manifold then either scalar curvature vanishes or M is a recurrent manifold.

3. Concircularly flat weakly symmetric Kähler manifold

The concircular curvature tensor H of type $(0,4)$ in an n-dimensional Riemannian manifold M is defined by

$$
\begin{align*}
H(X, Y, Z, U) & =R(X, Y, Z, U) \tag{3.1}\\
& -\frac{r}{n(n-1)}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] .
\end{align*}
$$

If M be concircularly flat then above equation gives

$$
\begin{equation*}
R(X, Y, Z, U)=\frac{r}{n(n-1)}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] . \tag{3.2}
\end{equation*}
$$

Using (3.2) in (2.4), we have

$$
\begin{align*}
\omega(Y) S(X, Z)-\omega(\bar{Y}) S(X, \bar{Z})+\frac{r}{n(n-1)}[\omega(X) g(Y, Z) \tag{3.3}\\
+\omega(\bar{X}) g(Y, \bar{Z})-2 \omega(Y) g(X, Z)]=0 .
\end{align*}
$$

Putting $X=Z=e_{i}, 1 \leq i \leq n$ and taking summation over i, equation (3.3) yields

$$
\begin{equation*}
(n-2) r \omega(Y)=0 . \tag{3.4}
\end{equation*}
$$

Clearly, above equation implies either $n=2$ or $r=0$ or $\omega(Y)=0$.
But if $\omega(Y)=0$ then equation (1.2) reduces to

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, Z, U, V)=A(X) R(Y, Z, U, V) \tag{3.5}
\end{equation*}
$$

which shows that M is a recurrent manifold.
Hence, we have:

Theorem 3.1: Let M be a concircularly flat weakly symmetric Kähler manifold then for $n>2$ either scalar curvature vanishes or M is a recurrent manifold.

4. \mathbf{W}_{2}-flat weakly symmetric Kähler manifold

In 1970, the W_{2} curvature tensor is introduced by G. P. Pokhariyal and R. S. Mishra ${ }^{8}$ and for n-dimensional Riemannian manifold M, defined by

$$
\begin{align*}
W_{2}(X, Y, Z, U)= & R(X, Y, Z, U) \tag{4.1}\\
& +\frac{1}{(n-1)}[S(Y, U) g(X, Z)-S(X, U) g(Y, Z)] .
\end{align*}
$$

If M be W_{2}-flat then above equation reduces to

$$
\begin{equation*}
R(X, Y, Z, U)=\frac{1}{(n-1)}[S(X, U) g(Y, Z)-S(Y, U) g(X, Z)] . \tag{4.2}
\end{equation*}
$$

By using (4.2), equation (2.4) gives

$$
\begin{align*}
& \omega(Y) S(X, Z)-\omega(\bar{Y}) S(X, \bar{Z})+\frac{1}{(n-1)}[S(X, \rho) g(Y, Z) \tag{4.3}\\
&+S(X, \bar{\rho}) g(\bar{Y}, Z)-2 S(Y, \rho) g(X, Z)]=0 .
\end{align*}
$$

Putting $X=Z=e_{i}, 1 \leq i \leq n$ and taking summation over i, equation (4.3) gives

$$
\begin{equation*}
S(Y, \rho)=\frac{(n-1) r+2}{2 n} \omega(Y) . \tag{4.4}
\end{equation*}
$$

Again, using (4.2) in (2.9), we have

$$
\begin{equation*}
\omega(Y) S(X, Z)-\omega(\bar{Y}) S(X, \bar{Z}) \tag{4.5}
\end{equation*}
$$

$$
+\frac{1}{(n-1)}[S(\bar{Y}, \rho) g(X, \bar{Z})-S(Y, \rho) g(X, Z)]=0 .
$$

Putting $X=Z=e_{i}, 1 \leq i \leq n$ and taking summation over i, equation (4.5) gives

$$
\begin{equation*}
S(Y, \rho)=\frac{(n-1)}{n} r \omega(Y) . \tag{4.6}
\end{equation*}
$$

Equations (4.4) and (4.6) together yields

$$
\begin{equation*}
[(n-1) r-2] \omega(Y)=0, \tag{4.7}
\end{equation*}
$$

which implies either $r=2 /(n-1)$ or $\omega(Y)=0$.
Now, if $\omega(Y)=0$ then equation (1.2) gives

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, Z, U, V)=A(X) R(Y, Z, U, V), \tag{4.8}
\end{equation*}
$$

which is the condition of recurrent manifold.
Thus we conclude:
Theorem 4.1: Let M be a W_{2}-flat weakly symmetric Kähler manifold then for $n>1$ either scalar curvature $r=2 /(n-1)$ or M is recurrent manifold.

References

1. L. Tamassy and T. Q. Binh, On weakly symmetric and weakly projective symmetric manifolds, Colloq. Math. J. Bolyai, 56 (1989) 663-670.
2. M. Prvanovic, On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen, 46 (1) (1995) 19-25.
3. F. Malek and M. Samavaki, On weakly symmetric Riemannian manifolds, Diff. Geom. Dyn. Syst., 10 (2008) 215-220.
4. L. Tamassy, U. C. De and T. Q. Binh, On weak symmetries of Kähler manifolds, Balkan Journal of Geometry and Its Applications, 5 (2000) 149-155.
5. P. N. Pandey and B. B. Chaturvedi, Almost Hermitian manifold with semi-symmetric recurrent connection, J. Inter. Acad. Phy. Sci., 10 (2006) 69-74.
6. G. P. Pokhariyal and R. S. Mishra, Yokohama Math. Journal, 18 (1970) 105-108.
