Pseudo-Differential Operators on $W^{\Omega}(C^n)$ – Space^{*}

S. K. Upadhyay

Department of Applied Mathematics Institute of Technology and DST- CIMS Banaras Hindu University, Varanasi – 221 005, India E-mail: <u>sk_upadhyay@yahoo.com</u>

(Received February 20, 2010)

Abstract: A pseudo-differential operator on $W(C^n)$ space is defined and using the theory of Fourier transformation its various properties are studied.

Keywords: Pseudo-differential operator, convex function, Fourier transformation, Sobolev space.

AMS Classification: 46F12, 46F05.

1. Introduction

The spaces $W_M(R^n), W^{\Omega}(C^n)$ were investigated by Friedman¹ and Gel'fand and Shilov². It was shown that the Fourier transformation

 $F: W_M(\mathbb{R}^n) \to W^{\Omega}(\mathbb{C}^n), F: W^{\Omega}(\mathbb{C}^n) \to W_M(\mathbb{R}^n)$

is linear and continuous, where M, Ω are convex functions and Rⁿ, Cⁿ are spaces of n- dimensional real and complex numbers.

The theory of pseudo-differential operators is given by Wong³, Zaidman⁴, Pathak⁵ and others. They studied pseudo-differential operator by exploiting the theory of Fourier transformation on Schwartz space, Geverey type space and other spaces also.

Pseudo-differential operators on certain Gel'fand and Shilov space were studied by Cappiello, Gramchev and L. Rodino⁶ by using theory of Fourier transformation.

Our main aim in this paper is to define the pseudo-differential operator on $W^{\Omega}(C^n)$ -space and to study its various properties by the Fourier transformation tool because its distributional space $[W^{\Omega}(C^n)']$ is more general than Schwartz distributional space $[S(R^n)]'$.

Now, we recall the definitions of $W_M(R^n)$, $W^{\Omega}(C^n)$ -spaces and pseudodifferential operator from the papers^{1,2} on $W^{\Omega}(C^n)$ -space.

*Presented at CONIAPS XI, University of Allahabad, Feb.20-22, 2010.

Let M_i and Ω_i be the convex functions such that

(1.1)
$$M_j(x_j) = \int_0^{x_j} \mu_j(\xi_j) d\xi_j \ (x_j \ge 0)$$

(1.2)
$$\Omega_{j}(\mathbf{y}_{j}) = \int_{0}^{y_{j}} \omega_{j}(\eta_{j}) \, \mathrm{d}\eta_{j} \, (\mathbf{y}_{j} \ge 0)$$

for $j = 1, 2, 3, \dots n$. We set

$$\mu(\xi) = ((\mu_1(\xi_1)), ..., (\mu_n(\xi_n)), \\ \omega(\eta) = ((\omega_1(\eta_i)), ..., (\omega_\eta(\eta_n)))$$

and

(1.3)
$$M_j(-x_j) = M_j(x_j), M_j(x_j) + M_j(x_j) \le M_j(x_j + x_j)$$

(1.4)
$$\Omega_{j}(-y_{j}) = \Omega_{j}(y_{j}), \ \Omega_{j}(y_{j}) + \Omega_{j}(y_{j}') \leq \Omega_{j}(y_{j} + y_{j}')$$

The space $W_M(\mathbb{R}^n)$ consists of all C^{∞} -functions which satisfy the inequalities:

(1.5)
$$\left| D_x^{(k)} \phi(x) \right| \leq C_k \exp[-M(ax)]$$

where $D_x^{(k)} = D_x^{(k_1)} D_x^{(k_2)} \dots D_x^{(k_n)}$, $k = (k_1, k_2, \dots, k_n)$ and exp $[-M(ax)] = exp [-M_1 (a_1x_1) - M_2(a_2x_2) \dots - M_n (a_nx_n)]$ and C_k , a > 0 are constants depending on the function \Box .

A function $\varphi\!\in\!W^\Omega\left(C^n\right)$ if and only if for b>0 there exists a constant $C_k\!>\!0$ such that

(1.6)
$$|z^k\phi(z)| \leq C_k \exp[\Omega(by)],$$

where $z^{k} = z_{1}^{k_{1}} z_{2}^{k_{2}} z_{3}^{k_{3}} \dots z_{n}^{k_{n}}$,

 $\exp[\Omega(by)] = \exp[\Omega_{1}(b_{1}y_{1}) + \Omega_{2}(b_{2}y_{2}) + + \Omega_{n}(b_{n}y_{n})]$

and constants $C_k > 0$, b > 0 depend on function ϕ .

Now, we define the duality of the functions M(x) and Ω (y) in the following way:

Let $M_j(x_j)$ and $\Omega_j(y_j)$ be defined by (1.1) and (1.2) respectively and let $\mu_j(\xi_j)$ and $\omega_j(\eta_j)$ be mutually inverse, i.e. $\mu_j(\omega_j(\eta_j)) = \eta_j$ and $\omega_j(\mu_j(\xi_j)) = \xi_j$, then the corresponding functions $M_j(x_j)$ and $\Omega_j(y_j)$ are called dual in sense of Young. The Young inequality is

(1.7)
$$x_j y_j \le M_j(x_j) + \Omega_j(x'_j), x_j \ge 0, y_j \ge 0,$$

where the equality holds if and only if $y_j = \mu_j(x_j)$ and x_j varies in the interval $x_j^0 < x_j < \infty$ and y_j varies in the interval $y_j^0 < y_j < \infty$. That equality will be

(1.8)
$$x_j y_j = M_j^0(x_j) + \Omega_j(y_j)$$

and

(1.9)
$$x_j y_j = M_j(x_j) + \Omega_j^0(y_j).$$

From the papers^{1,2} the Fourier-duality relation is given by

$$F\left[W^{\Omega}(C^{n})\right] = W_{M}(R^{n}), F\left[W_{M}(R^{n})\right] = \left[W^{\Omega}(C^{n})\right].$$

A linear partial differential operator P (z, D) for $z = x + iy \in C^n$ is given by

(1.10)
$$P(z,D) = \sum_{|\xi| \le m} a_{\alpha}(z) D^{(\alpha)}$$

where $D^{(\alpha)} = D^{(\alpha_1)} D^{(\alpha_2)} \dots D^{(\alpha_n)}$

If we replace $D^{(\alpha)}$ by a monomial $\xi^{\alpha} \in \mathbb{R}^n$ then we get a symbol of (1.10). This symbol is

(1.11)
$$P(z,\xi) = \sum_{|\alpha| \le m} a_{\alpha}(z)\xi^{\alpha}$$

We take $\phi \in W^{\Omega}(\mathbb{C}^n)$ then by the property of Fourier transformation from (1.1) and (1.2)

$$(P(z, D)\phi)(z) = \sum_{|\alpha| \le m} a_{\alpha}(z) (D^{(\alpha)}\phi)(z)$$
$$= \sum_{|\alpha| \le m} a_{\alpha}(z) (\xi^{\alpha} \stackrel{\wedge}{\phi})^{\vee}(z)$$
$$= \sum_{|\alpha| \le m} a_{\alpha}(z) (2\pi)^{-n/2} \int_{\mathbb{R}^{n}} \xi^{\alpha} e^{i < z, \xi >} \stackrel{\wedge}{\phi}(\xi) d\xi$$
$$= (2\pi)^{-n/2} \int_{\mathbb{R}^{n}} e^{i < z, \xi >} \left(\sum_{|\alpha| \le z} a_{\alpha}(z) \xi^{\alpha}\right) \stackrel{\wedge}{\phi}(\xi) d\xi$$
$$= (2\pi)^{-n/2} \int_{\mathbb{R}^{n}} e^{i < z, \xi >} p(z, \xi) \stackrel{\wedge}{\phi}(\xi) d\xi$$

Hence,

(1.12)
$$(P(z,D)\phi)(z) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i\langle z,\xi \rangle} p(z,\xi) \dot{\phi}(\xi) d\xi$$

which implies a representation of partial differential operator in terms of symbol $p(z, \xi)$ by means of Fourier transformation. Instead of $p(z, \xi)$, we take the general symbol $\theta(z, \xi)$ for $z \in C^n$, $\xi \in \mathbb{R}^n$ which are no longer polynomial in ξ . The operator is so called pseudo-differential operator.

Thus, the pseudo-differential operator associated with symbol $\theta(z, \xi)$ is defined by

(1.13)
$$(A_{\theta}\phi)(z) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i\langle z,\xi\rangle} \theta(z,\xi) \overset{\wedge}{\phi}(\xi) d\xi.$$

The function $\theta(z,\xi) \in C^{\infty}(C^n \times R^n)$ which is assumed to be an entire analytic function with respect to $z=x+iy, \xi \in R^n$ is said to be in the class V^m iff for any two multi-indices α and β and there exists positive constant $C_{\alpha,\beta}$, depending on α and β such that

(1.14)
$$\left| D_{z}^{(\alpha)} D_{\xi}^{(\beta)} \theta(z,\xi) \right| \leq C_{\alpha,\beta} \left(1 + |\xi| \right)^{m-|\beta|}, m \in \mathbb{R}$$

and $z \in C^n$, $\xi \in R^n$.

2. Properties of the Pseudo-differential Operator

In this section, we study the various properties of the pseudo-differential operators on $W^{\Omega}(C^n)$ -space.

Theorem 2.1. Let σ (z, ξ) be a symbol belonging to V^m . Then pseudodifferential operator A_{θ} maps $W^{\Omega}(C^n)$ -into itself.

Proof. We have

$$(A_{\theta}\phi)(z) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i\langle z,\xi\rangle} \theta(z,\xi) \hat{\phi}(\xi) d\xi \cdot$$

Now,

$$(iz)^{k} (A_{\theta} \phi)(z) = (2\pi)^{-n/2} \int_{R^{n}} D_{\xi}^{(k)}(e^{i\langle z,\xi \rangle}) \theta(z,\xi) \phi(\xi) d\xi$$

Integration by parts we get

$$(iz)^{k} (A_{\theta} \phi)(z) = (2\pi)^{-n/2} (-1)^{|k|} \int_{\mathbb{R}^{n}} e^{i \langle z, \xi \rangle} D_{\xi}^{(k)} [\theta(z, \xi) \hat{\phi}(\xi)] d\xi$$
$$= (-1)^{|k|} (2\pi)^{-n/2} \sum_{|r| \leq k} {\binom{k}{r}} \int_{\mathbb{R}^{n}} e^{i \langle z, \xi \rangle} \Big(D_{\xi}^{(k-r)} \theta \Big)(z, \xi) D_{\xi}^{(r)} \hat{\phi}(\xi) d\xi$$

Hence,

$$(iz)^{k} (A_{\theta} \phi)(z) = (-1)^{|k|} (2\pi)^{-n/2} \sum_{|r| \le k} {k \choose r} \int_{R^{n}} e^{i < z, \xi + 1 >} \prod_{i=1}^{n} (\xi_{i} + 1)^{-|\alpha_{i}|} \prod_{i=1}^{n} (\xi_{i} + 1)^{|\alpha_{i}|}$$

$$\begin{split} e^{-i < z, l>} \left(D_{\xi}^{(k-r)} \theta \right) &(z, \xi) \ D_{\xi}^{(r)} \stackrel{\wedge}{\varphi}(\xi) \, d\xi \\ &= (-1)^{|k|} \left(2\pi \right)^{-n/2} \sum_{|r| \le k} {k \choose r} \int_{\mathbb{R}^n} D_z^{(\alpha)} \left(e^{i < z, \xi + l>} \right) e^{-i < z, l>} \prod_{i=1}^n (1 + \xi_i)^{-|\alpha_i|} \\ &\left(D_{\xi}^{(k-r)} \theta \right) (z, \xi) \ D_{\xi}^{(r)} \stackrel{\wedge}{\varphi}(\xi) \, d\xi \cdot \\ &\text{Again, integration by parts we obtain} \\ &(iz)^k \left(A_{\theta} \varphi \right) (z) = (-1)^{|k|} (2\pi)^{-n/2} \sum_{|r| \le k} {k \choose r} (-1)^{|\alpha|} \int_{\mathbb{R}^n} e^{i < z, \xi + l>} \\ &\prod_{i=1}^n (1 + \xi_i)^{-|\alpha_i|} D_z^{(\alpha)} \left[e^{-i < z, l>} \left(D_z^{(k-r)} \theta \right) (z, \xi) \right] D_{\xi}^{(r)} \stackrel{\wedge}{\varphi}(\xi) \, d\xi \\ &= (-1)^{|k|+|r|} \left(2\pi \right)^{-n/2} \sum_{|r| \le k} {k \choose r} \sum_{\delta \le \alpha} {\alpha \choose \delta} \int_{\mathbb{R}^n} e^{i < \xi + l, z>} D_z^{(\delta)} e^{-i < z, l>} \\ &\left(D_z^{(\alpha - \delta)} D_{\xi}^{(k-r)} \theta \right) (z, \xi) \prod_{i=1}^n (1 + \xi_i)^{-|\alpha_i|} D_{\xi}^{(r)} \stackrel{\wedge}{\varphi}(\xi) \, d\xi \cdot \\ \end{split}$$

Hence

$$(iz)^{k} (A_{\theta} \phi)(z) = (2\pi)^{-n/2} (-1)^{|k|+|\alpha|} \sum_{|r| \le k} \sum_{|\delta| \le \alpha} {k \choose r} {\alpha \choose \delta} \int_{R^{n}} e^{i < \xi + 1, z >} (1)^{|\delta|} e^{-i < z, 1 >} \left(D_{z}^{(\alpha - \delta)} D_{\xi}^{(k-r)} \theta \right)(z, \xi) \prod_{i=1}^{n} (1 + \xi_{i})^{-|\alpha_{i}|} D_{\xi}^{(r)} \widehat{\phi}(\xi) d\xi = (2\pi)^{-n/2} (-1)^{|k|+|\alpha|} \sum_{|r| \le k} \sum_{|\delta| \le \alpha} {k \choose r} {\alpha \choose \delta} (-1)^{|\delta|} \int_{R^{n}} e^{i < \xi, z >} \left(D_{z}^{(\alpha - \delta)} D_{z}^{(k-r)} \theta \right)(z, \xi) \prod_{i=1}^{n} (1 + \xi_{i})^{-|\alpha_{i}|} D_{\xi}^{(r)} \widehat{\phi}(\xi) d\xi.$$

Taking absolute of above expression we get

$$|z^{k} (A_{\theta} \phi)(z)| \leq (2\pi)^{-n/2} \sum_{|r| \leq \alpha} \sum_{|\delta| \leq \alpha} {\binom{k}{r}} {\binom{\alpha}{\delta}}_{R^{n}} \exp\left[-|y||\xi|\right]$$
$$|\left(D_{z}^{(\alpha-\delta)} D_{\xi}^{(k-r)} \theta\right)(z,\xi) |(1+|\xi|)^{-|\alpha|} |D_{\xi}^{(r)} \stackrel{\wedge}{\phi}(\xi)|d\xi|$$

Using arguments^{1,2}, the above expression yields

$$|z^{k}(A_{\theta}\phi)(z)| \leq (2\pi)^{-n/2} \sum_{|r| \leq k} \sum_{|\delta| \leq \alpha} {\binom{k}{r}} {\binom{\alpha}{\delta}} \int_{R^{n}} C_{\alpha-\delta,k-r} (1+|\xi|)^{m-|k|+|r|-|\alpha|}$$
$$D_{r} \exp\left[-M\left[(a\xi)\right] - |y||\xi|\right] d\xi$$
$$\leq (2\pi)^{-n/2} \sum_{|r| \leq k} \sum_{|\delta| \leq \alpha} {\binom{k}{r}} {\binom{\alpha}{\delta}} C_{\alpha-\delta,k-r} D_{r}$$

S. K. Upadhyay

$$\int_{\mathbb{R}^n} \exp[M(a_0\xi)] \exp[-M[(a\xi)] + |y||\xi|] d\xi \cdot$$

From (1.3), we have

$$|z^{k}(A_{\theta}\phi((z))| \leq (2\pi)^{-n/2} \sum_{|r| \leq k} \sum_{|\delta| \leq \alpha} {k \choose r} {\alpha \choose \delta} D_{\alpha-\delta,k-r}$$
$$\int_{\mathbb{R}^{n}} \exp\left[-M\left[(a-a_{0})\xi\right] + |y||\xi|\right] d\xi$$

From the paper⁷, we have

$$|z^{k}(A_{\theta}\phi)(z)| \leq (2\pi)^{-n/2} \sum_{|r| \leq k} \sum_{|\delta| \leq \alpha} D_{\alpha-\delta,k-r}^{"} \exp[\Omega(a-2a_{0})^{-1}y]$$
$$\int_{R^{n}} \exp[-M(a_{0}\xi)]d\xi$$
$$\leq D_{n} \exp[\Omega[(a-2a_{0})^{-1}y].$$

This implies that

$$(\mathbf{A}_{\theta}\phi)(\mathbf{z})\in \mathbf{W}^{\Omega}(\mathbf{C}^{n}).$$

Theorem 2.2. A_{θ} is continuous linear mapping from $[W^{\Omega}(C^{n})]$ into $[W^{\Omega}(C^{n})]$.

Proof. From the paper², if $\phi_v \rightarrow 0$ converges to zero uniformly in any bounded domain of the z-plane and in addition it satisfies the inequalities

$$|z^{k}\phi_{v}(z)| \leq C_{k} \exp[\Omega(by)],$$

where the constants C_k and b do not depend on the index v, then $\phi_v \in [W^{\Omega}(C^n)]$ is said to converge to zero as $v \to \infty$. If $\phi_v \in [W^{\Omega}(C^n)]$ then from Theorem 2.1 the pseudo-differential operator $A_{\theta} \phi_v$ is a linear mapping from $W^{\Omega}(C^n)$ into itself. Now using the above arguments $A_{\theta} \phi_v$ converges uniformly to zero in any bounded domain of the z-plane and in addition it satisfies the inequalities

$$|z^{k}(A_{\theta}\phi_{v})(z)| \leq C_{k} \exp[\Omega(by)],$$

where the constants C_k and b do not depend on the index v. Then $A_\theta \phi_v \to 0$ uniformly as $v \to \infty$. This implies that $A_\theta \phi$ maps $W^{\Omega}(C^n)$ continuously into itself.

Now we define a distribution of $A_{\theta}f$ in $[W^{\Omega}\left(C^{n}\right)]'$ by

(2.1)
$$\langle A_{\theta}f, \phi \rangle = \langle f, A_{\theta}^* \overline{\phi} \rangle, \phi \in [W^{\Omega}(C^n)] \text{ and } f \in [W^{\Omega}(C^n)]',$$

where $\,A_{\theta}^{*}\,$ is a formal adjoint of $A_{\theta}\,.$

Theorem 2.3. A_{θ} is a linear mapping from $[W^{\Omega}(C^{n})]'$ into $[W^{\Omega}(C^{n})]'$.

Proof. Let $f \in [W^{\Omega}(C^n)]'$. Then, for any sequence of functions $\{\phi_{\nu}\} \in [W^{\Omega}(C^n)]$ converging uniformly to zero in any bounded domain of the z-plane in $[W^{\Omega}(C^n)]$ as $\nu \to \infty$. Then from (15), we have

(2.2)
$$\langle A_{\theta}f, \phi_{\nu} \rangle = \langle f, A_{\theta}^* \overline{\phi_{\nu}} \rangle, \phi \in W^{\Omega}(\mathbb{C}^n) \text{ and } \nu = 1, 2, 3..$$

By theorem 2.2 we have $A_{\theta}^* \overline{\phi_{\nu}} \to 0$ as $\nu \to \infty$. Hence using (2.2) we observe that $f \in [W^{\Omega}(C^n)]'$. Therefore, we conclude that $\langle A_{\theta}f, \phi_{\nu} \rangle \to 0$ as $\nu \to \infty$. This implies that $A_{\theta}f \in [W^{\Omega}(C^n)]'$.

Definition 2.2. A sequence of distributions $\{f_v\} \in [W^{\Omega}(C^n)]'$ is said to converge to zero in $[W^{\Omega}(C^n)]'$ if $\langle A_{\theta}f_v, \phi \rangle \rightarrow 0$ as $v \rightarrow \infty$, for all $\phi \in [W^{\Omega}(C^n)]$.

Theorem 2.4. A_{θ} is a continuous linear mapping from $\left[W^{\Omega}(C^{n})\right]'$ into $\left[W^{\Omega}(C^{n})\right]'$.

Proof. Let $\phi \in W^{\Omega}(\mathbb{C}^n)$. Then using definition 2.2 and (2.1) we find that

 $\langle \mathbf{A}_{\theta} \mathbf{f}_{\nu}, \phi \rangle = \langle \mathbf{f}_{\nu}, \mathbf{A}_{\theta}^* \overline{\phi}_{\nu} \rangle \rightarrow 0 \text{ as } \nu \rightarrow \infty$

Hence, $A_{\theta}f_{\nu} \rightarrow 0$ in $[W^{\Omega}(C^{n})]$ ' as $\nu \rightarrow \infty$. This implies that A_{0} is a continuous linear mapping.

This implies that A_{θ} is a continuous linear mapping from $[W^{\Omega}(C^{n})]'$ into itself.

Theorem 2.5. Let σ (z, ξ) be a symbol in V^0 . Then, $A_{\theta}: L^{p}(\mathbb{R}^{n}) \to L^{p}(\mathbb{R}^{n})$ is bounded linear operator for $l \leq p < \infty$.

Proof. The proof of above theorem is similar to Wong³ (pp. 79-88).

References

- 1. A. Friedman, *Generalized Functions and Partial Differential Equations*, Prentice Hall, Englewood Cliffs, N. J. (1963).
- I. M. Gelfand and G. E. Shilov, Generalized Functions, *Academic Press, New York*, 3 (1967).
- 3. M. W. Wong, *An Introduction to Pseudo-differential Operators*, World Scientific, Singapore 1991.

S. K. Upadhyay

- 4. S. Zaidman, Distributions and Pseudo-differential Operators, Longman 1991.
- R. S. Pathak, Generalized Sobolev Spaces and Pseudo-differential Operators on Spaces of Ultradistributions, in: M. Morimoto and T. Kanal (Eds.), Structures and Solutions of Differential Equations, *World Scientific, Singapore*, 343-368 (1996).
- 6. M. Cappiello, Todar Gramchev and L. Rodino, Gel'fand Shilov Spaces, Pseudo-differential Operators and Localization Operators, *Operator Theory Advances and Applications*, **172** (2006)297-312.
- R. S. Pathak and S. K. Upadhyay, W^p-Spaces and Fourier Transformation, Proc. Amer. Math. Soc., 121 (3) (1994).