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Abstract: In the present paper we employ the notion of reciprocal 
continuity to obtain a common fixed point theorem in Menger space in 
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the relationship between continuity of mappings and reciprocal continuity in 
the setting of Menger spaces. Our result improves the recent result of Singh 
and Jain1 in Menger spaces and extends many known results in metric 
spaces.
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1. Introduction
Menger K.2 introduced the notion of probabilistic metric space (or 

statistical space or Menger space) which is a generalization of metric space 
and the study of this space was expanded rapidly with the pioneering work 
of Schweizer and Skalar3 & Stevens4. Bharucha Reid5 set out the tradition of 
proving fixed point theorems in Menger space. Since that time a substantial 
literature has been developed on this topic. In recent years, some interesting 
fixed point theorems for four self maps or a collection of maps satisfying 
contractive type condition in Menger space have been reported in the 
literature e g. D. Xieping6, S. L. Singh7, Y. J. Cho8-9, S. N. Mishra10, B. 
Singh1,11,12,13,14, Kutukchu15,16. These theorems invariably require a 
commutative or compatibility condition and a contractive condition besides 
assuming continuity of at least one of the mappings and each theorems aims 
at weakening one or more of these conditions. 

The present paper is an attempt to obtain a common fixed point theorem 
by replacing continuity condition with a weaker condition called reciprocal 
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continuity. We also show by means of an example that in the setting of fixed 
point theorem of Singh et al1, the notion of reciprocal continuity is actually 
weaker then the assumption of continuity of one of the mappings. Using the 
notion of reciprocal continuity of mappings we can widen the scope of many 
interesting fixed point theorems on Menger spaces as well as fuzzy metric 
spaces (e g. Kutukchu15-16, B. Singh et al1,11,12,13,14, R. Chug17, Hong9, Khan 
et al18).

2. Preliminaries

Definition5 1: A mapping F: R → R+ is called a distribution if it is non-
decreasing left continuity with inf {F(t): t R } = 0 and  sup {F(t): t  R } = 
1. We shall denote by L the set of all distribution function defined by 

                 0,  t < 0 
H (t) =   

                                                                 1,  t > 0
Definition5 2: A probabilistic metric space (PM-space) is an ordered 

pair (X, F) where X is an abstract set of elements and F: X  X L is 
defined by (p, q)  Fp,q where L is the set of all distribution function i.e. L 
= {Fp, q: p, q  X} where the function Fp, q satisfy:

(a) Fp, q (x) = 1 for all x  0 iff p = q
(b) Fp, q (0) = 0; 
(c) Fp, q = Fq, p; 
(d) If Fp, q (x) = 1 and Fq, r (y) = 1 then Fp, r (x + y) = 1,

                    where x, y  R the set of real numbers.

Definition5 3: A mapping t: [0, 1]  [0, 1]   [0, 1] is called a t-norm if 

(a) t(a,1) = a, t(0, 0) = 0
(b) t(a, b) = t(b, a)
(c) t(c, d)   t(a, b) for c  a, d  b

(d) t(t(a, b),c) = t(a, t(b, c)).

Definition5 4: A Menger space is a triplet (X, F, t) where (X, F) is PM-
space and t is a t-norm such that for all p, q, r  X and for all x, y  0 

Fp, q (x + y)  t (Fp, q (x), Fq, r(y))

Proposition5 1: If (X, d) is a metric space then the metric d induces a 
mapping F: X  X L, defined by Fp, q (x) = H (x- d(p, q)),  p, q  X and x 
 R. Further, if the t-norm t: [0,1]  [0,1]  [0,1] is defined by t(a, b) = 
min(a, b), then (X, F, t) is a Menger space. It is complete if (X, d) is 
complete. 

The space (X, F, t) so obtained is called the induced Menger space.
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Definition10 5: A sequence {pn} in X is said to converge to a point p in 
X (written as pn  p) if for    0 and    0, there is an integer M (, ) 
such that Fpn, q () > 1- for all n  M(, ).

The sequence is said to be Cauchy sequence if for each   0 and   0 
there exists an integer M (,) such that Fpn, pm ()  1 -   for all n, m   M 
(,). 

A Menger space is said to be complete if every Cauchy sequence 
converges to a point of it.

Definition1 6: Self-maps A and S of a Menger space (X, F, t) is said to 
be weakly compatible (or coincidently commuting) if they commute at their 
coincidence point, i.e. if Ap = Sp for some p  X then ASp = SAp.

Definition10 7: Self-mappings A and S of a Menger space (X, F, t) are 
called compatible if FASpn, SApn (x)  1 for all x  0, whenever {pn} is a 
sequence in X such that {Apn}, {Spn}  u, for some u  X as n .

Proposition 2: Self-maps A and S of a Menger space (X, F, t) are 
compatible then they are weakly compatible.
[However, the converse of the above proposition is need not be true as 
shown in example 3.2 below]

Definition 8: Let A and S be two self maps of a Menger space (X, F, t), 
we will call A and S to be reciprocally continuous if limnASpn = Au and 
limnSApn = Su, whenever {pn} is a sequence in X such that Apn, Spn  u 
as n for some u  X. 

We observe that if A and S both  are continuous then they are obviously 
reciprocally continuous but the converse need not be true as shown in our 
example 3.1 below.

Lemma19 1: In a Menger space (X, F, t),  t(x, x) = x ,  x  [0, 1] if and 
only if t(x, y) = min {x, y} for all x, y  [0, 1]. 

In view of above and as observed by Xiao & Zhu20 it is clear that only t-
norm satisfying t(a, a)  a is min t-norm and so the number of authors (e g. 
Cho21,8, Cho9, Kutucku16-22, Khan18, B. Singh et al1,12,14, Barucha Ried et al5, 
Sharma23) assuming t(x, x)  x to obtain common fixed point in Menger 
spaces as well as fuzzy metric spaces reduces to the assumptions that t(a, a) 
= a. 

Not only this but we have already a lower as well as upper bound for t-
norm in the following result:

Lemma19 2: imin (a, b)  ip (a, b)  min (a, b).
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Lemma10 3: Let (X, F, t) be a Menger space if there exists k  (0, 1) 
such that for p, q  X, Fp, q (kx)  F p, q (x), then p = q.

3. Main Results

Theorem 3.1: Let A, B, S, T, L and M are self maps on a complete 
Menger Space(X,F, t) (where t is any continuous t-norm)  for all  a  [0, 1] 
satisfying:

(3.1.1) L(X)  ST(X), M(X)  AB(X);
(3.1.2) AB = BA, ST = TS, LB = BL, MT = TM 
(3.1.3) (M, ST) is weakly compatible 

      (3.1.4) there exists k  (0, 1) such that 
FLp, Mq   min {FABp, Lp(x), FSTq, Mq(x), FSTq, Lp(x), FABp, Mq((2-)x),                        
FABp, STq (x)} 
for all p,qX, (0, 2) and x  0. Then the continuity of one of the 
mappings in compatible pair (L, AB) implies their reciprocal continuity.

Proof: Suppose that AB is continuous in the compatible pair of 
mappings L and AB. We claim that (L, AB) are reciprocal continuous. Let 
{xn} be any sequence in X such that limn Lxn = z and limn ABxn = z for 
some z  X. To prove our assertion we shall show that LABxn  Lz and 
ABLxn  ABz as n .

Since AB is continuous we get, ABABxn  ABz and ABLxn  ABz as 
n. Now compatibility of L and AB implies that limn FLABxn, ABLxn = 1, 
i.e. LABxn  ABz as n . Also since L(X)  ST(X), for each n, there 
exists {yn} in X such that LABxn = STyn. Thus ABABxn ABz, LABxn
ABz, ABLxn ABz  and  STyn ABz as n .  Now we shall show that 
Myn ABz as n. For this, from (3.1.5) we have, 

FABz, Myn(kx) = FLABxn, Myn(kx)
                                        min {FABABxn, LABxn(x),FSTyn, Myn(x), FSTyn,                           

LABxn(Bx), FABABxn, Mym((2-)x), FABABxn, STyn(x)}
which implies that Myn ABz as m, n  (by lemma 2 and taking  = 1).
Now  the inequality,               

FLz, ABz(kx)    =  FLz, Myn(kx) 
               min {FABz, Lz(x), FSTyn, Myn(x), FSTyn, Lz(Bx),

                                                  FABz, Myn((2-)x), FABz, STyn(x)}

which implies, Lz = ABz as n   (by Lemma 2 and taking  = 1). Thus 
ABLxn  ABz and ABLxn  ABz = Lz  as  n   .Therefore, L and AB 
are reciprocal continuous in (X, F, t).
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Suppose that L is continuous in the compatible pair of mappings L and 
AB. We claim that (L, AB) is reciprocal continuous. Let {xn} be any 
sequence in X such that Lxn  z and ABxn  z as n  for some z  X. 
To prove our assertion, we shall show that LABxn Lz and ABLxn  ABz 
as n . Since L is continuous, we get LLxn Lz, LABxn Lz as n . 
Now compatibility of L and AB gives us ABLxn  Lz as n . Now using 
step (8) and (9) of the proof of theorem 2.1 of Singh et al1 we get Lz = ABz 
which implies that ABLxn = Lz = ABz as n . Therefore L and AB are 
reciprocal continuous in (X, F, t).

In the above theorem we have shown that in the setting of the theorem 
2.1 of Singh et al1 continuity of one of the mappings in compatible pair 
implies their reciprocal continuity. Therefore the condition (2.1.3) of 
continuity of one of the mapping in compatible pair (L, AB) can be further 
replaced by the weaker notion of reciprocal continuity which still assume 
the existence of common fixed point for maps but does not force the maps to 
be continuity even at common fixed point.

The following theorem was proved by Singh & Jain1

Theorem1 3.2: Let A,B,S,T and M are self maps on a complete Menger 
space (X, F, t) with t(a, a)  a for all a  [0,1] satisfying:
  (3.2.1)   L(X)  ST(X), M(X)  AB(X) 
  (3.2.2)   AB = BA, ST = TS, LB = BL, MT = TM
  (3.2.3)   either AB or L is continuous
  (3.2.4)   (L, AB) is compatible and (M, ST) is weakly compatible
  (3.2.5)    there exists k  (0, 1) such that 
  FLpMq  min {FABp, Lp(x), FSTq, Mq(x), FSTq, Lp(x), FABp, Mq((2-)x), FABp, STq (x)}

            

for all p, q  X,   (0, 2) and x  0.  Then A, B, S, T and M have a unique 
common fixed point in X.

Now as an application of the relationship between continuity of the 
mappings and reciprocal continuity established in the above theorem 3.1, we 
now prove the following theorem which improves the result of Singh et al1

and presents an example which demonstrates that the notion of reciprocal 
continuity of mappings is weaker than the continuous map.

Theorem 3.3:  Let A, B, S, T, L and M are self maps on a complete 
Menger space (X, F, t) with  t(a, a) = a for all a  [0, 1] satisfying 
conditions (3.2.1), (3.2.2), (3.2.4) and (3.2.5) of the above theorem 3.1. 
Suppose that (L, AB) is compatible pair of reciprocal continuous mappings. 
Then all the maps A, B, S, T, L and M have a unique common fixed point.

Proof: let x0  X, from condition (3.2.1) there exists x1, x2  X such that 
Lx0 = STx1 = y0 and Mx1 = ABx2 = y1. Inductively we can construct 



200                               D. Gopal, A. S. Ranadive, U. Mishra and R. P. Pant

sequence {xn} and {yn} in X such that Lx2n = STx2n+1 = y2n and Mx2n+1 = 
ABx2n+1 = y2n+1 for n = 0, 1, 2, 3,….. .
Then following the argument by Singh et al3 we have,

       Fyn, yn+1(kx)     min{Fyn-1, yn(x), Fyn, yn+1(x)}.

Since Fp, q (.) is non-decreasing therefore, we get

(3.3.1)                    Fyn, yn+1(kx)    Fyn-1, yn(x)                                                   
To prove {yn} is a Cauchy sequence, we prove (3.3.2) is true for all n  n0

and for every m  N,  

(3.3.2)                    Fyn, yn+m(kx) >  1-                for t > 0,   (0, 1)             

Hence from (3.3.1) we have, 
           Fyn, yn+1(kx)  Fyn-1, yn (xk-1)  Fyn-2, yn-1(xk-2)   ……. Fy0, y1(xk-n) 
1 as n. 

Thus (3.3.2) is true for m = 1. Suppose (3.3.2) is true for m then we shall 
show that this is also true for m+1. For this, using the definition of Menger 
space, (3.3.1) and (3.3.2) we have,
          Fyn, yn+m+1(x)   t ( Fyn, yn+m(x/2), Fyn+m, yn+m+1 (x/2) )

  = min (Fyn, yn+m(x/2), Fyn+m, yn+m+1 (x/2)) > 1- .
Hence (3.3.2) is true for m+1. Thus {yn} is a Cauchy sequence in X. 

Since X is complete hence {yn} z in X. Also its subsequences converge as 
follows:    

{Mx2n+1} z           and          {STx2n+1}  z            
{Lx2n} z               and          {ABx2n+1} z            

Now reciprocal continuity and compatibility of the pair (L, AB) gives us

   LABx2n Lz and ABLx2n  ABz  and  limn (FLAB x2n ,ABL x2n ) = 1 
i.e.         F Lz,ABz(x) = 1. Hence Lz = ABz.

Now putting  p = ABx2n, q = x2n+1 with  = 1 in contractive condition and 
using lemma 2 we get ABz = z. Thus Lz = ABz = z.

To conclude the proof we can follow step 4 to step 10 of the proof of 
theorem 2.1 of B. Singh et al1.

We now give an example, which not only illustrate our theorem 3.2 but 
also show that the notion of reciprocal continuity is weaker than the 
continuity condition of maps.

Example 3.1: Let (X, d) be a metric space where X = [0, 3] and (X, F, t) 
be the induced Menger space with Fp, q () = H ( - d (p, q)), for all p, q  X 
and for all  > 0  and  t(a, b) =  min(a, b), for all a, b  [0, 1].  . Define self 
maps A, B, S, T, L and M on X as follows: 
               Lx = 1 if 0    x  2 and 2   x   3, L2 = 0; 

Mx = 0 if 0   x  1, 1  x  2, 2  x  3,   M1 = M2 = 1;  
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(A = B)  Ax = 0 if 0  x  1, 1  x  2, 2  x  3, A1 = A3 = 1, A2 = 2;
Sx = 0 if 0  x  1, 1 x  2, 2  x  3 S1 = 1, S2 = 0, S0 = S3 = 2;
Tx = 0 if  0  x  1, 1 x  2, 2  x  3  T1 = 1, T2 = 2.

Then the maps A(= B), S, T, L, M satisfy all the conditions of the above 
theorem 3.3 with  k(1/2, 1) and  = 1 and have a unique common fixed 
point x = 1. It may be noted that in this example L(X) = {0,1}  ST(X) = 
{0,1,2}, M(X) = {0,1}  AB(X) = {0,1,2}and the pair (L, AB) is 
reciprocally continuous for a sequence {xn} = {1} in X. Also (L, AB) is 
commuting maps and hence compatible. But neither L nor AB is 
continuous. 

Remark1: The maps A (= B), S, T and M are discontinuous even at the 
common fixed point x = 1.

Remark2: The known common fixed point theorems involving a 
collection of maps in Menger spaces as well as fuzzy metric spaces require 
one of the maps in compatible pair to be continuous. For example, main 
theorems of B. Singh et al1,11,12,13,14 assumes at least one of the maps to be 
continuous in compatible pair of maps. Likewise, theorem 3.1 of Kutukcu15

assumes either AB or L to be continuous maps. One more theorems of 
Kutukcu16 assume the mappings S to be continuous and (S, Tn) to 
commuting pair of maps in Menger spaces. Similarly, Hong9 assumes S and 
T to be continuous mapping and the main theorem of  R.Chug et al17 assume 
one of the mappings A, B, S or T to be continuous in fuzzy metric spaces. 
The present theorem however does not require any of the mappings to be 
continuous and hence all the results mentioned above can be further 
improved and generalized in the spirit of our theorem 3.3. Further, since 
every metric space induces a Menger space. Thus our theorem 3.2 above 
extends the results of R. P. Pant24,25,26, Fishrer27, Jungck28,29, Jachymski30 for 
six mappings in metric spaces.

Remark 3: It is obvious that in most of the fixed point theorems in  
Menger spaces as well as fuzzy metric spaces to prove the sequence of 
iterates of a point is a Cauchy sequence a particular class of t-norm is 
required. In our theorem 3.2 above we have assumed the t-norm as min 
norm, however, adopting the approach of Liu et al22 one     can easily 
replace the condition of min norm by a larger class of t-norm called Hadzic  
type t-norm (in short H type t-norm). The work along this line has been 
done in our paper31 recently communicated) 
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The present paper is an attempt to obtain a common fixed point theorem by replacing continuity condition with a weaker condition called reciprocal continuity. We also show by means of an example that in the setting of fixed point theorem of Singh et al1, the notion of reciprocal continuity is actually weaker then the assumption of continuity of one of the mappings. Using the notion of reciprocal continuity of mappings we can widen the scope of many interesting fixed point theorems on Menger spaces as well as fuzzy metric spaces (e g. Kutukchu15-16, B. Singh et al1,11,12,13,14, R. Chug17, Hong9, Khan et al18).


2. Preliminaries


Definition5 1: A mapping F: R → R+ is called a distribution if it is non-decreasing left continuity with inf {F(t): t (R } = 0 and  sup {F(t): t ( R } = 1. We shall denote by L the set of all distribution function defined by 


                 0,  t < 0 






H (t) =
  


                                                                 1,  t > 0


Definition5 2: A probabilistic metric space (PM-space) is an ordered pair (X, F) where X is an abstract set of elements and F: X ( X( L is defined by (p, q) ( Fp,q where L is the set of all distribution function i.e. L = {Fp, q: p, q ( X} where the function Fp, q satisfy:



(a)
Fp, q (x) = 1 for all x ( 0 iff p = q



(b)
Fp, q (0) = 0; 



(c)
Fp, q = Fq, p; 



(d)
If Fp, q (x) = 1 and Fq, r (y) = 1 then Fp, r (x + y) = 1,


                    where x, y ( R the set of real numbers.


Definition5 3: A mapping t: [0, 1] ( [0, 1] (  [0, 1] is called a t-norm if 



(a)
t(a,1) = a, t(0, 0) = 0



(b)
t(a, b) = t(b, a)



(c)
t(c, d) (  t(a, b) for c ( a, d ( b



(d)
t(t(a, b),c) = t(a, t(b, c)).


Definition5 4: A Menger space is a triplet (X, F, t) where (X, F) is PM-space and t is a t-norm such that for all p, q, r ( X and for all x, y ( 0 



Fp, q (x + y) ( t (Fp, q (x), Fq, r(y))


Proposition5 1: If (X, d) is a metric space then the metric d induces a mapping F: X ( X( L, defined by Fp, q (x) = H (x- d(p, q)),  p, q ( X and x ( R. Further, if the t-norm t: [0,1] ( [0,1] ( [0,1] is defined by t(a, b) = min(a, b), then (X, F, t) is a Menger space. It is complete if (X, d) is complete. 



The space (X, F, t) so obtained is called the induced Menger space.


Definition10 5: A sequence {pn} in X is said to converge to a point p in X (written as pn ( p) if for  ( ( 0 and  ( ( 0, there is an integer M ((, () such that Fpn, q (() > 1-( for all n ( M((, ().



The sequence is said to be Cauchy sequence if for each ( ( 0 and ( ( 0 there exists an integer M ((,() such that Fpn, pm (() ( 1 - (  for all n, m (  M ((,(). 



A Menger space is said to be complete if every Cauchy sequence converges to a point of it.


Definition1 6: Self-maps A and S of a Menger space (X, F, t) is said to be weakly compatible (or coincidently commuting) if they commute at their coincidence point, i.e. if Ap = Sp for some p ( X then ASp = SAp.


Definition10 7: Self-mappings A and S of a Menger space (X, F, t) are called compatible if FASpn, SApn (x) ( 1 for all x ( 0, whenever {pn} is a sequence in X such that {Apn}, {Spn} ( u, for some u ( X as n ( (.


Proposition 2: Self-maps A and S of a Menger space (X, F, t) are compatible then they are weakly compatible.


[However, the converse of the above proposition is need not be true as shown in example 3.2 below]


Definition 8: Let A and S be two self maps of a Menger space (X, F, t), we will call A and S to be reciprocally continuous if limn((ASpn = Au and limn((SApn = Su, whenever {pn} is a sequence in X such that Apn, Spn ( u as n( ( for some u ( X. 


We observe that if A and S both  are continuous then they are obviously reciprocally continuous but the converse need not be true as shown in our example 3.1 below.


Lemma19 1: In a Menger space (X, F, t),  t(x, x) = x , ( x ( [0, 1] if and only if t(x, y) = min {x, y} for all x, y ( [0, 1]. 


In view of above and as observed by Xiao & Zhu20 it is clear that only t-norm satisfying t(a, a) ( a is min t-norm and so the number of authors (e g. Cho21,8, Cho9, Kutucku16-22, Khan18, B. Singh et al1,12,14, Barucha Ried et al5, Sharma23) assuming t(x, x) ( x to obtain common fixed point in Menger spaces as well as fuzzy metric spaces reduces to the assumptions that t(a, a) = a. 


Not only this but we have already a lower as well as upper bound for t-norm in the following result:


Lemma19 2: imin (a, b) ( ip (a, b) ( min (a, b).

Lemma10 3: Let (X, F, t) be a Menger space if there exists k ( (0, 1) such that for p, q ( X, Fp, q (kx) ( F p, q (x), then p = q.


3. Main Results



Theorem 3.1: Let A, B, S, T, L and M are self maps on a complete Menger Space(X,F, t) (where t is any continuous t-norm)  for all  a ( [0, 1] satisfying:


(3.1.1)

L(X) ( ST(X), M(X) ( AB(X);


(3.1.2)

AB = BA, ST = TS, LB = BL, MT = TM 


(3.1.3)

(M, ST) is weakly compatible 


      (3.1.4)
there exists k ( (0, 1) such that 


FLp, Mq  ( min {FABp, Lp(x), FSTq, Mq(x), FSTq, Lp(x), FABp, Mq((2-()x),                        FABp, STq (x)} 


for all p,q(X, (((0, 2) and x ( 0. Then the continuity of one of the mappings in compatible pair (L, AB) implies their reciprocal continuity.



Proof: Suppose that AB is continuous in the compatible pair of mappings L and AB. We claim that (L, AB) are reciprocal continuous. Let {xn} be any sequence in X such that limn(( Lxn = z and limn(( ABxn = z for some z ( X. To prove our assertion we shall show that LABxn ( Lz and ABLxn ( ABz as n ( (.



Since AB is continuous we get, ABABxn ( ABz and ABLxn ( ABz as n( (. Now compatibility of L and AB implies that limn(( FLABxn, ABLxn = 1, i.e. LABxn ( ABz as n( (. Also since L(X) ( ST(X), for each n, there exists {yn} in X such that LABxn = STyn. Thus ABABxn( ABz, LABxn( ABz, ABLxn( ABz  and  STyn( ABz as n( (.  Now we shall show that Myn( ABz as n( (. For this, from (3.1.5) we have, 



FABz, Myn(kx) 
= FLABxn, Myn(kx)


                                       ( min {FABABxn, LABxn(x),FSTyn, Myn(x), FSTyn,                           LABxn(Bx), FABABxn, Mym((2-()x), FABABxn, STyn(x)}


which implies that Myn( ABz as m, n ( ( (by lemma 2 and taking ( = 1).


Now  the inequality,



FLz, ABz(kx)    =  FLz, Myn(kx) 





              ( min {FABz, Lz(x), FSTyn, Myn(x), FSTyn, Lz(Bx),


                                                  FABz, Myn((2-()x), FABz, STyn(x)}


which implies, Lz = ABz as n ( ( (by Lemma 2 and taking ( = 1). Thus ABLxn ( ABz and ABLxn ( ABz = Lz  as  n ( ( .Therefore, L and AB are reciprocal continuous in (X, F, t).



Suppose that L is continuous in the compatible pair of mappings L and AB. We claim that (L, AB) is reciprocal continuous. Let {xn} be any sequence in X such that Lxn ( z and ABxn ( z as n( ( for some z ( X. To prove our assertion, we shall show that LABxn (Lz and ABLxn ( ABz as n( (. Since L is continuous, we get LLxn( Lz, LABxn( Lz as n( (. Now compatibility of L and AB gives us ABLxn ( Lz as n( (. Now using step (8) and (9) of the proof of theorem 2.1 of Singh et al1 we get Lz = ABz which implies that ABLxn = Lz = ABz as n( (. Therefore L and AB are reciprocal continuous in (X, F, t).



In the above theorem we have shown that in the setting of the theorem 2.1 of Singh et al1 continuity of one of the mappings in compatible pair implies their reciprocal continuity. Therefore the condition (2.1.3) of continuity of one of the mapping in compatible pair (L, AB) can be further replaced by the weaker notion of reciprocal continuity which still assume the existence of common fixed point for maps but does not force the maps to be continuity even at common fixed point.



The following theorem was proved by Singh & Jain1 


Theorem1 3.2: Let A,B,S,T and M are self maps on a complete Menger space (X, F, t) with t(a, a) ( a for all a ( [0,1] satisfying:


  (3.2.1)   L(X) ( ST(X), M(X) ( AB(X) 


  (3.2.2)   AB = BA, ST = TS, LB = BL, MT = TM


  (3.2.3)   either AB or L is continuous


  (3.2.4)   (L, AB) is compatible and (M, ST) is weakly compatible


  (3.2.5)    there exists k ( (0, 1) such that 


  FLpMq ( min {FABp, Lp(x), FSTq, Mq(x), FSTq, Lp(x), FABp, Mq((2-()x), FABp, STq (x)}

 for all p, q ( X, ( ( (0, 2) and x ( 0.  Then A, B, S, T and M have a unique common fixed point in X.



Now as an application of the relationship between continuity of the mappings and reciprocal continuity established in the above theorem 3.1, we now prove the following theorem which improves the result of Singh et al1 and presents an example which demonstrates that the notion of reciprocal continuity of mappings is weaker than the continuous map.



Theorem 3.3:  Let A, B, S, T, L and M are self maps on a complete Menger space (X, F, t) with  t(a, a) = a for all a ( [0, 1] satisfying conditions (3.2.1), (3.2.2), (3.2.4) and (3.2.5) of the above theorem 3.1. Suppose that (L, AB) is compatible pair of reciprocal continuous mappings. Then all the maps A, B, S, T, L and M have a unique common fixed point.


Proof: let x0 ( X, from condition (3.2.1) there exists x1, x2 ( X such that Lx0 = STx1 = y0 and Mx1 = ABx2 = y1. Inductively we can construct sequence {xn} and {yn} in X such that Lx2n = STx2n+1 = y2n and Mx2n+1 = ABx2n+1 = y2n+1 for n = 0, 1, 2, 3,….. .


Then following the argument by Singh et al3 we have,



       Fyn, yn+1(kx)   (  min{Fyn-1, yn(x), Fyn, yn+1(x)}.


Since Fp, q (.) is non-decreasing therefore, we get


(3.3.1)                    Fyn, yn+1(kx)  (  Fyn-1, yn(x)                                                   


To prove {yn} is a Cauchy sequence, we prove (3.3.2) is true for all n ( n0
and for every m ( N,  


(3.3.2)                    Fyn, yn+m(kx) >  1-(                for t > 0, ( ( (0, 1)             

Hence from (3.3.1) we have, 


           Fyn, yn+1(kx) ( Fyn-1, yn (xk-1) ( Fyn-2, yn-1(xk-2) (  …….( Fy0, y1(xk-n) ( 1 as n( (. 



Thus (3.3.2) is true for m = 1. Suppose (3.3.2) is true for m then we shall show that this is also true for m+1. For this, using the definition of Menger space, (3.3.1) and (3.3.2) we have,


          Fyn, yn+m+1(x) (  t ( Fyn, yn+m(x/2), Fyn+m, yn+m+1 (x/2) )






  = min (Fyn, yn+m(x/2), Fyn+m, yn+m+1 (x/2)) > 1-( .



Hence (3.3.2) is true for m+1. Thus {yn} is a Cauchy sequence in X. Since X is complete hence {yn}( z in X. Also its subsequences converge as follows: 



{Mx2n+1}( z           and          {STx2n+1}(  z            



{Lx2n}( z               and          {ABx2n+1}( z            


Now reciprocal continuity and compatibility of the pair (L, AB) gives us


   LABx2n ( Lz and ABLx2n ( ABz  and  limn(( (FLAB x2n ,ABL x2n ) = 1 


i.e.         F Lz,ABz(x) = 1. Hence Lz = ABz.


Now putting  p = ABx2n, q = x2n+1 with ( = 1 in contractive condition and using lemma 2 we get ABz = z. Thus Lz = ABz = z.



To conclude the proof we can follow step 4 to step 10 of the proof of theorem 2.1 of B. Singh et al1.


We now give an example, which not only illustrate our theorem 3.2 but also show that the notion of reciprocal continuity is weaker than the continuity condition of maps.


Example 3.1: Let (X, d) be a metric space where X = [0, 3] and (X, F, t) be the induced Menger space with Fp, q (() = H (( - d (p, q)), for all p, q ( X and for all ( > 0  and  t(a, b) =  min(a, b), for all a, b ( [0, 1].  . Define self maps A, B, S, T, L and M on X as follows: 


               Lx = 1 if 0  (  x ( 2 and 2 (  x (  3, L2 = 0; 



Mx = 0 if 0 (  x ( 1, 1 ( x ( 2, 2 ( x ( 3,   M1 = M2 = 1;  


(A = B)  Ax = 0 if 0 ( x ( 1, 1 ( x ( 2, 2 ( x ( 3, A1 = A3 = 1, A2 = 2;



Sx = 0 if 0 ( x ( 1, 1( x ( 2, 2 ( x ( 3 S1 = 1, S2 = 0, S0 = S3 = 2;



Tx = 0 if  0 ( x ( 1, 1( x ( 2, 2 ( x ( 3  T1 = 1, T2 = 2.



Then the maps A(= B), S, T, L, M satisfy all the conditions of the above theorem 3.3 with  k((1/2, 1) and ( = 1 and have a unique common fixed point x = 1. It may be noted that in this example L(X) = {0,1} ( ST(X) = {0,1,2}, M(X) = {0,1} ( AB(X) = {0,1,2}and the pair (L, AB) is reciprocally continuous for a sequence {xn} = {1} in X. Also (L, AB) is commuting maps and hence compatible. But neither L nor AB is continuous. 



Remark1: The maps A (= B), S, T and M are discontinuous even at the common fixed point x = 1.


Remark2: The known common fixed point theorems involving a collection of maps in Menger spaces as well as fuzzy metric spaces require one of the maps in compatible pair to be continuous. For example, main theorems of B. Singh et al1,11,12,13,14 assumes at least one of the maps to be continuous in compatible pair of maps. Likewise, theorem 3.1 of Kutukcu15 assumes either AB or L to be continuous maps. One more theorems of Kutukcu16 assume the mappings S to be continuous and (S, Tn) to commuting pair of maps in Menger spaces. Similarly, Hong9 assumes S and T to be continuous mapping and the main theorem of  R.Chug et al17 assume one of the mappings A, B, S or T to be continuous in fuzzy metric spaces. The present theorem however does not require any of the mappings to be continuous and hence all the results mentioned above can be further improved and generalized in the spirit of our theorem 3.3. Further, since every metric space induces a Menger space. Thus our theorem 3.2 above extends the results of R. P. Pant24,25,26, Fishrer27, Jungck28,29, Jachymski30 for six mappings in metric spaces.



Remark 3: It is obvious that in most of the fixed point theorems in  Menger spaces as well as fuzzy metric spaces to prove the sequence of iterates of a point is a Cauchy sequence a particular class of t-norm is required. In our theorem 3.2 above we have assumed the t-norm as min norm, however, adopting the approach of Liu et al22 one     can easily replace the condition of min norm by a larger class of t-norm called Hadzic  type t-norm (in short H type t-norm). The work along this line has been done in our paper31 recently communicated) 
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