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1. Introduction

The spaces n n
MW (R ), W (C ) were investigated by Friedman1 and 

Gel’fand and Shilov2. It was shown that the Fourier transformation
                       n n n n

M MF:W (R ) W (C ), F:W (C ) W (R )  

is linear and continuous, where M, Ω are convex functions and n nR ,C are 
spaces of n- dimensional real and complex numbers. 

The theory of pseudo-differential operators is given by Wong3, Zaidman4, 
Pathak5 and others. They studied pseudo-differential operator by exploiting 
the theory of Fourier transformation on Schwartz space, Geverey type space 
and other spaces also. 

Pseudo-differential operators on certain Gel’fand and Shilov space were 
studied by Cappiello, Gramchev and L. Rodino6 by using theory of Fourier 
transformation. 

Our main aim in this paper is to define the pseudo-differential operator on 
WΩ(Cn)-space and to study its various properties by the Fourier 
transformation tool because its distributional space [WΩ(Cn)'] is more 
general than Schwartz distributional space [S(Rn)]' .

Now, we recall the definitions of n n
MW (R ) , W (C ) -spaces and pseudo-

differential operator from the papers1,2 on WΩ(Cn)-space.
*Presented at CONIAPS XI, University of Allahabad, Feb.20-22, 2010.
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Let Mj and Ω j be the convex functions such that

(1.1)             
jx

j j j j j j0
M (x ) ( )d (x 0)    

(1.2)            
jy

j j j j j j0
(y ) ( ) d (y 0)     

for  j = 1, 2, 3, …..n. 
We set

              1 1 n n( ) (( ( )),...., ( ( )),      
              1 i n( ) (( ( )),...., ( ( ))      

and 
(1.3)            ' '

j j j j j j j j j j jM ( x ) M (x ), M (x ) M (x ) M (x x )    

(1.4)            ' '
j j j j j j j j j j j( y ) (y ), (y ) (y ) (y y )       .

The space n
MW (R ) consists of all C-functions which satisfy the 

inequalities:

(1.5)          (k)
x kD (x) C exp[ M(ax)]  

where  1 2 n(k ) (k ) (k )(k)
x x x x 1 2 nD D D ...D , k (k ,k ,..., k )  and

exp [-M(ax)] = exp [-M1 (a1x1) – M2(a2x2) …. – Mn (anxn)] and Ck, a > 0 are 
constants depending on the function �.

A function nW (C ) if and only if for b > 0 there exists a constant
Ck > 0 such that

(1.6)               k
k| z (z) | C exp[ (by)]   ,

where  31 2 nkk k kk
1 2 3 nz z z z ....z ,

       1 1 1 2 2 2 n n nexp[ (by)] exp[ (b y ) (b y ) .... (b y )]     
and constants Ck > 0,  b > 0 depend on function  .

Now, we define the duality of the functions M(x) and Ω (y) in the 
following way:

Let Mj(xj) and Ωj(yj) be defined by (1.1) and (1.2) respectively and let
µj(ξj) and ωj (ηj) be mutually inverse, i.e. µj (ωj (ηj)) = ηj and ωj (µj(ξj)) = ξj, 
then the corresponding functions Mj(xj) and Ωj(yj) are called dual in sense of 
Young. The Young inequality is 

(1.7)              '
j j j j j j j jx y M (x ) (x ), x 0, y 0    ,
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where the equality holds if and only if j j jy (x ) and xj varies in the 

interval  0
j jx x    and   yj  varies in the interval  0

j jy y  . That 

equality will be 

(1.8)                    0
j j j j j jx y M (x ) (y ) 

and 

(1.9)                    0
j j j j j jx y M (x ) (y ). 

From the papers1,2 the Fourier-duality relation is given by

n n n n
M MF W (C ) W (R ), F W (R ) W (C )             .

A linear partial differential operator  P (z, D) for z = x + iy  Cn is given by

(1.10)            ( )

| | m

P(z,D) a (z)D 


 
 

where             D(α) = 1 2 n( ) ( ) ( )D D ...D  

If we replace D(α) by a monomial nR  then we get a symbol of (1.10). 

This symbol is 

(1.11)            
| | m

P(z, ) a (z) 


 

  

We take  nW (C ) then by the property of Fourier transformation from 

(1.1) and (1.2)
      ( )

| | m

P (z , D ) (z ) a (z ) (D )(z )


 
  

               
| | m

a (z)( ) (z)


 


 
  

                   
n

n / 2 i z ,

| | m R

a (z) (2 ) e ( ) d


   


 
      

               
n

n / 2 i z ,

| | zR

(2 ) e a (z) ( ) d


   


 

 
      

 


              
n

n / 2 i z ,

R

(2 ) e p (z, ) ( ) d


       
Hence,

(1.12)        
n

n /2 i z ,

R

(P(z, D) )(z) (2 ) e p(z, ) ( ) d
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which implies a representation of partial differential operator in terms of 
symbol p(z, ξ) by means of Fourier transformation. Instead of p(z, ξ), we 

take the general symbol θ (z, ξ) for n nz C , R  which are no longer 

polynomial in ξ. The operator is so called pseudo-differential operator.
Thus, the pseudo-differential operator associated with symbol θ(z, ξ) is 

defined by 

(1.13)                
n

n/2 i z,

R

(A )(z) (2 ) e (z, ) ( )d .


  
       

The function n n(z, ) C (C R )    which is assumed to be an entire 

analytic function with respect to  nz x iy, R   is said to be in the class 

Vm iff for any two multi-indices α and β and there exists positive constant 
Cα,β , depending on α and β such that

(1.14)                 ( ) ( ) m | |
z ,D D (z, ) C (1 | |) ,m R  

       

and  n nz C , R  .

2.  Properties of the Pseudo-differential Operator

In this section, we study the various properties of the pseudo-differential 
operators on WΩ(Cn)-space.

Theorem 2.1. Let σ (z, ξ) be a symbol belonging to Vm. Then pseudo-
differential operator Aθ maps WΩ(Cn)-into itself.

Proof. We have

n

n / 2 i z ,

R

(A )(z) (2 ) e (z, ) ( ) d


  
        .

Now,

n

k n / 2 ( k ) i z ,

R

(iz ) (A )(z) (2 ) D (e ) (z, ) ( ) d


  
         .

Integration by parts we get

n

k n / 2 |k| i z , (k )

R

(iz) (A )(z) (2 ) ( 1) e D [ (z, ) ( )]d


  
         

   
n

|k | n / 2 k i z , ( k r ) ( r )
r

|r| k R

( 1) (2 ) e D (z, )D ( )d


   
 


        

Hence,

  i i

n

n n| | | |k |k | n / 2 k i z , 1
r i ii 1 i 1

|r | k R

(iz ) (A )(z ) ( 1) (2 ) e ( 1) ( 1)     
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                      i z,1 (k r) (r)e D (z, ) D ( )d


   
     

  i

n

n | ||k | n / 2 k ( ) i z , 1 i z ,1
r z ii 1

|r| k R

( 1) (2 ) D (e ) e (1 )        



     

             ( k r ) ( r )D (z , ) D ( ) d



      .

Again, integration by parts we obtain

 
n

k |k | n / 2 k | | i z , 1
r

|r | k R

(iz ) (A )(z ) ( 1) (2 ) ( 1) e    



     

          i
n | | ( ) i z ,1 ( k r ) ( r )

i z zi 1
(1 ) D e D (z, ) D ( ) d


      


        

                         
n

|k | |r | n / 2 k i 1,z ( ) i z ,1
r z

|r| k R

( 1) (2 ) e D e        


 
     

                               i
n | |( ) ( k r ) ( r )

z ii 1
D D (z, ) (1 ) D ( ) d


  

 
       .

Hence

  
n

k n / 2 |k| | | k i 1,z | | i z ,1
r

|r| k | | R

(iz) (A )(z) (2 ) ( 1) e (1) e         
 

  
      

                          i
n | |( ) ( k r ) ( r )

z ii 1
D D (z, ) (1 ) D ( ) d


  

 
      

                                n / 2 |k | | | k | |
r

|r | k | |

( 2 ) ( 1) ( 1)    


   
    

                                 i

n

| |n ( r )i ,z ( ) ( k r )
z z ii 1

R

e D D (z, ) (1 ) D ( ) d .
 

    


      
Taking absolute of above expression we get

    
n

k n / 2 k
r

|r | | | R

| z (A )(z ) | (2 ) ex p [ | y || |] 
 

    
      

                                  ( ) (k r ) | | ( r )
z| D D (z, ) | (1 | |) |D ( ) |d


   

        .

Using arguments1,2, the above expression yields

     
n

k n / 2 k m |k| |r| | |
r ,k r

|r| k | | R

| z (A )(z) | (2 ) C (1 | |)     
   

  
      

                                          
rD ex p [ M [(a )] | y || |] d    

                          n / 2 k
r , k r r

|r| k | |

(2 ) C .D 
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n

0

R

exp [M (a )] exp[ M[(a )] | y || |] d      .

From (1.3), we have 

         k n / 2 k
r , k r

|r| k | |

| z (A ((z) | (2 ) D 
   

  

    
                                          

n
0

R

exp [ M [(a a ) ] | y || |] d     
From the paper7, we have

       k n/2 " 1
,k r 0

|r| k | |

| z (A )(z) | (2 ) D exp[ (a 2a ) y] 
  

  

     

                                     
n

0

R

exp[ M(a )]d  
                            1

n 0D exp[ [(a 2a ) y]   .
This implies that

                   n(A )(z) W (C )
  .

Theorem 2.2.  Aθ is continuous linear mapping from [WΩ(Cn)] into 
[WΩ(Cn)].

Proof. From the paper2, if   0 converges to zero uniformly in any 
bounded domain of the z-plane and in addition it satisfies the inequalities

                k
k| z (z) | C exp[ (by)],  

where the constants Ck and b do not depend on the index ν, then 
n[W (C )]

  is said to converge to zero as  . If  n[W (C )]
 

then from Theorem 2.1 the pseudo-differential operator Aθ ϕν  is a linear  
mapping from WΩ (Cn) into itself. Now using the above arguments Aθ ϕν  
converges uniformly to zero in any bounded domain of the z-plane and in 
addition it satisfies the inequalities

               k
k| z (A )(z) | C exp[ (by)]    ,

where the constants Ck and b do not depend on the index ν. Then Aθ ϕν   0 
uniformly as  . This implies that Aθ ϕ  maps WΩ (Cn) continuously 

into itself.
Now we define a distribution of Aθf in [WΩ (Cn)]' by

(2.1)            * n nA f , f ,A , [W (C )] and f [W (C )]' 
      ,

where *A is a formal adjoint of Aθ .
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Theorem 2.3. Aθ is a linear mapping from [ nW (C ) ]' into 
[ nW (C ) ]'. 

Proof. Let f  [ nW (C ) ]'. Then, for any sequence of functions 
n{ } [W (C )]

  converging uniformly to zero in any bounded domain of 

the z-plane in n[W (C )] as  . Then from (15), we have 

(2.2)                * nA f , f ,A , W (C )and 1,2,3...
       

By theorem 2.2 we have *A 0   as   . Hence using (2.2) we 

observe that  nf [W (C )]' . Therefore, we conclude that A f , 0   as 

 . This implies that  nA f [W (C )]'
  .

Definition 2.2. A sequence of distributions n{f } W (C ) '
    is said 

to converge to zero in nW (C ) ' if A f , 0 as
       , for all 

n[W (C )] .

Theorem 2.4. Aθ is a continuous linear mapping from  nW (C ) ' 
  into 

nW (C ) ' 
  .

Proof. Let  nW (C ) . Then using definition 2.2 and (2.1) we find 

that
                       *A f , f , A 0 as           .

Hence,  nA f 0 in W (C ) ' as
        .

This implies that Aθ is a continuous linear mapping from n[W (C )] ' into 

itself.

Theorem 2.5. Let σ (z, ξ) be a symbol in V0. Then,  
p n p nA :L (R ) L (R )  is bounded linear operator for 1  p < .

Proof. The proof of above theorem is similar to Wong3 (pp. 79-88).
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Let Mj and Ω j be the convex functions such that
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for  j = 1, 2, 3, …..n. 
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Again, integration by parts we obtain
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Taking absolute of above expression we get
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Using arguments1,2, the above expression yields
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From (1.3), we have 
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From the paper7, we have
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This implies that
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Theorem 2.2.  Aθ is continuous linear mapping from [WΩ(Cn)] into 
[WΩ(Cn)].


Proof.  From the paper2, if 
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where the constants Ck and b do not depend on the index ν, then 
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 then from Theorem 2.1 the pseudo-differential operator Aθ ϕν  is a linear  mapping from WΩ (Cn) into itself. Now using the above arguments Aθ ϕν  converges uniformly to zero in any bounded domain of the z-plane and in addition it satisfies the inequalities
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where the constants Ck and b do not depend on the index ν. Then Aθ ϕν  ( 0 uniformly as 
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. This implies that Aθ ϕ  maps WΩ (Cn) continuously into itself.



Now we define a distribution of Aθf in [WΩ (Cn)]' by


(2.1)            

[image: image81.wmf]*nn


Af,f,A,[W(C)]andf[W(C)]'


WW


qq


f=ffÎÎ


,




where 
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Theorem 2.3. Aθ  is a linear mapping from [

[image: image83.wmf]n


W(C)


W


]' into [

[image: image84.wmf]n


W(C)


W


]'. 

Proof.  Let f ( [

[image: image85.wmf]n


W(C)


W


]'. Then, for any sequence of functions 

[image: image86.wmf]n


{}[W(C)]


W


n


fÎ


 converging uniformly to zero in any bounded domain of the z-plane in 

[image: image87.wmf]n


[W(C)]


W


 as 

[image: image88.wmf]n®¥


. Then from (15), we have 
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By theorem 2.2 we have 
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Definition 2.2.  A sequence of distributions 
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Theorem 2.4. Aθ is a continuous linear mapping from  
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Proof.  Let  
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Hence,  
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This implies that Aθ is a continuous linear mapping from 
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Theorem 2.5. Let σ (z, ξ) be a symbol in V0. Then,  
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Proof.  The proof of above theorem is similar to Wong3 (pp. 79-88). 
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