
ISSN 0974 - 9373 
 

Vol. 14 No.1 (2010)           Journal of International Academy of Physical Sciences           pp. 41-51 

 
 

 
 

Threshold N-Policy for M
X
/H2/1 Queueing System with  

Un-reliable Server and Vacations* 
  

Richa Sharma 
Department of Mathematics, St. Johns College, Agra-282002 (India) 

E-mail: aligarh.richa@gmail.com  
 

 

(Received February 20, 2010) 

 

Abstract: In this paper, we consider a M
X
/H2/1 queueing system under 

N-policy with vacation and un-reliable server. Whenever the system 

becomes empty, the server may take vacation. After returning from 

vacation, if the server finds at least N customers waiting in the queue, it 

immediately provides service to all the customers who are waiting in the 

queue. If the number of the customers waiting in the queue is less than N, 

then the server may take another vacation and this process is continued. 

Some performance measures of the system are derived, which are further 

evaluated by using Adaptive Network-based Fuzzy Interference Systems 

(ANFIS). Numerical results and sensitivity analysis are carried out by 

taking an illustration. 

Keywords: Batch arrival, N-policy, M
X
/H2/1 queue, Un-reliable server, 

Generating Function, Queue size. 
 

 

1. Introduction 
   

In queueing literature when the server does not provide service to the 

customer until some specified number of customers, say N are accumulated 

in the system is referred as threshold N-policy. N-policy queueing models 

have wide applicability in many areas such as computer and 

telecommunication system, production and manufacturing system, etc.. For 

some notable contributions in this area we refer the works of Ke
1

, Wang et 

al.
2

, Choudhury et al.
3
 and many others. 

 In recent past, many researchers have analyzed queueing models with 

vacation. A vacation policy for queueing model was studied by Choudhury 

and Madan
4
, Sikdar et al.

5
, Ke et al.

6
, respectively in different frameworks.  

Queueing system with an un-reliable server has received a significant 

amount of attention of the researchers working in the area of queueing and 

reliability theory. Mokaddis et al.
7
, Jain and Agrawal

8
, Choudhury and Tadj

9
 

have analyzed the steady-state behavior of unreliable server.  

In this paper, we study an unreliable M
X
/H2/1 queue under N-policy by 

incorporating vacation and state dependent rates. The organization of rest of  

*Presented at CONIAPS XI, University of Allahabad, Feb. 20-22, 2010. 
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 the paper is as follows. We outline some assumptions and notations in 

section 2. Section 3 is devoted to the analysis of the queueing model. 

Various performance measures are derived in section 4. In section 5 and 6, 

we determine the minimum cost and special cases, respectively. Numerical 

results and concluding remarks have been given in section 7 and 8, 

respectively.  

2. Model Discription 
 

An un-reliable M
X
/H2/1 queueing system with vacation under N-policy 

is considered in our analysis. To formulate the mathematical model, we 

made the following assumptions: 
 

� The system states are described by triplet i.e. (n,i,j), where n 

(n=0,1,……) represents the number of the customers in the system; i 

(1,2) represents that the customer is in i
th

 type of service; j represents the 

states of the server which is given: 

  









=

statebrokendowninisserverthethatrepresentsD

statebusyinisserverthethatrepresentsB

vacationonisserverthethatrepresentsV

j

,

,

,

   

� The customers arrive in batches with arrival rates λj depending upon the 

server states. Let X be the random variable denoting the batch size, then the 

generating function for the batch size distribution is given by              

( )
1

X z k
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∞
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=∑ .   
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,

,

,

2

1

0

λ

λ

λ

λ  

� The server provides service according to 2-hyper exponential 

distribution with rate µi of i
th

 type service. Let qi(i=1,2) denote the 

probabilities of the next customer to enter in the service of type i, where 

q1+q2 =1. 

� Whenever the system becomes empty the server goes for a sequence of 

vacations; the vacation times follow the exponential distribution with 

mean 1/θ. 

� In busy state, the server may break down with a Poisson rate α and the 

failed server immediately sent for repairing with repair rate β. 
  

3. The Analysis 
 

The probabilities of different states of the system are given below: 
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:)(,0 nP V  Probability that there are n customers in the system when the 

server is on vacation. 

:)(, nP Bi   Probability that there are n customers in the system when the 

server is in busy state and the customer is in i
th

 (i=1, 2) type of 

service. 

:)(, nP Di  Probability that there are n customers in the system when the 

server is in broken down state and the customer is in i
th

 (i=1, 2) 

type of service. 

The Chapman-Kolmogorov equations governing the model are: 

(3.1)                   
0 0, 1 1, 2 2,(0) (1) (1),V B BP P Pλ µ µ= +                       
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1
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Define the probability generating functions (PGF) as           
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Lemma 1: The partial generating functions of the system are given by:   
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Proof: The algebraic manipulation of equations (3.2) and (3.3) yields 

(3.12)                 
11
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Multiplying equations (3.1), (3.4), (3.5), (3.6) by qiz, z
2
, )12(1 −≤≤+ Nnzn , 

)(1 Nnzn ≥+ , respectively and summing over n, we obtain  
 

1 1 , 1 1, 2 2, ,

1

0 0.

0 0
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Again multiplying equations (3.7) and (3.8) by z and nz  then summing over 

n, we obtain 

(3.14)              2,1),()(X)()()( ,2,,2 =∀+=+ izHzzHzH DiBiDi λαβλ                          
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α
                                

Now put i=1 and 2, respectively in equation (3.13) and using equation 

(3.15), we get  
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 With the help of Cramer’s rule we solve equations (3.16)-(3.17) and 

obtain equations (3.9)-(3.11). 

Theorem 1: Let H(z) denotes the probability generating function of the 

number of the customers in the system which is given by 

( )
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Proof: The p.g.f. of the number of the customers in the system is 

(3.19)                     H (z) = ∑
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2
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Substituting the values of )(,0 zH V , )(, zH Bi  and )(, zH Di  from equations 

(3.9)-(3.11) into equation (3.19), we obtain the equation (3.18). 
 

4. Performance Measures 
 

 

In this section, objective is to provide explicit expressions for the system 

state probabilities and some other performance measures using results 

established in previous section.  

� The long run probabilities of the server being on vacation, busy and 

breakdown states are denoted by VP , BP and DP , respectively and are 

given by 
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 Proof: Using, )(lim][ 11 zHNSE z
′= →  and applying L Hospital rule 

twice, we obtain equation (4.4). 
 

 

5. Optimal Design of N-Policy 
 

Using the memoryless property, the expected length of idle period is 

given by 

(5.1)                           
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Lemma 4: The expected length of cyclic period, expected busy period, 

broken down period and completion period, respectively are given by     
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Proof: Using, 

 (5.6)                            
VP

IE
CE

][
][ =         

and substituting the value of PV from equation (4.1), we obtain the value of 

E[C]. Substituting the values of E[C] and PB from equations (5.2) and (4.3), 

respectively in BPCEBE ][][ = , we obtain the expected length of busy 

period given in equation (5.3). Using relation, 

(5.7)                            DPCEDE ][][ =  

(5.8)                            ][][][ DEBEHE +=                                                                     

Substituting the values of E[C], PD , E[B] and E[D] from equations (5.2), 

(4.3), (5.3) and (5.4), in above results, we obtain the values of E [D] and 

E[H], respectively. 

Theorem 3: The expected cost total per unit time is given by  

(5.9)              ][
][

1
)()( 11 NSEcPcPcPc

CE
ccNT hDdBbVvtsc +++++= ,                    

where cs (ct)   startup(shutdown) cost when the server is in turned on (off) 

state, cv(cb) cost incurred per unit time for keeping the server is on vacation 

(busy), cd  breakdown cost per unit time incurred on a broken down server,  

ch  holding cost per unit time for each customer present in the system. 
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Proof: We multiply each cost element with the corresponding 

probabilities to construct the cost function. To determine the optimum value 

N
*
, we differentiate equation (5.9) with respect to N and then set the results 

equal to zero. Using the classical method of maxima and minima, we can 

obtain the best positive integer value of N which covers N
*
 and provides the 

smaller cost of Tc(N1). The suitable condition for satisfying the solution of 

N is 0
)(

2*

*2

>
∂

∂

N

NTc . However, it is difficult to represent the result in explicit 

form. For this purpose, numerical experiment is done to illustrate that the 

function is indeed convex and the solution must provide a minimum value.  
   

6. Special Cases 
 

By setting appropriate parameters, we can deduce results for some 

existing models. Some specific cases are as follows: 

Case 1: When λ0=λ1= λ2= λ, X=1, Κ=2 and θ=1, then our model reduces to 

the model considered by Wang et. al. (2004). 

Case 2: When λ0=λ1= λ2= λ, X=1, Κ=1 and θ=1, our model facilitates 

results for removable and non-reliable server model which was studied by 

Wang (1995). 
 

7. Numerical Results and Sensitivity Analysis 
 
 

In this section, we are interested in sensitivity analysis by taking the 

numerical illustrations. Mathematical software ‘MATLAB’ is used to 

develop a computational program. The numerical results are summarized in 

tables 2-3 and are visualized in figs 1(a)-2(b). The default parameters for 

tables 2-3 and graphs 1(a)-2(b) are chosen as λ=.7 (λ0=.9λ, λ1=.8λ, λ2=.7λ), 
µ1=2, µ2=1, α=.01, β=1, θ=.9, Ν=2,  q1=.5 and E(X)=2. 

   

                                       Table 1: The different cost sets 

 

 

 

 

 

 

 

 
 

In table 2, we examine the effect of (µ1, µ2) and α on various system 

characteristics. As we increase µ1 and µ2 (α), the decreasing (increseing) 

pattern is followed by PB, PD, E[B], E[D], E[H] and E[C] while PV increases 

(decreases). E[I] remains constant for table 2. Τable 3 displays the effect of 

Cost sets Set 1 Set 2 Set 3 Set 4 

     cs 50 100 50  50 

     ct 50 50 50  25 

     cv  2 2   2   2 

     cb 25 25 25  50 

     cd 10 10 10 10 

     ch 10 15 10 10 
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α and β for the different values of λ and q1 οn N*
 and Tc(N1) for the 

different sets of cost elements given in table 1. We observed from table 3 

that Tc(N1) increases as α and β  increase and decreases with the increasing 

values of λ and q for all the sets of costs. We also observe that the value of 

threshold parameter N
*
 slightly increases on increasing values of α and β. 

 

 Table 2: The effect of µ1,µ2, α and β on various system characteristics 
 

(µ1,µ2) PV PB PD E[I] E[B] E[D] E[H] E[C] 

(1,2) 0.418 0.660 0.006 2.211 0.022 0.022 2.232 3.63 

(2,2) 0.782 0.521 0.005 0.933 0.009 0.009 0.943 2.34 

(3,2)  0.923 0.457 0.004 0.693 0.006 0.006 0.700 2.10 

(4,2) 0.997 0.421 0.004 0.591 0.005 0.005 0.597 1.99 

(α,β) PV PB PD E[I] E[B] E[D] E[H] E[C] 

(.01,1) 0.418 0.660 0.006 1.400 2.210 0.022 2.232 3.632 

(.02,1) 0.414 0.662 0.013 1.400 2.235 0.044 2.280 3.680 

(.03,1) 0.411 0.664 0.019 1.400 2.262 0.067 2.330 3.730 

(.04,1) 0.407 0.666 0.026 1.400 2.289 0.091 2.380 3.780 

 
Table 3: The effect of α and β on  N

*
 and Tc(N1) for different cost sets 

 

 (α, β) {N
*
, Tc(N1)} 

  λ=.5            λ=.6         Q1=.2          q1=.3         

SET 1 

SET 2 

SET 3 

SET 4 

 

 

(.01,1) 

(5, 25.07)   (4, 22.72)   

(5, 30.53)   (4, 25.99)   

(4, 34.26)   (4, 36.07)  

(5, 47.61)   (5, 42.76)  

(4, 26.09)   (4, 24.40)    

(4, 30.06)   (4, 27.46)    

(4, 40.45)   (4, 40.05)    

(5, 49.64)   (5, 46.44)  

SET 1 

SET 2 

SET 3 

SET 4 

 

 

(.05,1.1) 

(5, 25.07)   (4, 22.72)   

(5, 36.48)   (4, 30.95)   

(4, 41.50)   (4, 43.81)   

(5, 56.96)   (5, 51.12) 

(4, 31.47)    (4, 29.44)   

(4, 36.13)    (4, 32.86)  

(4, 49.40)    (4, 48.83)   

(5, 59.81)    (5, 55.79)  

 

 Figs 1 (a-b) exhibits the combined effect of arrival rate λ along with N
*
 

on Tc(N1) for different sets of cost elements. It can be easily observed that 

Tc(N1) first decreases and then increases sharply on increasing λ for all sets 

of cost elements. By using the fuzzy toolbox, the ANFIS network results for 

E[NS1] are displayed in figs 2(a)-2(b). For this purpose, the ANFIS 

networks are trained for 10 epochs where λ treats as input variable which 

takes the different linguistic values like as low, average, high, very high, 

etc.. The shape of the corresponding membership function for fig 2(b) is 

displayed in fig 2(a). We plot the graph for E[NS1] for the different values 

of N in figs 2(b) where the analytical (ANFIS) results are  represented by 
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continuous (discrete) lines. We observe from fig. 2(b) that E[NS1]  increases 

on increasing λ.  
Finally, we conclude that ANFIS provides an easy and fast solution 

which is at par with analytical results and is useful to analysts and decision 

makers to manage the queueing systems for which exact results using 

classical queue theoretic approaches are difficult to obtain.  
 

8. Conclusion 
 

In this paper, the state dependent unreliable M
X
/H2/1 queue and vacation 

under N-policy has been the topic of our investigation. The incorporation of 

more realistic assumptions viz. unreliable server, vacation and threshold N 

policy make our study more versatile and feasible to deal with congestion 

situations encountered in computers and communication networks, 

manufacturing and production systems, and many others. The results are 

helpful to system designers to minimize the expected total operating cost.  
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Fig. 1: Effect of N and λ on the expected total cost for (a) Set 1 (b) Set 2 
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