Pseudo-Differential Operators on $\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$ - Space ${ }^{*}$

S. K. Upadhyay
Department of Applied Mathematics
Institute of Technology and DST- CIMS
Banaras Hindu University,Varanasi - 221 005, India
E-mail: sk_upadhyay@yahoo.com

(Received February 20, 2010)

Abstract

A pseudo-differential operator on $\mathrm{W}\left(\mathrm{C}^{\mathrm{n}}\right)$ space is defined and using the theory of Fourier transformation its various properties are studied. Keywords: Pseudo-differential operator, convex function, Fourier transformation, Sobolev space. AMS Classification: 46F12, 46F05.

1. Introduction

The spaces $W_{M}\left(\mathrm{R}^{\mathrm{n}}\right), \mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$ were investigated by Friedman ${ }^{1}$ and Gel'fand and Shilov ${ }^{2}$. It was shown that the Fourier transformation

$$
\mathrm{F}: \mathrm{W}_{\mathrm{M}}\left(\mathrm{R}^{\mathrm{n}}\right) \rightarrow \mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right), \mathrm{F}: \mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right) \rightarrow \mathrm{W}_{\mathrm{M}}\left(\mathrm{R}^{\mathrm{n}}\right)
$$

is linear and continuous, where M, Ω are convex functions and $\mathrm{R}^{\mathrm{n}}, \mathrm{C}^{\mathrm{n}}$ are spaces of n - dimensional real and complex numbers.

The theory of pseudo-differential operators is given by Wong ${ }^{3}$, Zaidman ${ }^{4}$, Pathak ${ }^{5}$ and others. They studied pseudo-differential operator by exploiting the theory of Fourier transformation on Schwartz space, Geverey type space and other spaces also.

Pseudo-differential operators on certain Gel'fand and Shilov space were studied by Cappiello, Gramchev and L. Rodino ${ }^{6}$ by using theory of Fourier transformation.

Our main aim in this paper is to define the pseudo-differential operator on $\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$-space and to study its various properties by the Fourier transformation tool because its distributional space $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)^{\prime}\right]$ is more general than Schwartz distributional space [$\left.\mathrm{S}\left(\mathrm{R}^{\mathrm{n}}\right)\right]^{\prime}$.

Now, we recall the definitions of $W_{M}\left(\mathrm{R}^{\mathrm{n}}\right), \mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$-spaces and pseudodifferential operator from the papers ${ }^{1,2}$ on $\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$-space.

[^0]Let M_{j} and Ω_{j} be the convex functions such that

$$
\begin{align*}
& \mathrm{M}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)=\int_{0}^{\mathrm{x}_{\mathrm{j}}} \mu_{\mathrm{j}}\left(\xi_{\mathrm{j}}\right) \mathrm{d} \xi_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}} \geq 0\right) \tag{1.1}\\
& \Omega_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}\right)=\int_{0}^{\mathrm{y}_{\mathrm{j}}} \omega_{\mathrm{j}}\left(\eta_{\mathrm{j}}\right) \mathrm{d} \eta_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}} \geq 0\right) \tag{1.2}
\end{align*}
$$

for $\mathrm{j}=1,2,3, \ldots$..n.
We set

$$
\begin{aligned}
& \mu(\xi)=\left(\left(\mu_{1}\left(\xi_{1}\right)\right), \ldots,\left(\mu_{n}\left(\xi_{n}\right)\right),\right. \\
& \omega(\eta)=\left(\left(\omega_{1}\left(\eta_{i}\right)\right), \ldots,\left(\omega_{\eta}\left(\eta_{n}\right)\right)\right.
\end{aligned}
$$

and

$$
\begin{align*}
& \mathrm{M}_{\mathrm{j}}\left(-\mathrm{x}_{\mathrm{j}}\right)=\mathrm{M}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{M}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{M}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}^{\prime}\right) \leq \mathrm{M}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}+\mathrm{x}_{\mathrm{j}}^{\prime}\right) \tag{1.3}\\
& \Omega_{\mathrm{j}}\left(-\mathrm{y}_{\mathrm{j}}\right)=\Omega_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}\right), \Omega_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}\right)+\Omega_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}^{\prime}\right) \leq \Omega_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}+\mathrm{y}_{\mathrm{j}}^{\prime}\right) .
\end{align*}
$$

The space $W_{M}\left(R^{n}\right)$ consists of all C^{∞}-functions which satisfy the inequalities:

$$
\begin{equation*}
\left|\mathrm{D}_{\mathrm{x}}^{(\mathrm{k})} \phi(\mathrm{x})\right| \leq \mathrm{C}_{\mathrm{k}} \exp [-\mathrm{M}(\mathrm{ax})] \tag{1.5}
\end{equation*}
$$

where $D_{x}^{(k)}=D_{x}^{\left(k_{1}\right)} D_{x}^{\left(\mathrm{k}_{2}\right)} \ldots \mathrm{D}_{\mathrm{x}}^{\left(\mathrm{k}_{\mathrm{n}}\right)}, \mathrm{k}=\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right)$ and $\exp [-M(a x)]=\exp \left[-M_{1}\left(a_{1} x_{1}\right)-M_{2}\left(a_{2} x_{2}\right) \ldots . M_{n}\left(a_{n} x_{n}\right)\right]$ and $C_{k}, a>0$ are constants depending on the function \square.

A function $\phi \in \mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$ if and only if for $\mathrm{b}>0$ there exists a constant $\mathrm{C}_{\mathrm{k}}>0$ such that

$$
\begin{equation*}
\left|\mathrm{z}^{\mathrm{k}} \phi(\mathrm{z})\right| \leq \mathrm{C}_{\mathrm{k}} \exp [\Omega(\mathrm{by})], \tag{1.6}
\end{equation*}
$$

where $z^{k}=z_{1}{ }^{k_{1}} z_{2}{ }^{k_{2}} z_{3}{ }^{k_{3}} \ldots . z_{n}{ }^{k_{n}}$,

$$
\exp [\Omega(\mathrm{by})]=\exp \left[\Omega_{1}\left(\mathrm{~b}_{1} \mathrm{y}_{1}\right)+\Omega_{2}\left(\mathrm{~b}_{2} \mathrm{y}_{2}\right)+\ldots .+\Omega_{\mathrm{n}}\left(\mathrm{~b}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}\right)\right]
$$

and constants $\mathrm{C}_{\mathrm{k}}>0, \mathrm{~b}>0$ depend on function ϕ.
Now, we define the duality of the functions $\mathrm{M}(\mathrm{x})$ and Ω (y) in the following way:

Let $\mathrm{M}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)$ and $\Omega_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}\right)$ be defined by (1.1) and (1.2) respectively and let $\mu_{\mathrm{j}}\left(\xi_{\mathrm{j}}\right)$ and $\omega_{\mathrm{j}}\left(\eta_{\mathrm{j}}\right)$ be mutually inverse, i.e. $\mu_{\mathrm{j}}\left(\omega_{\mathrm{j}}\left(\eta_{\mathrm{j}}\right)\right)=\eta_{\mathrm{j}}$ and $\omega_{\mathrm{j}}\left(\mu_{\mathrm{j}}\left(\xi_{\mathrm{j}}\right)\right)=\xi_{\mathrm{j}}$, then the corresponding functions $\mathrm{M}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)$ and $\Omega_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}\right)$ are called dual in sense of Young. The Young inequality is

$$
\begin{equation*}
\mathrm{x}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}} \leq \mathrm{M}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)+\Omega_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}^{\prime}\right), \mathrm{x}_{\mathrm{j}} \geq 0, \mathrm{y}_{\mathrm{j}} \geq 0, \tag{1.7}
\end{equation*}
$$

where the equality holds if and only if $y_{j}=\mu_{j}\left(x_{j}\right)$ and x_{j} varies in the interval $x_{j}^{0}<x_{j}<\infty$ and y_{j} varies in the interval $y_{j}^{0}<y_{j}<\infty$. That equality will be

$$
\begin{equation*}
\mathrm{x}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}=\mathrm{M}_{\mathrm{j}}^{0}\left(\mathrm{x}_{\mathrm{j}}\right)+\Omega_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}\right) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{x}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}=\mathrm{M}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)+\Omega_{\mathrm{j}}^{0}\left(\mathrm{y}_{\mathrm{j}}\right) . \tag{1.9}
\end{equation*}
$$

From the papers ${ }^{1,2}$ the Fourier-duality relation is given by

$$
\mathrm{F}\left[\mathrm{~W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]=\mathrm{W}_{\mathrm{M}}\left(\mathrm{R}^{\mathrm{n}}\right), \mathrm{F}\left[\mathrm{~W}_{\mathrm{M}}\left(\mathrm{R}^{\mathrm{n}}\right)\right]=\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]
$$

A linear partial differential operator $P(z, D)$ for $z=x+i y \in C^{n}$ is given by

$$
\begin{equation*}
\mathrm{P}(\mathrm{z}, \mathrm{D})=\sum_{|\xi| \leq \mathrm{m}} \mathrm{a}_{\alpha}(\mathrm{z}) \mathrm{D}^{(\alpha)} \tag{1.10}
\end{equation*}
$$

where

$$
\mathrm{D}^{(\alpha)}=\mathrm{D}^{\left(\alpha_{1}\right)} \mathrm{D}^{\left(\alpha_{2}\right)} \ldots \mathrm{D}^{\left(\alpha_{n}\right)}
$$

If we replace $\mathrm{D}^{(\alpha)}$ by a monomial $\xi^{\alpha} \in \mathrm{R}^{\mathrm{n}}$ then we get a symbol of (1.10). This symbol is

$$
\begin{equation*}
\mathrm{P}(\mathrm{z}, \xi)=\sum_{|\alpha| \leq \mathrm{m}} \mathrm{a}_{\alpha}(\mathrm{z}) \xi^{\alpha} \tag{1.11}
\end{equation*}
$$

We take $\phi \in \mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$ then by the property of Fourier transformation from (1.1) and (1.2)

$$
\begin{aligned}
(\mathrm{P}(\mathrm{z}, \mathrm{D}) \phi)(\mathrm{z}) & =\sum_{|\alpha| \leq \mathrm{m}} \mathrm{a}_{\alpha}(\mathrm{z})\left(\mathrm{D}^{(\alpha)} \phi\right)(\mathrm{z}) \\
& =\sum_{|\alpha| \leq \mathrm{m}} \mathrm{a}_{\alpha}(\mathrm{z})\left(\xi^{\alpha} \hat{\phi}\right)^{\vee}(\mathrm{z}) \\
& =\sum_{|\alpha| \leq \mathrm{m}} \mathrm{a}_{\alpha}(\mathrm{z})(2 \pi)^{-\mathrm{n} / 2} \int_{\mathrm{R}^{\mathrm{n}}} \xi^{\alpha} \mathrm{e}^{\mathrm{i}<z, \xi>} \hat{\phi}(\xi) \mathrm{d} \xi \\
& =(2 \pi)^{-\mathrm{n} / 2} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<z, \xi\rangle}\left(\sum_{|\alpha| \leq \mathrm{z}} \mathrm{a}_{\alpha}(\mathrm{z}) \xi^{\alpha}\right) \hat{\phi}(\xi) \mathrm{d} \xi \\
& =(2 \pi)^{-\mathrm{n} / 2} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<z, \xi\rangle} \mathrm{p}(\mathrm{z}, \xi) \hat{\phi}(\xi) \mathrm{d} \xi
\end{aligned}
$$

Hence,

$$
\begin{equation*}
(\mathrm{P}(\mathrm{z}, \mathrm{D}) \phi)(\mathrm{z})=(2 \pi)^{-\mathrm{n} / 2} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<\mathrm{z}, \xi>} \mathrm{p}(\mathrm{z}, \xi) \hat{\phi}(\xi) \mathrm{d} \xi \tag{1.12}
\end{equation*}
$$

which implies a representation of partial differential operator in terms of symbol $\mathrm{p}(\mathrm{z}, \xi)$ by means of Fourier transformation. Instead of $\mathrm{p}(\mathrm{z}, \xi)$, we take the general symbol $\theta(\mathrm{z}, \xi)$ for $\mathrm{z} \in \mathrm{C}^{\mathrm{n}}, \xi \in \mathrm{R}^{\mathrm{n}}$ which are no longer polynomial in ξ. The operator is so called pseudo-differential operator.

Thus, the pseudo-differential operator associated with symbol $\theta(\mathrm{z}, \xi)$ is defined by

$$
\begin{equation*}
\left(\mathrm{A}_{\theta} \phi\right)(\mathrm{z})=(2 \pi)^{-\mathrm{n} / 2} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<z, \xi>} \theta(\mathrm{z}, \xi) \hat{\phi}(\xi) \mathrm{d} \xi . \tag{1.13}
\end{equation*}
$$

The function $\theta(\mathrm{z}, \xi) \in \mathrm{C}^{\infty}\left(\mathrm{C}^{\mathrm{n}} \times \mathrm{R}^{\mathrm{n}}\right)$ which is assumed to be an entire analytic function with respect to $\mathrm{z}=\mathrm{x}+\mathrm{iy}, \xi \in \mathrm{R}^{\mathrm{n}}$ is said to be in the class V^{m} iff for any two multi-indices α and β and there exists positive constant $\mathrm{C}_{\alpha, \beta}$, depending on α and β such that

$$
\begin{equation*}
\left|D_{z}^{(\alpha)} D_{\xi}^{(\beta)} \theta(z, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{m-|\beta|}, m \in R \tag{1.14}
\end{equation*}
$$

and $\mathrm{z} \in \mathrm{C}^{\mathrm{n}}, \xi \in \mathrm{R}^{\mathrm{n}}$.

2. Properties of the Pseudo-differential Operator

In this section, we study the various properties of the pseudo-differential operators on $\mathrm{W}^{2}\left(\mathrm{C}^{\mathrm{n}}\right)$-space.

Theorem 2.1. Let $\sigma(z, \xi)$ be a symbol belonging to V^{m}. Then pseudodifferential operator A_{θ} maps $W^{\Omega}\left(C^{n}\right)$-into itself.

Proof. We have

$$
\left(\mathrm{A}_{\theta} \phi\right)(\mathrm{z})=(2 \pi)^{-\mathrm{n} / 2} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<z, \xi>} \theta(\mathrm{z}, \xi) \hat{\phi}(\xi) \mathrm{d} \xi .
$$

Now,

$$
(i z)^{k}\left(A_{\theta} \phi\right)(z)=(2 \pi)^{-n / 2} \int_{R^{n}} D_{\xi}{ }^{(k)}\left(e^{i<z, \xi>}\right) \theta(z, \xi) \hat{\phi}(\xi) d \xi .
$$

Integration by parts we get

$$
\begin{aligned}
& (i z)^{\mathrm{k}}\left(\mathrm{~A}_{\theta} \phi\right)(\mathrm{z})=(2 \pi)^{-\mathrm{n} / 2}(-1)^{|\mathrm{k}|} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i} \ll, \xi\rangle} \mathrm{D}_{\xi}^{(\mathrm{k})}[\theta(\mathrm{z}, \xi) \hat{\phi}(\xi)] \mathrm{d} \xi \\
& \quad=(-1)^{|\mathrm{k}|}(2 \pi)^{-\mathrm{n} / 2} \sum_{|\mathrm{r}| \leq \mathrm{k}}\binom{\mathrm{k}}{\mathrm{r}} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<z, \xi\rangle}\left(\mathrm{D}_{\xi}{ }^{(\mathrm{k}-\mathrm{r})} \theta\right)(\mathrm{z}, \xi) \mathrm{D}_{\xi}^{(\mathrm{r})} \hat{\phi}(\xi) \mathrm{d} \xi
\end{aligned}
$$

Hence,
$(\mathrm{iz})^{\mathrm{k}}\left(\mathrm{A}_{\theta} \phi\right)(\mathrm{z})=(-1)^{|\mathrm{k}|}(2 \pi)^{-\mathrm{n} / 2} \sum_{|\mathrm{r}| \leq \mathrm{k}}\binom{\mathrm{k}}{\mathrm{r}} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<z, \xi^{\xi}+1>} \prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\xi_{\mathrm{i}}+1\right)^{-\left|\alpha_{i}\right|} \prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\xi_{\mathrm{i}}+1\right)^{\left|\alpha_{\mathrm{i}}\right|}$

$$
\begin{aligned}
& \mathrm{e}^{-\mathrm{i}<\mathrm{z}, 1>}\left(\mathrm{D}_{\xi}^{(\mathrm{k}-\mathrm{r})} \theta\right)(\mathrm{z}, \xi) \mathrm{D}_{\xi}^{(\mathrm{r})} \hat{\phi}(\xi) \mathrm{d} \xi \\
& =(-1)^{|\mathrm{k}|}(2 \pi)^{-\mathrm{n} / 2} \sum_{|\mathrm{r}| \leq \mathrm{k}}\binom{\mathrm{k}}{\mathrm{r}} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{D}_{\mathrm{z}}^{(\alpha)}\left(\mathrm{e}^{\mathrm{i}<\mathrm{z}, \xi+1>}\right) \mathrm{e}^{-\mathrm{i}<\mathrm{z}, 1>} \prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1+\xi_{\mathrm{i}}\right)^{-\left|\alpha_{\mathrm{i}}\right|} \\
& \left(\mathrm{D}_{\xi}^{(\mathrm{k}-\mathrm{r})} \theta\right)(\mathrm{z}, \xi) \mathrm{D}_{\xi}^{(\mathrm{r})} \hat{\phi}(\xi) \mathrm{d} \xi
\end{aligned}
$$

Again, integration by parts we obtain

$$
\begin{aligned}
& (\mathrm{iz})^{\mathrm{k}}\left(\mathrm{~A}_{\theta} \phi\right)(\mathrm{z})=(-1)^{|\mathrm{k}|}(2 \pi)^{-\mathrm{n} / 2} \sum_{|\mathrm{r}| \leq \mathrm{k}}\binom{\mathrm{k}}{\mathrm{r}}(-1)^{|\alpha|} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<\mathrm{z}, \xi+1>} \\
& \prod_{i=1}^{n}\left(1+\xi_{i}\right)^{-\left|\alpha_{i}\right|} D_{z}^{(\alpha)}\left[\mathrm{e}^{-\mathrm{i}<z, 1>}\left(\mathrm{D}_{\mathrm{z}}^{(\mathrm{k}-\mathrm{r})} \theta\right)(\mathrm{z}, \xi)\right] \mathrm{D}_{\xi}^{(\mathrm{r})} \hat{\phi}(\xi) \mathrm{d} \xi \\
& =(-1)^{|k|+|r|}(2 \pi)^{-n / 2} \sum_{|r| \leq k}\binom{\mathrm{k}}{\mathrm{r}} \sum_{\delta \leq \alpha}\binom{\alpha}{\delta} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<\xi+1, \mathrm{z>}} \mathrm{D}_{\mathrm{z}}^{(\delta)} \mathrm{e}^{-\mathrm{i}<\mathrm{z}, 1>} \\
& \left(D_{z}^{(\alpha-\delta)} D_{\xi}^{(k-r)} \theta\right)(z, \xi) \prod_{i=1}^{\mathrm{n}}\left(1+\xi_{\mathrm{i}}\right)^{-\left|\alpha_{\mathrm{i}}\right|} \mathrm{D}_{\xi}^{(\mathrm{r})} \hat{\phi}(\xi) \mathrm{d} \xi .
\end{aligned}
$$

Hence

$$
\begin{aligned}
&(\mathrm{iz})^{\mathrm{k}}\left(\mathrm{~A}_{\theta} \phi\right)(\mathrm{z})=(2 \pi)^{-\mathrm{n} / 2}(-1)^{|\mathrm{k}|+|\alpha|} \sum_{|\mathrm{r}| \leq \mathrm{k}} \sum_{|\delta| \leq \alpha}\binom{\mathrm{k}}{\mathrm{r}}\binom{\alpha}{\delta} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<\xi+1, \mathrm{z}\rangle}(1)^{|\delta|} \mathrm{e}^{-\mathrm{i}<\mathrm{z}, 1>} \\
&\left(\mathrm{D}_{\mathrm{z}}^{(\alpha-\delta)} \mathrm{D}_{\xi}^{(\mathrm{k}-\mathrm{r})} \theta\right)(\mathrm{z}, \xi) \prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1+\xi_{\mathrm{i}}\right)^{-\left|\alpha_{\mathrm{i}}\right|} \mathrm{D}_{\xi}^{(\mathrm{r})} \hat{\phi}(\xi) \mathrm{d} \xi \\
&=(2 \pi)^{-\mathrm{n} / 2}(-1)^{|\mathrm{k}|+|\alpha|} \sum_{|\mathrm{r}| \leq \mathrm{k}} \sum_{|\delta| \leq \alpha}\binom{\mathrm{k}}{\mathrm{r}}\binom{\alpha}{\delta}(-1)^{|\delta|} \\
& \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}<\xi, \mathrm{z>}}\left(\mathrm{D}_{\mathrm{z}}^{(\alpha-\delta)} \mathrm{D}_{\mathrm{z}}^{(\mathrm{k}-\mathrm{r})} \theta\right)(\mathrm{z}, \xi) \prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1+\xi_{\mathrm{i}}\right)^{-\left|\alpha_{\mathrm{i}}\right|} \mathrm{D}_{\xi}^{(\mathrm{r})} \hat{\phi}(\xi) \mathrm{d} \xi .
\end{aligned}
$$

Taking absolute of above expression we get

$$
\begin{aligned}
&\left|\mathrm{z}^{\mathrm{k}}\left(\mathrm{~A}_{\theta} \phi\right)(\mathrm{z})\right| \leq(2 \pi)^{-\mathrm{n} / 2} \sum_{|\mathrm{r}| \leq \alpha} \sum_{|\delta| \leq \alpha}\binom{\mathrm{k}}{\mathrm{r}}\binom{\alpha}{\delta} \int_{\mathrm{R}^{\mathrm{n}}} \exp [-|\mathrm{y}||\xi|] \\
&\left|\left(\mathrm{D}_{\mathrm{z}}^{(\alpha-\delta)} \mathrm{D}_{\xi}^{(\mathrm{k}-\mathrm{r})} \theta\right)(\mathrm{z}, \xi)\right|(1+|\xi|)^{-|\alpha|}\left|\mathrm{D}_{\xi}^{(\mathrm{r})} \hat{\phi}(\xi)\right| \mathrm{d} \xi
\end{aligned}
$$

Using arguments ${ }^{\mathbf{1 , 2}}$, the above expression yields

$$
\begin{gathered}
\left|\mathrm{z}^{\mathrm{k}}\left(\mathrm{~A}_{\theta} \phi\right)(\mathrm{z})\right| \leq(2 \pi)^{-\mathrm{n} / 2} \sum_{|\mathrm{r}| \leq \mathrm{k}|\delta| \leq \alpha} \sum_{\mathrm{R}}\binom{\mathrm{k}}{\mathrm{r}}\binom{\alpha}{\delta} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{C}_{\alpha-\delta, \mathrm{k}-\mathrm{r}}(1+|\xi|)^{\mathrm{m}-|\mathrm{k}|+\mathrm{r}|-|\alpha|} \\
\mathrm{D}_{\mathrm{r}} \exp [-\mathrm{M}[(\mathrm{a} \xi)]-|\mathrm{y}||\xi|] \mathrm{d} \xi \\
\leq(2 \pi)^{-\mathrm{n} / 2} \sum_{|\mathrm{r}| \leq \mathrm{k} \mid} \sum_{|\delta| \leq \alpha}\binom{\mathrm{k}}{\mathrm{r}}\binom{\alpha}{\delta} \mathrm{C}_{\alpha-\delta, \mathrm{k}-\mathrm{r}} \cdot \mathrm{D}_{\mathrm{r}}
\end{gathered}
$$

$$
\int_{\mathrm{R}^{\mathrm{n}}} \exp \left[\mathrm{M}\left(\mathrm{a}_{0} \xi\right)\right] \exp [-\mathrm{M}[(\mathrm{a} \xi)]+|\mathrm{y}||\xi|] \mathrm{d} \xi .
$$

From (1.3), we have

$$
\begin{aligned}
& \mid \mathrm{z}^{\mathrm{k}}\left(\mathrm { A } _ { \theta } \phi \left((\mathrm{z}) \mid \leq(2 \pi)^{-\mathrm{n} / 2}\right.\right. \sum_{|\mathrm{r}| \leq \mathrm{k}|\mathrm{D}| \leq \alpha} \\
&\binom{\mathrm{k}}{\mathrm{r}}\binom{\alpha}{\delta} \mathrm{D}_{\alpha-\delta, \mathrm{k}-\mathrm{r}} \\
& \int_{\mathrm{R}^{\mathrm{n}}} \exp \left[-\mathrm{M}\left[\left(\mathrm{a}-\mathrm{a}_{0}\right) \xi\right]+|\mathrm{y} \| \xi|\right] \mathrm{d} \xi
\end{aligned}
$$

From the paper ${ }^{7}$, we have

$$
\begin{aligned}
&\left|\mathrm{z}^{\mathrm{k}}\left(\mathrm{~A}_{\theta} \phi\right)(\mathrm{z})\right| \leq(2 \pi)^{-\mathrm{n} / 2} \sum_{|\mathrm{rr}| \leq \mathrm{k}| | 8 \mid \leq \alpha} \sum_{\alpha-\delta, k-r}^{\prime \prime} \exp \left[\Omega\left(\mathrm{a}-2 \mathrm{a}_{0}\right)^{-1} \mathrm{y}\right] \\
& \quad \int_{\mathrm{R}^{\mathrm{n}}} \exp \left[-\mathrm{M}\left(\mathrm{a}_{0} \xi\right)\right] \mathrm{d} \xi \\
& \leq \mathrm{D}_{\mathrm{n}} \exp \left[\Omega\left[\left(\mathrm{a}-2 \mathrm{a}_{0}\right)^{-1} \mathrm{y}\right] .\right.
\end{aligned}
$$

This implies that

$$
\left(\mathrm{A}_{\theta} \phi\right)(\mathrm{z}) \in \mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right) .
$$

Theorem 2.2. A_{θ} is continuous linear mapping from $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]$ into / $\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$].

Proof. From the paper ${ }^{2}$, if $\phi_{v} \rightarrow 0$ converges to zero uniformly in any bounded domain of the z-plane and in addition it satisfies the inequalities

$$
\left|z^{\mathrm{k}} \phi_{\mathrm{v}}(\mathrm{z})\right| \leq \mathrm{C}_{\mathrm{k}} \exp [\Omega(\mathrm{by})]
$$

where the constants C_{k} and b do not depend on the index v, then $\phi_{v} \in\left[\mathrm{~W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]$ is said to converge to zero as $v \rightarrow \infty$. If $\phi_{v} \in\left[\mathrm{~W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]$ then from Theorem 2.1 the pseudo-differential operator $A_{\theta} \phi_{v}$ is a linear mapping from $W^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$ into itself. Now using the above arguments $\mathrm{A}_{\theta} \phi_{v}$ converges uniformly to zero in any bounded domain of the z-plane and in addition it satisfies the inequalities

$$
\left|\mathrm{z}^{\mathrm{k}}\left(\mathrm{~A}_{\theta} \phi_{\mathrm{v}}\right)(\mathrm{z})\right| \leq \mathrm{C}_{\mathrm{k}} \exp [\Omega(\mathrm{by})]
$$

where the constants C_{k} and b do not depend on the index v. Then $A_{\theta} \phi_{v} \rightarrow 0$ uniformly as $v \rightarrow \infty$. This implies that $\mathrm{A}_{\theta} \phi$ maps $\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$ continuously into itself.

Now we define a distribution of $\mathrm{A}_{\theta} \mathrm{f}$ in $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}$ by

$$
\begin{equation*}
\left\langle\mathrm{A}_{\theta} \mathrm{f}, \phi\right\rangle=\left\langle\mathrm{f}, \mathrm{~A}_{\theta}^{*} \bar{\phi}\right\rangle, \phi \in\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right] \text { and } \mathrm{f} \in\left[\mathrm{~W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}, \tag{2.1}
\end{equation*}
$$

where A_{θ}^{*} is a formal adjoint of A_{θ}.

Theorem 2.3. A_{θ} is a linear mapping from $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}$ into $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}$.

Proof. Let $\mathrm{f} \in\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}$. Then, for any sequence of functions $\left\{\phi_{v}\right\} \in\left[W^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]$ converging uniformly to zero in any bounded domain of the z-plane in $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]$ as $v \rightarrow \infty$. Then from (15), we have

$$
\begin{equation*}
\left\langle\mathrm{A}_{\theta} \mathrm{f}, \phi_{v}\right\rangle=\left\langle\mathrm{f}, \mathrm{~A}_{\theta}^{*} \overline{\phi_{v}}\right\rangle, \phi \in \mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right) \text { and } v=1,2,3 \ldots \tag{2.2}
\end{equation*}
$$

By theorem 2.2 we have $A_{\theta}^{*} \overline{\phi_{v}} \rightarrow 0$ as $v \rightarrow \infty$. Hence using (2.2) we observe that $\mathrm{f} \in\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}$. Therefore, we conclude that $\left\langle\mathrm{A}_{\theta} \mathrm{f}, \phi_{v}\right\rangle \rightarrow 0$ as $v \rightarrow \infty$. This implies that $\mathrm{A}_{\theta} \mathrm{f} \in\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}$.

Definition 2.2. A sequence of distributions $\left\{f_{v}\right\} \in\left[W^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}$ is said to converge to zero in $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{n}\right)\right]^{\prime}$ if $\left\langle\mathrm{A}_{\theta} \mathrm{f}_{v}, \phi\right\rangle \rightarrow 0$ as $v \rightarrow \infty$, for all $\phi \in\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]$.

Theorem 2.4. A_{θ} is a continuous linear mapping from $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}$ into $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right]^{\prime}$.

Proof. Let $\phi \in \mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)$. Then using definition 2.2 and (2.1) we find that

$$
\left\langle\mathrm{A}_{\theta} \mathrm{f}_{\mathrm{v}}, \phi\right\rangle=\left\langle\mathrm{f}_{\mathrm{v}}, \mathrm{~A}_{\theta}^{*} \bar{\phi}_{v}\right\rangle \rightarrow 0 \text { as } v \rightarrow \infty .
$$

Hence, $A_{\theta} f_{v} \rightarrow 0$ in $\left[W^{\Omega}\left(C^{n}\right)\right]^{\prime}$ as $v \rightarrow \infty$.
This implies that A_{θ} is a continuous linear mapping from $\left[\mathrm{W}^{\Omega}\left(\mathrm{C}^{\mathrm{n}}\right)\right.$]' into itself.

Theorem 2.5. Let $\sigma(z, \quad \xi)$ be a symbol in V^{0}. Then, $\mathrm{A}_{\theta}: \mathrm{L}^{\mathrm{p}}\left(\mathrm{R}^{\mathrm{n}}\right) \rightarrow \mathrm{L}^{\mathrm{p}}\left(\mathrm{R}^{\mathrm{n}}\right)$ is bounded linear operator for $1 \leq p<\infty$.

Proof. The proof of above theorem is similar to Wong ${ }^{3}$ (pp. 79-88).

References

1. A. Friedman, Generalized Functions and Partial Differential Equations, Prentice Hall, Englewood Cliffs, N. J. (1963).
2. I. M. Gelfand and G. E. Shilov, Generalized Functions, Academic Press, New York, 3 (1967).
3. M. W. Wong, An Introduction to Pseudo-differential Operators, World Scientific, Singapore 1991.
4. S. Zaidman, Distributions and Pseudo-differential Operators, Longman 1991.
5. R. S. Pathak, Generalized Sobolev Spaces and Pseudo-differential Operators on Spaces of Ultradistributions, in: M. Morimoto and T. Kanal (Eds.), Structures and Solutions of Differential Equations, World Scientific, Singapore, 343-368 (1996).
6. M. Cappiello, Todar Gramchev and L. Rodino, Gel'fand Shilov Spaces, Pseudo-differential Operators and Localization Operators, Operator Theory Advances and Applications, 172 (2006)297-312.
7. R. S. Pathak and S. K. Upadhyay, W^{p}-Spaces and Fourier Transformation, Proc. Amer. Math. Soc., 121 (3) (1994).

[^0]: *Presented at CONIAPS XI, University of Allahabad, Feb.20-22, 2010.

