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Abstract: This paper examines the operating characteristics of an 
MX/G/1 retrial queueing system under Bernoulli vacation schedule with 
setup times. The server renders first phase of essential service (FPS) to all 
the arriving units whereas second phase of multi-optional services (SPS) 
to only some of them who demand for the same. The server may 
breakdown according to Poisson process in working state i.e. either 
during FPS or SPS. The broken down server is then repaired by the 
repairman and becomes as good as before failure. When the server just 
after a service or repair completion finds no customers waiting to be 
served, he departs for a single vacation of arbitrary distributed length 
according to Bernoulli schedule. When the batch of arriving customers 
finds the server busy or on vacation, then the whole batch either with 
probability p joins a pool of blocked customers called ‘orbit’ or with 
complementary probability p (=1-p) leaves the system. On the other 

hand, if the arriving batch finds the server idle, then one of the customers 
from the batch starts its service and the rest join the ‘orbit’. The service 
time, repair time, vacation time and setup time are assumed to be general 
distributed. Using supplementary variable technique and generating 
function method, the explicit expressions for the average system size, 
average orbit size and other performance indices have been determined. 
Keywords: Retrial queue, Batch arrival, Two-phase service, Bernoulli 
vacation, Unreliable server, Setup time.
2000 Mathematics Subject Classification No.: 60K25

1. Introduction
Retrial queues are widely used as a mathematical tool to model several 
systems such as computer systems, packet switching networks, shared bus 
local area networks operating under the CSMA (Carrier-Sense Multiple 
Access) protocol and collision avoidance star local area networks, etc.. The 
first work on the M/G/1 retrial queue with general retrial times was due to 
Falin1. Krishna Kumar and Madheswari2 investigated Mx/G/1 retrial queue 
*Presented at CONIAPS XI, University of Allahabad, Feb. 20-22, 2010.
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with multiple vacations and starting failures. Atencia and Moreno3

considered an M/G/1 retrial queue with general retrial times. An M/G/1 
retrial queue with active breakdowns and Bernoulli schedule in the server 
was developed by Atencia et al.4. They have considered both classical and 
constant retrial policies. Further Atencia et al.5 have applied the concept of 
batch arrival in this model. Mokaddis et al.6 have studied the M/G/1 retrial 
queue with Bernoulli feedback and single vacation where the server is 
subjected to starting failure. Aguir et al.7 modeled a call centre as a 
continuous time Markov chain with retrial phenomenon. In recent years, 
there have been several contributions based on Poisson input queueing 
systems wherein the server delivers a second phase of optional service 
followed by the first phase of essential service (cf. Choudhury and Deka8, 
Wang and Xu9 and Wang and Li 10). 
       In this paper, we analyze the steady state behaviour of a batch arrival 
repairable retrial queueing system with Bernoulli vacation schedule and two 
phase service. The rest of the paper is structured as follows. The notations 
and assumptions to formulate the concerned model have been mentioned in 
section 2. In section 3, supplementary variable technique and generating 
function method are used to determine the queue size distribution. Various 
performance indices are computed in section 4. Numerical results and 
sensitivity analysis are presented in section 5. In final section 6, conclusion 
has been drawn.

2. Model Description

Consider an MX/G/1 retrial queue wherein the customers arrive in the 
system according to Poisson process with rate dependent upon server status 
as
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If the server is busy, broken down or on vacation at the arrival epoch, 
then all the arriving customers join the orbit. On the contrary, if the server is 
free then he starts the service of the arriving customer from the batch which 
is on the head of the queue whereas others leave the service area and enter a 
group of blocked customers (i.e. orbit). Let X be a random variable denoting 
batch size having probability function defined by Pr {X=k}=ck, k 1 and 



                   A Batch Arrival Retrial Queue with Bernoulli Vacation Policy                     171

1
1




k
kc . We denote first and second moments of batch size by c1 and c2

respectively, so that c1=E(X) and c2=E(X2). When a batch of customers 
arrives to the service station, the server takes setup time before initiating the 
service to the customers. When the setup time of the server finishes, he 
starts providing service to one of the customers of the incoming batch. The 
FPS is requested by all the arriving customers. As soon as the FPS of a 
customer finishes, he may opt for any of the l different kinds of optional 
services with probability qi (1 i l), otherwise leaves the system with 
probability iq (=1- qi). The service is done according to FCFS discipline. 

Table 1: Notations
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The server may breakdown in working state (either in FPS or SPS) and 
is immediately sent for repair. When server failure occurs, the customer in 
service waits for the repair of the server to complete its remaining service. 
We assume that the server’s life time is exponentially distributed with mean 
1/α0 during FPS and 1/αi (1 i l) during SPS of ith type. After each service 
completion, the server may go for vacation of random length with 
probability θ (0θ1) or may continue to serve the next customer if any 
with probability )1(   . Table 1 summarizes the notations used for 
some random variables (r.v.) along with their distribution function (DF), 
probability density function (pdf), Laplace Steiltjes Transform (LST), kth
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(k1) moment and hazard rates. (.)H denotes the complementary 
distribution function of H.
The transient probabilities of different states of the system are defined as 
follows:
Dn(t):       Probability that the server is idle during retrial of the customers at 

time t when there are n customers in the system.
P0,n(t,u):  Probability that there are n customers in the system at time t and

the server is busy in providing FPS to the customer and the 
customer is being served with elapsed service time lying between 
u and u+du.

Pi,n(t,u):   Probability that there are n customers in the system at time t and 
the server is busy in providing ith (1 i l) optional SPS to the 
customer and the customer is being served with elapsed service 
time lying between u and u+du.

Qn(t,u):   Probability that there are n customers in the system at time t and 
the server is on vacation with elapsed vacation time lying 
between u and u+du.

Wn(t,u):    Probability that there are n customers in the system at time t and 
the server is under setup with elapsed setup time lying between u 
and u+du.

R0,n(t,u,v): Joint probability that there are n customers in the system at time 
t, the elapsed service time of the customer undergoing FPS is 
equal to u and the server is undergoing the repair with elapsed 
repair time lying between v and v+dv .

Ri,n(t,u,v): Joint probability that there are n customers in the system at time 
t, the elapsed service time of the customer undergoing ith

(1 i l) optional SPS is equal to u and the server is undergoing 
the repair with elapsed repair time lying between v and v+dv .

3. Queue Size Distribution at a Random Epoch

In this section, we employ the supplementary variable technique (SVT) 
to convert non-markovian MX/G/1 queue into markovian one. Let Nq(t) 
denotes the number of customers in the retrial queue at time t. The state of 
the system at time t can be described by means of the process X(t)={C(t), 
Nq(t),  (t)} where C(t) is equal to 0, 1, 2, 3 or 4 according to whether the 
server is idle, busy with FES or busy with ith (1 i l) optional SPS, broken 
down, under vacation or under setup, respectively. If C(t)  l...,,2,1 , then 
 (t) represents the corresponding elapsed time of the process. Let us define 
the limiting probabilities at the steady state of system as
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The steady state equations of different states of the system are as follows:
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The boundary conditions under steady state are
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Theorem 1: The marginal probability generating functions at random 
epochs when the server is idle during retrial time, busy with ith (1 i l) 
phase service, on vacation state, under setup state and under repair state 
while broken down during the  ith phase service, respectively, are given by
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Proof: Multiplying eqs (3.2)-(3.16) by the appropriate powers of z and 
summing over n=0,1,2,3,……., and then solving, we get the partial 
probability generating functions at random epochs for different states of the 
system which is then used for obtaining the marginal probability generating 
function for different states of the server.

4. Performance Indices

In this section, we establish some queueing measures as follows:
Theorem 2: The probability that the server and system are all idle P(Is), 

server is idle but system is non-empty P(I), server is busy P(B), server is 
under repair P(R), server is on vacation P(V) and server is in setup period 
P(S), respectively are given by
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Proof: The long run probabilities for different states of the system can 
be obtained by using the marginal probability generating functions for 
different states of the system. The factor D0 can be obtained by using the 
normalizing condition given by
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Theorem 3: The number of customers in the retrial queue and in the 
system in case of multi-optional phase service at random epoch with 

21   is given by
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5. Numerical Results
In this section, we obtain numerical results using MATLAB software to 

explore the effect of some sensitive parameters on various performance 
indices. For computational purpose, we assume the batch size to be 
geometric distributed. The retrial time, repair time, vacation time and setup 
time are taken as exponential distributed. The results are summarized for 
MX/γ/1 model in table 1 and fig. 1. 

Table 1 displays the effect of λ1, α0, µ and p on the long run probabilities 
of different states of the server. The default parameters for these tables are 
chosen as λ0=λ1=λ2=λ3=λ4=1, α0=α1=α2=0.3, µ=5, p=0.6, θ=0.9, β=0.25, 
ζ=ν=1, q1=q2=0.8 and E(X)=1. It is noted from table 1 that P(B), P(V), P(S) 
and P(R) increase while P(I) decrease on increasing λ1, α0 and p. The 
reverse effect is found on these performance measures with the increase in 
service rate µ which is quite obvious. The trend of average system size (LS) 
with respect to different parameters such as µ, β, ν, E(X) and p can be 
visualized from fig. 1. The default parameters for fig. 1 are chosen as 
λ0=λ1=λ2=λ3=λ4=1, α0=α1=α2=0.3, µ=5, p=0.6, θ=0.9, β=0.25, ζ=ν=1, 
q1=q2=0.8 and E(X)=1. Fig. 1 shows that LS first decreases sharply on 
increasing either µ, β or ν and then becomes almost constant which can be 
seen in many real life congestion situations. Fig. 1(a-c) shows that LS

increases sharply on increasing either E(X) or p.

6. Conclusion

In this paper, we have examined MX/G/1 retrial queueing system with 
Bernoulli vacation schedule, unreliable server and multi-optional services. 
Our results can be treated as performance evaluation tool for the concerned 
system which may be suited to many congestion situations arising in many 
practical applications encountered in computer and communication systems, 
distribution and service sectors, production and manufacturing systems, etc.. 
The concept of optional service included can be realized as a complement to 
a set of primitives in various queueing models, which throw light on the 
behaviour of the customers such as abandonment, retrials and returns. 



                   A Batch Arrival Retrial Queue with Bernoulli Vacation Policy                     179

0

10

20

30

40

50

1 1.2 1.4 1.6 1.8 2



L
S

E(X)=.8

E(X)=1

E(X)=1.2

0

2

4

6

8

10

12

14

0.2 0.22 0.24 0.26 0.28 0.3



L
S

p=.3

p=.4

p=.5

                           (a)                                                     (b)

2

4

6

8

10

12

0.4 0.5 0.6 0.7 0.8 0.9



L S

p=.3

p=.4

p=.5

                                                                      (c)
Fig. 1: Effect of (a) µ (b) β and (c) ν on average system size

Table 1: Effects of arrival rate (λ1), breakdown rate (α0), service rate (µ) and retrial 
probability (p) on the long run probabilities.

λ1 α0 µ p P(I) P(B) P(V) P(R) P(S)

1.2 0.30 5 0.6 0.1071 0.3454 0.0664 0.4145 0.0664

1.4 0.30 5 0.6 0.0932 0.3508 0.0674 0.4109 0.0674

1.6 0.30 5 0.6 0.0825 0.3549 0.0682 0.4259 0.0682

1 0.30 5 0.6 0.1259 0.3381 0.0650 0.4058 0.0650

1 0.35 5 0.6 0.0865 0.3431 0.0659 0.4382 0.0659
1 0.4 5 0.6 0.0460 0.3483 0.0669 0.4715 0.0669
1 0.30 5 0.6 0.1259 0.3381 0.0650 0.4058 0.0650

1 0.30 6 0.6 0.2107 0.2965 0.0684 0.3558 0.0684
1 0.30 7 0.6 0.2770 0.2640 0.0710 0.3168 0.0710
1 0.30 5 0.4 0.2559 0.2878 0.0553 0.3454 0.0553

1 0.30 5 0.5 0.1961 0.3110 0.0598 0.3732 0.0598
1 0.30 5 0.6 0.1259 0.3381 0.0650 0.4058 0.0650
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Abstract: This paper examines the operating characteristics of an MX/G/1 retrial queueing system under Bernoulli vacation schedule with setup times. The server renders first phase of essential service (FPS) to all the arriving units whereas second phase of multi-optional services (SPS) to only some of them who demand for the same. The server may breakdown according to Poisson process in working state i.e. either during FPS or SPS. The broken down server is then repaired by the repairman and becomes as good as before failure. When the server just after a service or repair completion finds no customers waiting to be served, he departs for a single vacation of arbitrary distributed length according to Bernoulli schedule. When the batch of arriving customers finds the server busy or on vacation, then the whole batch either with probability p joins a pool of blocked customers called ‘orbit’ or with complementary probability 
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 (=1-p) leaves the system. On the other hand, if the arriving batch finds the server idle, then one of the customers from the batch starts its service and the rest join the ‘orbit’. The service time, repair time, vacation time and setup time are assumed to be general distributed. Using supplementary variable technique and generating function method, the explicit expressions for the average system size, average orbit size and other performance indices have been determined. 


Keywords: Retrial queue, Batch arrival, Two-phase service, Bernoulli vacation, Unreliable server, Setup time.

2000 Mathematics Subject Classification No.: 60K25

1. Introduction


Retrial queues are widely used as a mathematical tool to model several systems such as computer systems, packet switching networks, shared bus local area networks operating under the CSMA (Carrier-Sense Multiple Access) protocol and collision avoidance star local area networks, etc.. The first work on the M/G/1 retrial queue with general retrial times was due to Falin1. Krishna Kumar and Madheswari2 investigated Mx/G/1 retrial queue *Presented at CONIAPS XI, University of Allahabad, Feb. 20-22, 2010.

with multiple vacations and starting failures. Atencia and Moreno3 considered an M/G/1 retrial queue with general retrial times. An M/G/1 retrial queue with active breakdowns and Bernoulli schedule in the server was developed by Atencia et al.4. They have considered both classical and constant retrial policies. Further Atencia et al.5 have applied the concept of batch arrival in this model. Mokaddis et al.6 have studied the M/G/1 retrial queue with Bernoulli feedback and single vacation where the server is subjected to starting failure. Aguir et al.7 modeled a call centre as a continuous time Markov chain with retrial phenomenon. In recent years, there have been several contributions based on Poisson input queueing systems wherein the server delivers a second phase of optional service followed by the first phase of essential service (cf. Choudhury and Deka8, Wang and Xu9 and Wang and Li 10). 


       In this paper, we analyze the steady state behaviour of a batch arrival repairable retrial queueing system with Bernoulli vacation schedule and two phase service. The rest of the paper is structured as follows. The notations and assumptions to formulate the concerned model have been mentioned in section 2. In section 3, supplementary variable technique and generating function method are used to determine the queue size distribution. Various performance indices are computed in section 4. Numerical results and sensitivity analysis are presented in section 5. In final section 6, conclusion has been drawn.


2. Model Description

Consider an MX/G/1 retrial queue wherein the customers arrive in the system according to Poisson process with rate dependent upon server status as
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If the server is busy, broken down or on vacation at the arrival epoch, then all the arriving customers join the orbit. On the contrary, if the server is free then he starts the service of the arriving customer from the batch which is on the head of the queue whereas others leave the service area and enter a group of blocked customers (i.e. orbit). Let X be a random variable denoting batch size having probability function defined by Pr {X=k}=ck, k
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. We denote first and second moments of batch size by c1 and c2 respectively, so that c1=E(X) and c2=E(X2). When a batch of customers arrives to the service station, the server takes setup time before initiating the service to the customers. When the setup time of the server finishes, he starts providing service to one of the customers of the incoming batch. The FPS is requested by all the arriving customers. As soon as the FPS of a customer finishes, he may opt for any of the l different kinds of optional services with probability qi (1
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 (=1- qi). The service is done according to FCFS discipline. 



Table 1: Notations
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The server may breakdown in working state (either in FPS or SPS) and is immediately sent for repair. When server failure occurs, the customer in service waits for the repair of the server to complete its remaining service. We assume that the server’s life time is exponentially distributed with mean 1/α0 during FPS and 1/αi (1
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l) during SPS of ith type. After each service completion, the server may go for vacation of random length with probability θ (0
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. Table 1 summarizes the notations used for some random variables (r.v.) along with their distribution function (DF), probability density function (pdf), Laplace Steiltjes Transform (LST), kth (k
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denotes the complementary distribution function of H.


The transient probabilities of different states of the system are defined as follows:


Dn(t):       Probability that the server is idle during retrial of the customers at time t when there are n customers in the system.


P0,n(t,u):   Probability that there are n customers in the system at time t and the server is busy in providing FPS to the customer and the customer is being served with elapsed service time lying between u and u+du.


Pi,n(t,u):    Probability that there are n customers in the system at time t and the server is busy in providing ith (1
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l) optional SPS to the customer and the customer is being served with elapsed service time lying between u and  u+du.


Qn(t,u):    Probability that there are n customers in the system at time t and the server is on vacation with elapsed vacation time lying between u and u+du.


Wn(t,u):    Probability that there are n customers in the system at time t and the server is under setup with elapsed setup time lying between u and u+du.


R0,n(t,u,v): Joint probability that there are n customers in the system at time t, the elapsed service time of the customer undergoing FPS is equal to u and the server is undergoing the repair with elapsed repair time lying between v and v+dv .


Ri,n(t,u,v): Joint probability that there are n customers in the system at time t, the elapsed service time of the customer undergoing ith (1
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l) optional SPS  is equal to u and the server is undergoing the repair with elapsed repair time lying between v and v+dv .


3. Queue Size Distribution at a Random Epoch


In this section, we employ the supplementary variable technique (SVT) to convert non-markovian MX/G/1 queue into markovian one. Let Nq(t) denotes the number of customers in the retrial queue at time t. The state of the system at time t can be described by means of the process X(t)={C(t), Nq(t), 
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(t) represents the corresponding elapsed time of the process. Let us define the limiting probabilities at the steady state of system as
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The steady state equations of different states of the system are as follows:
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The boundary conditions under steady state are
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We define probability generating functions as follows:
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Theorem 1: The marginal probability generating functions at random epochs when the server is idle during retrial time, busy with ith (1
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Proof: Multiplying eqs (3.2)-(3.16) by the appropriate powers of z and summing over n=0,1,2,3,……., and then solving, we get the partial probability generating functions at random epochs for different states of the system which is then used for obtaining the marginal probability generating function for different states of the server.


4. Performance Indices

In this section, we establish some queueing measures as follows:


Theorem 2: The probability that the server and system are all idle P(Is), server is idle but system is non-empty P(I), server is busy P(B), server is under repair P(R), server is on vacation P(V) and server is in setup period P(S), respectively are given by
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Proof: The long run probabilities for different states of the system can be obtained by using the marginal probability generating functions for different states of the system. The factor D0 can be obtained by using the normalizing condition given by
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Theorem 3: The number of customers in the retrial queue and in the system in case of multi-optional phase service at random epoch with 
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Proof: LR(z)=D0+D(z)+P0(z)+
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5. Numerical Results

In this section, we obtain numerical results using MATLAB software to explore the effect of some sensitive parameters on various performance indices. For computational purpose, we assume the batch size to be geometric distributed. The retrial time, repair time, vacation time and setup time are taken as exponential distributed. The results are summarized for MX/γ/1 model in table 1 and fig. 1. 



Table 1 displays the effect of λ1, α0, µ and p on the long run probabilities of different states of the server. The default parameters for these tables are chosen as λ0=λ1=λ2=λ3=λ4=1, α0=α1=α2=0.3, µ=5, p=0.6, θ=0.9, β=0.25, ζ=ν=1, q1=q2=0.8 and E(X)=1. It is noted from table 1 that P(B), P(V), P(S) and P(R) increase while P(I) decrease on increasing λ1, α0 and p. The reverse effect is found on these performance measures with the increase in service rate µ which is quite obvious. The trend of average system size (LS) with respect to different parameters such as µ, β, ν, E(X) and p can be visualized from fig. 1. The default parameters for fig. 1 are chosen as λ0=λ1=λ2=λ3=λ4=1, α0=α1=α2=0.3, µ=5, p=0.6, θ=0.9, β=0.25, ζ=ν=1, q1=q2=0.8 and E(X)=1. Fig. 1 shows that LS first decreases sharply on increasing either µ, β or ν and then becomes almost constant which can be seen in many real life congestion situations. Fig. 1(a-c) shows that LS increases sharply on increasing either E(X) or p.

6. Conclusion


In this paper, we have examined MX/G/1 retrial queueing system with Bernoulli vacation schedule, unreliable server and multi-optional services. Our results can be treated as performance evaluation tool for the concerned system which may be suited to many congestion situations arising in many practical applications encountered in computer and communication systems, distribution and service sectors, production and manufacturing systems, etc.. The concept of optional service included can be realized as a complement to a set of primitives in various queueing models, which throw light on the behaviour of the customers such as abandonment, retrials and returns. 
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Fig. 1: Effect of (a) µ (b) β and (c) ν on average system size


Table 1: Effects of arrival rate (λ1), breakdown rate (α0), service rate (µ) and retrial probability (p) on the long run probabilities.


		λ1

		α0

		µ

		p

		P(I)

		P(B)

		P(V)

		P(R)

		P(S)



		1.2

		0.30

		5

		0.6

		0.1071

		0.3454

		0.0664

		0.4145

		0.0664



		1.4

		0.30

		5

		0.6

		0.0932

		0.3508

		0.0674

		0.4109

		0.0674



		1.6

		0.30

		5

		0.6

		0.0825

		0.3549

		0.0682

		0.4259

		0.0682



		1

		0.30

		5

		0.6

		0.1259

		0.3381

		0.0650

		0.4058

		0.0650



		1

		0.35

		5

		0.6

		0.0865

		0.3431

		0.0659

		0.4382

		0.0659



		1

		0.4

		5

		0.6

		0.0460

		0.3483

		0.0669

		0.4715

		0.0669



		1

		0.30

		5

		0.6

		0.1259

		0.3381

		0.0650

		0.4058

		0.0650



		1

		0.30

		6

		0.6

		0.2107

		0.2965

		0.0684

		0.3558

		0.0684



		1

		0.30

		7

		0.6

		0.2770

		0.2640

		0.0710

		0.3168

		0.0710



		1

		0.30

		5

		0.4

		0.2559

		0.2878

		0.0553

		0.3454

		0.0553



		1

		0.30

		5

		0.5

		0.1961

		0.3110

		0.0598

		0.3732

		0.0598



		1

		0.30

		5

		0.6

		0.1259

		0.3381

		0.0650

		0.4058

		0.0650
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