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Abstract. Let R be a commutative Noetherian ring I and be a zero 

dimensional ideal of Laurent polynomial ring 1,R X X    that contains 

a doubly monic polynomial. Define.  1 { (1) : } .I f f I  

Suppose  I n  and I(1)/ (1)2 is a free module of rank n 2 over 

/ (1)R I .  Then a set of n generators of  1I can be lifted to a set of n

generators of I iff every unit of  1
R can be lifted to a unit of 

1,R X X I   .

Keywords: Projective modules, Free modules, Laurent polynomial ring, 
Noetherian ring and Number of generators.
Mathematical Subject Classification (2000): 13E05, 13E15, 13C10.

1. Introduction

Let X be an integral, projective variety of co-dimension two, degree d
and dimension r and Y be its general hyperplane section. The problem of 
lifting generators of minimal degree  from the homogeneous ideal of Y to 
the homogeneous ideal of X has been discussed in the paper 1.  Answers in 
terms of relations between d and  are known for r = 1, 2. Laudal 2, 
Gruson and Peskine 3 proved “Generalized trisecant lemma” for r = 1. For r 
= 2, there is an analogous result in the paper4. Let NX P be an integral, 
projective variety of dimension n and degree d, defined over an 
algebraically closed field K of characteristic zero. Consider the hyperplane 
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section Y = X K of X, where K is a general hyperplane in . The 
“Lifting problem” is the problem of finding conditions on d, N, n and s such 
that any degree s hypersurface in containing Y can be lifted to a 
hypersurface in containing X 5.

The ring of Laurent polynomials 1,R X X    is a natural ground ring for 

the study of generators of an ideal. It is obtained by inverting the variables 
in polynomial ring. A Laurent polynomial ring is an extension of the 
polynomial ring  R X . A Laurent    polynomial over C may be viewed as a 

Laurent series in which finitely many coefficients are non-zero 6.

Let be a commutative and Noetherian ring with identity and I be an 

ideal of the Laurent polynomial ring 1,R X X    . We consider only rings 

with finite Krull dimension. Let M be a finitely generated R -module. We 
denote (M) to be the least number of elements in M
required to generate M as an R -module. The conormal module 

2I I of an 

ideal in a ring 1,R X X      is viewed as an 1,R X X I   -module. Define 

(1) =< {f (1): f  }>.   In general, ( (1)) ( )

and      2 2 1.I I I I I          

If I is an ideal of , then  0 { (0) : }I f f I   is an ideal  of R , 

so it is natural to ask whether a set of generators for  0I can be lifted to a 

set of generators for I . Since lifting of generators is a natural problem 
which has been studied by many mathematicians in various fashion 7,8.    

Now we discuss the following problem:  In 11, S. Mandal proved that if 
R is a commutative Noetherian ring, I is an ideal of Laurent polynomial 

ring 1,R X X      containing a doubly monic polynomial, and 2I I is 

generated by n elements over 1,R X X I   , 

where  1dim , 2n R X X I    , then I is also generated by n elements 

over 1,R X X    . Hence  1I is also generated by n elements, where  1I is 

an ideal of R by putting X = 1. Now a question arises here that whether we 
can lift any set of n generators of  1I to a set of n generators of I . The 

objective of paper is to prove that generators of  1I can be lifted to 
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generators of I if and only if the units of  1R I can be lifted to units 

of  1, 1R X X I     under the natural map.   

2. Preliminary Notes

In this section we define some terms used in this paper and state certain 
standard results without proof. We hope that this will improve the 
readability and understanding of the proof of the paper.

An ideal of a ring R is called zero dimensional if every prime ideal of 
R containing I is a maximal ideal, that is, dim( ) = 0. Note that if is 
the intersection of finitely many maximal ideals, then dim( ) = 0 and the 
converse is also true if I is a reduced ideal. 

A polynomial f in Laurent polynomial ring 1,R X X      is said to be 

doubly monic polynomial if the coefficient of the highest degree term and 
the lowest degree term are unit.

Definition 9 2.1. Let R be a ring.  For any R , let ( ) (i j) be the 

n n matrix  n i jI e , where i je denotes the matrix which has its (i, j)th

entry and has zeros elsewhere. Let  nE R be the subgroup of  nSL R

generated by ( ), R .  

Now we state a theorem of S. D. Kumar and S. Mandal 10. This is a 
main ingredient in the proof of the Theorem 3.2.

Theorem 10 2.2. Let R be a commutative Noetherian ring and I be an 

ideal of the Laurent polynomial ring 1,R X X    that contains a doubly 

monic polynomial. Suppose P is a projective R - module of rank 

 1dim , 2n R X X I    .  Let  : 1S P I and 

1 2: ,R X X I I     be two surjective homomorphisms such that  1 S 

mod ( ). Then there exists a surjective lifts  .

If   2I I I  , we say that I is efficiently generated. If R is any 

arbitrary commutative Noetherian ring, then equality may not hold. Take a 
Dedekind domain R , which is not a principal ideal. Then

    22 1I I I    . We now state a theorem of S. Mandal 11 about 

efficient generation of ideals.   
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Theorem11 2.3. Let I be an ideal of 1,R X X    over a commutative 

noetherian ring R . suppose that I contains a doubly monic polynomial 

and  
1

2
,

dim 2.
R X X

I I
I


    Then ideal I is efficiently generated.   

3. Main Theorem

Theorem 3.1. Let be a commutative Noetherian ring and be a zero 

dimensional ideal of 1,R X X    that contains doubly monic polunomial.  

Suppose  I n  and     2
1 1I is a free module of rank n 2 over 

 1R I . Then a set of n generators of  (1)  can be lifted to a set of n 

generators of iff every unit of  1R I can be lifted to a unit 

of 1, .R X X I  
Proof. Let unit of  1R I can be lifted to a unit of 1,R X X I   .  Let  

  be an ideal of 1,R X X    containing doubly monic polynomial and (1) 

be an ideal of .  Let 1 2, ,...., n    generates (1) and let  

1 2, ,..., nf f f  generates such that for i = 1, 2, …n, consider a 

generatin 1 2, ,..., n    of    2
1 1I I . Since    2

1 1I I is free 

module of rank n 2 over  1R I , there exists   1nGL R I  and 

operate on 1 2{ , ,..., }n   , then we get a new set of generators  of 

   2
1 1I I is 1 2, ,... n    , such that 

                1 2 1 2{ , ,..., } { , ,..., }.n n       

Suppose . Consider the following diagram                
    
                                                                                           

    

det                                        det
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where and  are the maps induced by evaluation at X = 1.  Now 

  1nGL R I  implies that is a unit in  1R I . Let 

and consider the matrix

                                      .

Then and   1nSL R I  . Since dim( ) = 0 and 

is a Noetherian ring, it is an Artinian ring, it is isomorphic to finite direct 
product of local rings. For semi local rings we have12

     1 1n nSL R I E R I . Since elementary matrices have

lifting property, there exist a matrix  1,nM GL R X X I    such that 

(In fact   1,nM E R X X I    . By assumption can be lifted 

so can also be lifted. Let  1,W U R X X I    be such that 

. Note that is also a induced map by going to 

. Then

                              .

Take

                               .

Then . Since 1 2, ,..., nf f f  also generates over 

, and modulo , we apply 

Theorem 2.2,  can be lifted to a set of generators of . 
Conversely, suppose < > is a generating set of . Then, by 
assumption, there exist a generating set   < > of  , for 

. Take any such that   
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. These generators < > of (1)  can 

also be lifted to a generating set < > of such that for
. Note that over and  

  =  .
Since    = { , we have 

     1 2 1 2{ 1 , 1 ,..., 1 } { , ,..., }n nf f f N P P P , for some .  

Therefore, commutativity of the diagram shows that is a lift of  and 
is a lift of . 
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