# Hypersurface of a Special Finsler Space with Metric $\sum_{r=0}^{m} \frac{\beta^{r}}{\alpha^{r-1}}$ 

H. S. Shukla and Manmohan Pandey<br>Department of Mathematics and Statistics<br>D. D. U. Gorakhpur University, Gorakhpur-273009, India<br>Email: profhsshuklagkp@rediffmail.com, manmohanp752@gmail.com

B. N. Prasad<br>C-10, Avas Vikas Colony, Gorakhpur-273015<br>Email: baijnath_prasad2003@yahoo.com

(Received December 24, 2015)


#### Abstract

In the present paper our study is confined to the hypersurface of a Finsler space with $(\alpha, \beta)$-metric $\sum_{r=0}^{m} \frac{\beta^{r}}{\alpha^{r-1}}$. We have examined the hypersurface as a hyperplane of first, second or third kind.


Keywords: Finsler space, hypersurface, hyperplane and $(\alpha, \beta)$-metric.
2010 Mathematics Subject Classification: 53B40.

## 1. Introduction

We consider an n-dimensional Finsler space $F^{n}=\left(M^{n}, L\right)$, i.e., a pair consisting of an n-dimensional differentiable manifold $M^{n}$ equipped with a fundamental function $L$. The concept of $(\alpha, \beta)$-metric $L(\alpha, \beta)$ was introduced first of all by M. Matsumoto ${ }^{1}$ and has been studied by many authors ${ }^{1-8}$. A Finsler metric $L(x, y)$ is called and $(\alpha, \beta)$ - metric if $L$ is positively homogeneous function of $\alpha$ and $\beta$ of degree one, where $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on $M^{n}$. Well known examples of $(\alpha, \beta)-$ metric are Randers metric $\alpha+\beta$, Kropina metric $\frac{\alpha^{2}}{\beta}$, Matsumoto metric $\frac{\alpha^{2}}{(\alpha-\beta)}$ and generalized Kropina metric
$\frac{\alpha^{m+1}}{\beta^{m}}(m \neq 0,-1)$ whose studies have contributed a lot to the growth of Finsler geometry. Hypersurfaces of Finsler spaces with special metrics have also been studied by M. K. Gupta, P. N. Pandey and Vaishali Pandey ${ }^{9-13}$.

## 2. Preliminaries

We forms on a special Finsler space $F^{n}=\left\{M^{n}, L(\alpha, \beta)\right\}$, where

$$
\begin{equation*}
L(\alpha, \beta)=\sum_{r=0}^{m} \frac{\beta^{r}}{\alpha^{r-1}} \tag{2.1}
\end{equation*}
$$

Partial derivative of (2.1) w. r. t. $\alpha$ and $\beta$ are given by

$$
\begin{aligned}
& L_{\alpha}=\sum_{r=0}^{m}(1-n) \frac{\beta^{r}}{\alpha^{r}}, L_{\beta}=\sum_{r=0}^{m} r \frac{\beta^{r-1}}{\alpha^{r-1}}, \quad L_{\alpha \alpha}=\sum_{r=0}^{m} r(r-1) \frac{\beta^{r}}{\alpha^{r+1}} \\
& L_{\beta \beta}=\sum_{r=0}^{m} r(r-1) \frac{\beta^{r-2}}{\alpha^{r-1}}, L_{\alpha \beta}=\sum_{n=0}^{m} r(n-1) \frac{\beta^{r-1}}{\alpha^{r}}
\end{aligned}
$$

where $L_{\alpha}=\frac{\partial L}{\partial \alpha}, L_{\beta}=\frac{\partial L}{\partial \beta}, L_{\alpha \alpha}=\frac{\partial L_{\alpha}}{\partial \alpha}, L_{\beta \beta}=\frac{\partial L_{\beta}}{\partial \beta}, L_{\alpha \beta}=\frac{\partial L_{\alpha}}{\partial \beta}$.

In the Finsler space $F^{n}=\left\{M^{n}, L(\alpha, \beta)\right\}$ the normalized element of support $l_{i}=\dot{\partial}_{i} L$ and angular metric tensor $h_{i j}=L^{-1} \dot{\partial}_{i} \dot{\partial}_{j} L$ are given by
(2.1) $\quad\left\{\begin{array}{l}l_{i}=\alpha^{-1} L_{\alpha} Y_{i}+L_{\beta} b_{i} \\ h_{i j}=\mu a_{i j}+\tau_{0} b_{i} b_{j}+\tau_{-1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+\tau_{-2} Y_{i} Y_{j},\end{array}\right.$
where $Y_{i}=a_{i j} y^{j}$. For the fundamental function (2.1), the scalars are given by

$$
\begin{align*}
& \mu=L L_{\alpha} \alpha^{-1}=\sum_{r, s=0}^{m}(1-s) \frac{\beta^{r+s}}{\alpha^{r+s}}, \tau_{0}=L L_{\beta \beta}=\sum_{r, s=0}^{m} s(s-1) \frac{\beta^{r+s-2}}{\alpha^{r+s-2}}  \tag{2.2}\\
& \tau_{-1}=\sum_{r, s=0}^{m} s(s-1) \frac{\beta^{r+s-1}}{\alpha^{r+s}}, \tau_{-2}=\sum_{r, s=0}^{m}\left(s^{2}-1\right) \frac{\beta^{r+s}}{\alpha^{r+s+2}}
\end{align*}
$$

Fundamental metric tensor $g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}$ is given by

$$
\begin{equation*}
g_{i j}=\mu a_{i j}+\mu_{0} b_{i} b_{j}+\mu_{-1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+\mu_{-2} Y_{i} Y_{j}, \tag{2.3}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\mu_{0}=q_{0}+L_{\beta}^{2}=\sum_{r, s=0}^{m}\left\{s^{2}+(r-1) r\right\} \frac{\beta^{r+s-2}}{\alpha^{r+s-2}},  \tag{2.4}\\
\mu_{-1}=\tau_{-1}+L^{-1} \mu L_{\beta}=\sum_{r, s, t=0}^{m}(s-1)\left(s-L^{-1} t\right) \frac{\beta^{r+s+t-1}}{\alpha^{r+s+t-1}}, \\
\mu_{-2}=\tau_{-2}+\mu^{2} L^{-2}=\left[\sum_{r, s=0}^{m} \frac{\left(s^{2}-1\right)}{\alpha^{2}} \frac{\beta^{r+s}}{\alpha^{r+s}}+L^{-2} \sum_{r, s=0}^{m}(1-s)^{2}\left(\frac{\beta^{r+s}}{\alpha^{r+s}}\right)^{2}\right] .
\end{array}\right.
$$

Moreover the reciprocal tensor $g^{i j}$ of $g_{i j}$ is given by ${ }^{8}$,

$$
\begin{equation*}
g^{i j}=\mu^{-1} a^{i j}-\sigma_{0} b^{i} b^{j}-\sigma_{-1}\left(b^{i} y^{j}+b^{j} y^{i}\right)-\sigma_{-2} y^{i} y^{j}, \tag{2.5}
\end{equation*}
$$

where $b^{i}=a^{i j} b_{j}, b^{2}=a_{i j} b^{i} b^{j}$.

$$
\left\{\begin{array}{l}
\sigma_{0}=\frac{1}{\theta \mu}\left\{\mu \mu_{0}+\left(\mu_{0} \mu_{-2}-\mu_{-1}^{2}\right) \alpha^{2}\right\}  \tag{2.6}\\
\sigma_{-1}=\frac{1}{\theta \mu}\left\{\mu \mu_{-1}+\left(\mu_{0} \mu_{-2}-\mu_{-1}^{2}\right) \beta\right\} \\
\sigma_{-2}=\frac{1}{\theta \mu}\left\{\mu \mu_{-2}+\left(\mu_{0} \mu_{-2}-\mu_{-1}^{2}\right) b^{2}\right\} \\
\theta=\mu\left(\mu+\mu_{0} b^{2}+\mu_{-1} \beta\right)+\left(\mu_{0} \mu_{-2}-\mu_{-1}^{2}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)
\end{array}\right.
$$

The $h v$-torsion tensor $C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}$ is given by ${ }^{8}$.

$$
\begin{equation*}
2 \mu C_{i j k}=\mu_{-1}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\rho m_{i} m_{j} m_{k}, \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=\mu \frac{\partial \mu_{0}}{\partial \beta}-3 \mu_{-1} \tau_{0}, m_{i}=b_{i}-\alpha^{-2} \beta Y_{i} \tag{2.8}
\end{equation*}
$$

It is noted that the covariant vector $m_{i}$ is a non-vanishing covariant vector orthogonal to the element of support $y^{i}$. We denote by $\nabla_{k}$ the covariant differentiation by $x^{k}$ with respect to the associated Riemannian connection and $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ are the Christoffel symbols of the associated Riemannian space $R^{n}$. We put $b_{i j}=\nabla_{j} b_{i}$ and

$$
\begin{equation*}
2 E_{i j}=b_{i j}+b_{j i}, 2 F_{i j}=b_{i j}-b_{j i}, \tag{2.9}
\end{equation*}
$$

where $b_{i j}=\nabla_{j} b_{i}$.

If we denote the Cartan's connection $C \Gamma$ as $\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{i}\right)$ then the difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ of Matsumoto space is given by

$$
\begin{align*}
D_{j k}^{i}= & B^{i} E_{j k}+F_{k}^{i} B_{j}+F_{j}^{i} B_{k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j}  \tag{2.10}\\
& -b_{0 m} g^{i m} B_{j k}-C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m}+C_{j k m} A_{s}^{m} g^{i s} \\
& +\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right),
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
B_{k}=\mu_{0} b_{k}+\mu_{-1} Y_{k}, B^{i}=g^{i j} B_{j}, F_{i}^{k}=g^{k j} F_{j i},  \tag{2.11}\\
B_{i j}=\frac{\left\{\mu_{-1}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right)+\left(\partial \mu_{0} / \partial \beta\right) m_{i} m_{j}\right\}}{2}, \\
A_{k}^{m}=B_{k}^{m} E_{00}+B^{m} E_{k 0}+B_{k} F_{0}^{m}+B_{0} F_{k}^{m}, B_{i}^{k}=g^{k j} B_{j i}, \\
\lambda^{m}=B^{m} E_{00}+2 B_{0} F_{0}^{m} m, B_{0}=B_{i} y^{i},
\end{array}\right.
$$

And 0 denotes contraction with $y^{i}$ except for the quantities $\mu_{0}, \tau_{0}$ and $\sigma_{0}$.

## 3. Induced Cartan Connection

Let $F^{n-1}$ be a hypersurface of $F^{n}$ given by the equation $x^{i}=x^{i}\left(u^{\alpha}\right)$ where $\alpha=1,2,3, \ldots,(n-1)$. The $(n-1)$ tangent vectors to the hypersurface $F^{n-1}$ are given by $B_{\alpha}^{i}=\frac{\partial x^{i}}{\partial u^{\alpha}}$. The element of support $y^{i}$ of $F^{n}$ is to be taken tangential ${ }^{14}$ to $F^{n-1}$ :

$$
\begin{equation*}
y^{i}=B_{\alpha}^{i}(u) v^{\alpha} . \tag{3.1}
\end{equation*}
$$

The metric tensor $g_{\alpha \beta}$ and $h v$ - tensor $C_{\alpha \beta \gamma}$ of $F^{n-1}$ are given by

$$
g_{\alpha \beta}=g_{i j} B_{\alpha}^{i} B_{\beta}^{j}, C_{\alpha \beta \gamma}=C_{i j k} B_{\alpha}^{i} B_{\beta}^{j} B_{\gamma}^{k}
$$

and at each point $\left(u^{\alpha}\right)$ of $F^{n-1}$, a unit normal vector $N^{i}(u, v)$ is defined by

$$
g_{i j}\{x(u, v), y(u, v)\} B_{\alpha}^{i} N^{j}=0, g_{i j}\{x(u, v), y(u, v)\} N^{i} N^{j}=1 .
$$

Angular metric tensor $h_{\alpha \beta}$ of the hypersurface is given by

$$
\begin{equation*}
h_{\alpha \beta}=h_{i j} B_{\alpha}^{i} B_{\beta}^{j}, h_{i j} B_{\alpha}^{i} N^{j}=0, h_{i j} N^{i} N^{j}=1 . \tag{3.2}
\end{equation*}
$$

The inverse of $\left(B_{\alpha}^{i}, N^{i}\right)$ is denoted by $\left(B_{i}^{\alpha}, N_{i}\right)$ and is given by

$$
\begin{aligned}
B_{i}^{\alpha} & =g^{\alpha \beta} g_{i j} B_{\beta}^{j}, \quad B_{\alpha}^{i} B_{i}^{\beta}=\delta_{\alpha}^{\beta}, B_{i}^{\alpha} N^{i}=0, \quad B_{\alpha}^{i} N_{i}=0, \\
N_{i} & =g_{i j} N^{j}, \quad B_{\alpha}^{i} B_{j}^{\alpha}+N^{i} N_{j}=\delta_{j}^{i} .
\end{aligned}
$$

The induced connection $I C \Gamma=\left(\Gamma_{\beta \gamma}^{*}, G_{\beta}^{\alpha}, C_{\beta \gamma}^{\alpha}\right)$ of $F^{n-1}$ of the Cartan connection $C \Gamma=\left(\Gamma_{j k}^{*}, \Gamma_{0 k}^{*_{i}}, C_{j k}^{i}\right)$ is given by ${ }^{14}$ :

$$
\begin{aligned}
& \Gamma_{\beta \gamma}^{* \alpha}=B_{i}^{\alpha}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta}^{\alpha} H_{\gamma} \\
& C_{\beta}^{\alpha}=B_{i}^{\alpha}\left(B_{0 \beta}^{i}+\Gamma_{0 j}^{* i} B_{\beta}^{j}\right), C_{\beta \gamma}^{\alpha}=B_{i}^{\alpha} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}
\end{aligned}
$$

where $M_{\beta \gamma}=N_{i} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}, \quad M_{\beta}^{\alpha}=g^{\alpha \gamma} M_{\beta \gamma}, \quad H_{\beta}=N_{i}\left(B_{0 \beta}^{i}+\Gamma_{0 j}^{* i} B_{\beta}^{j}\right)$ and

$$
B_{\beta \gamma}=\frac{\partial B_{\beta}^{i}}{\partial u^{\gamma}}, B_{0 \beta}^{i}=B_{\alpha \beta}^{i} v^{\alpha} .
$$

The quantities $M_{\beta \gamma}$ and $H_{\beta}$ are called the second fundamental $v$-tensor and normal curvature vector respectively ${ }^{14}$. The second fundamental $h-$ tensor $H_{\beta \gamma}$ is defined as ${ }^{14}$ :

$$
\begin{equation*}
H_{\beta \gamma}=N_{i}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta} H_{\gamma} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\beta}=N_{i} C_{j k}^{i} B_{\beta}^{j} N^{k} \tag{3.4}
\end{equation*}
$$

The relative $h$ and $v$-covariant derivatives of projection factor $B_{\alpha}^{i}$ with respect to $I C \Gamma$ are given by

$$
\begin{equation*}
B_{\beta \mid \gamma}^{i}=H_{\alpha \beta} N^{i}, B_{\alpha \mid \beta}^{i}=M_{\alpha \beta} N^{i} \tag{3.4}
\end{equation*}
$$

It is obvious from the equation (3.3) that $H_{\beta \gamma}$ is generally not symmetric and

$$
\begin{equation*}
H_{\beta \gamma}-H_{\gamma \beta}=M_{\beta} H_{\gamma}-M_{\gamma} H_{\beta} . \tag{3.5}
\end{equation*}
$$

The above equations yield:

$$
\begin{equation*}
H_{0 \gamma}=H_{\gamma}, H_{\gamma 0}=H_{\gamma}+M_{\gamma} H_{0} \tag{3.6}
\end{equation*}
$$

We shall use following lemmas which are due to Matsumoto ${ }^{14}$ in the coming section:

Lemma 3.1: The normal curvature $H_{0}=H_{\beta} v^{\beta}$ vanishes if and only if the normal curvature vector $H_{\beta}$ vanishes.

Lemma 3.2: A hypersurface $F^{n-1}$ is a hyperplane of the first kind with respect to connection $C \Gamma$ if and only if $H_{\alpha}=0$.

Lemma 3.3: A hypersurface $F^{n-1}$ is a hyperplane of the second kind with respect to connection $C \Gamma$ if and only if $H_{\alpha}=0$ and $Q_{\alpha \beta}=0$, where $Q_{\alpha \beta}=C_{i j \mid 0} B_{\alpha}^{i} B_{\beta}^{j} N^{k}$ and then $H_{\alpha \beta}=0$.

Lemma 3.4: A hypersurface $F^{n-1}$ is a hyperplane of the third kind with respect to connection $C \Gamma$ if and only if $H_{\alpha}=0$ and $H_{\alpha \beta}=M_{\alpha \beta}=0$.

## 4. Hypersurface $F^{n-1}(C)$ of the Special Finsler Space

Let us consider a Finsler spaces with the metric $L(\alpha, \beta)=\sum_{r=0}^{m} \frac{\beta^{r}}{\alpha^{r-1}}$, where vector field $b_{i}(x)=\frac{\partial b}{\partial x^{i}}$ is a gradient of some scalar function $b(x)$. Now we consider a hypersurface $F^{n-1}(c)$ given by equation $b(x)=c$.
From the parametric equation $x^{i}=x^{i}\left(u^{\alpha}\right)$ of $F^{n-1}(c)$, we get

$$
\frac{\partial b(x)}{\partial u^{\alpha}}=\frac{\partial b(x)}{\partial x^{i}} \frac{\partial x^{i}}{\partial u^{\alpha}}=b_{i} B_{\alpha}^{i}=0 .
$$

Above equation shows that $b_{i}(x)$ are covariant component of a normal vector field of hypersurface $F^{n-1}(c)$. Further, we have

$$
\begin{equation*}
b_{i} y^{i}=0 \text {, i.e., } \beta=0 \text {. } \tag{4.1}
\end{equation*}
$$

The induced metric $L(u, v)$ of $F^{n-1}(c)$ is given by

$$
\begin{equation*}
L(u, v)=\sqrt{a_{\alpha \beta} v^{\alpha} v^{\beta}}, a_{\alpha \beta}=a_{i j} B_{\alpha}^{i} B_{\beta}^{j} . \tag{4.2}
\end{equation*}
$$

Writing $\beta=0$ in the equation (2.2), (2.3) and (2.5), we get for $F^{n-1}(c)$.
(4.3) $\left\{\begin{array}{l}\mu=1, \mu_{0}=3, \mu_{-1}=\alpha^{-1}, \mu_{-2}=0, \tau_{0}=2, \tau_{-1}=0, \tau_{-2}=-\alpha^{-2}, \\ \theta=\left(1+2 b^{2}\right), \sigma_{0}=\frac{2}{\left(1+2 b^{2}\right)}, \sigma_{-1}=\frac{1}{\alpha\left(1+2 b^{2}\right)}, \sigma_{-2}=-\left\{\frac{b^{2}}{\alpha^{2}\left(1+2 b^{2}\right)}\right\} .\end{array}\right.$

From (2.4), (2.5) and (4.3) we get

$$
\begin{equation*}
g^{i j}=a^{i j}-\frac{2}{\left(1+2 b^{2}\right)} b^{i} b^{j}-\frac{1}{\left(1+2 b^{2}\right)}\left(b^{i} y^{j}+b^{j} y^{i}\right)+\frac{b^{2}}{\left(1+2 b^{2}\right) \alpha^{2}} y^{i} y^{j} . \tag{4.4}
\end{equation*}
$$

Thus along $F^{n-1}(c)$, (4.4) and (4.1) lead to

$$
g^{i j} b_{i} b_{j}=\frac{b^{2}}{\left(1+2 b^{2}\right)},
$$

so, we get

$$
\begin{equation*}
b_{i}(x(u))=\sqrt{\frac{b^{2}}{\left(1+2 b^{2}\right)}} N_{i}, b^{2}=a^{i j} b_{i} b_{j}, \tag{4.5}
\end{equation*}
$$

where $b$ is the length of the vector $b^{i}$. Again from (4.4) and (4.5), we get

$$
\begin{equation*}
b^{i}=a^{i j} b_{j}=\sqrt{b^{2}\left(1+2 b^{2}\right)} N^{i}+\frac{b^{2}}{\alpha} y^{i} . \tag{4.6}
\end{equation*}
$$

Thus we have:
Theorem 4.1: In a special Finsler hypersurface $F^{n-1}(c)$, the induced Riemannian metric is given by (4.2) and the vector field $b_{i}$ is along the normal to $F^{n-1}(c)$.

At the point of $F^{n-1}(c)$ the angular metric tensor $h_{i j}$ and the metric tensor $g_{i j}$ of $F^{n}$ are given by

$$
\begin{equation*}
h_{i j}=a_{i j}+2 b_{i} b_{j}-\alpha^{-2} Y_{i} Y_{j} \text { and } g_{i j}=a_{i j}+3 b_{i} b_{j}+\alpha^{-1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right), \tag{4.7}
\end{equation*}
$$

which are obtained from $(2.1)^{\prime}$, (2.3) and (4.3).

From (4.1), (4.7) and (3.2) it follows that if $h_{\alpha \beta}^{(a)}$ denotes the angular metric tensor of the Riemannian $a_{i j}(x)$ then we have along $F^{n-1}(c), h_{\alpha \beta}=h_{\alpha \beta}^{(a)}$.
Thus along $F^{n-1}(c), \frac{\partial \mu_{0}}{\partial \beta}=0$.
From equation (2.6), we get $\rho=-\frac{6}{\alpha}, m_{i}=b_{i}$.
At the points of $F^{n-1}(c), h v$ - torsion tensor becomes

$$
\begin{equation*}
C_{i j k}=\frac{1}{2 \alpha}\left(h_{i j} b_{k}+h_{j k} b_{i}+h_{k i} b_{j}\right)-\frac{3}{\alpha} b_{i} b_{j} b_{k}, \tag{4.8}
\end{equation*}
$$

From relations (3.2), (3.3), (3.5), (4.1) and (4.8), we have

$$
\begin{equation*}
M_{\alpha \beta}=\frac{1}{2 \alpha} \sqrt{\frac{b^{2}}{\left(1+2 b^{2}\right)}} h_{\alpha \beta} \text { and } M_{\alpha}=0 \tag{4.9}
\end{equation*}
$$

Therefore from equation (3.6) it follows that $H_{\alpha \beta}$ is symmetric. Thus, we have:

Theorem 4.2: The second fundamental v-tensor of the special Finsler hypersurface $F^{n-1}(c)$ is given by (4.9) and the second fundamental h-tensor $H_{\alpha \beta}$ is symmetric.

From $b_{i} B_{\alpha}^{i}=0$. Then, we have

$$
b_{i \mid \beta} B_{\alpha}^{i}+b_{i} B_{\alpha \mid \beta}^{i}=0
$$

Therefore, from (3.4)' and using $b_{i \mid \beta}=b_{i \mid j} B_{\beta}^{j}+b_{i \mid j} N^{j} H_{\beta}{ }^{14}$, we have

$$
\begin{equation*}
b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}+b_{i \mid j} B_{\alpha}^{i} N^{j} H_{\beta}+b_{i} H_{\alpha \beta} N^{i}=0 \tag{4.10}
\end{equation*}
$$

Since, $\left.b_{i}\right|_{j}=-b_{h} C_{i j}^{h}, M_{\alpha}$ and we get $b_{i \mid j} B_{\alpha}^{i} N^{j}=0$.

Therefore from equation (4.10), we have

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{\left(1+2 b^{2}\right)}} H_{\alpha \beta}+b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}=0, \tag{4.11}
\end{equation*}
$$

Because $b_{i \mid j}$ is symmetric. Now contracting (4.11) with $v^{\beta}$ and using (3.1), (3.6), we get

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{\left(1+2 b^{2}\right)}} H_{\alpha}+b_{i \mid j} B_{\alpha}^{i} y^{j}=0 . \tag{4.12}
\end{equation*}
$$

Again contracting equation (4.12) by $v^{\alpha}$ and using (3.1), we get

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{\left(1+2 b^{2}\right)}} H_{0}+b_{i \mid j} y^{i} y^{j}=0 . \tag{4.13}
\end{equation*}
$$

From Lemma (3.1) and (3.2), it is clear that the hypersurface $F^{n-1}(c)$ is a hyperplane of first kind if and only if $H_{0}=0$. Thus from (4.13) it is obvious that $F^{n-1}(c)$ is a hyperplane of first kind if and only if $b_{i \mid j} y^{i} y^{j}=0$.
This $b_{i \mid j}$ being the covariant derivative with respect to $C \Gamma$ of $F^{n}$ depends on $y^{i}$, but $b_{i j}=\nabla_{j} b_{i}$ is the covariant derivative with respect to Riemannian connection $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ constructed from $a_{i j}(x)$. Hence $b_{i j}$ does not depend on $y^{i}$. We shall consider the difference $b_{i j}-b_{i \mid j}$. The difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ is given by (2.10). Since $b_{i}$ is a gradient vector from (2.9), we have

$$
E_{i j}=b_{i j}, F_{i j}=0, F_{j}^{i}=0 .
$$

Thus (2.10) reduces to

$$
\begin{align*}
D_{j k}^{i}= & B^{i} b_{j k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j}+\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right)  \tag{4.14}\\
& -b_{0 m} g^{i m} B_{j k}-C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m}+C_{j k m} A_{s}^{m} g^{i s},
\end{align*}
$$

From (2.11) and (4.3) it follows that for $F^{n-1}(c)$, we have

$$
\left\{\begin{array}{l}
B_{k}=3 b_{k}+\frac{1}{\alpha} Y_{k}, B^{i}=\frac{2}{\left(1+2 b^{2}\right)} b^{i}+\left\{\frac{1+3 b^{2}(1-\alpha)}{\alpha^{2}\left(1+2 b^{2}\right)}\right\} y^{i},  \tag{4.15}\\
\lambda^{m}=B^{m} b_{00}, B_{i j}=\frac{1}{2 \alpha}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right), \\
B_{j}^{i}=\frac{1}{2 \alpha}\left(\delta_{j}^{i}-\alpha^{-2} Y_{j} y^{i}\right)+\frac{1}{\alpha\left(1+2 b^{2}\right)} b^{i} b_{j}-\frac{1}{2} \alpha^{-2} \frac{1}{\left(1+2 b^{2}\right)} b_{j} y^{i}, \\
A_{k}^{m}=B_{k}^{m} b_{00}+B^{m} b_{k 0} .
\end{array}\right.
$$

we have $B_{0}^{i}=0, B_{i 0}=0$ which leads to $A_{0}^{m}=B^{m} b_{k 0}$.
Now contracting (4.14) by $y^{k}$, we get

$$
D_{j 0}^{i}=B^{i} b_{j 0}+B_{j}^{i} b_{00}-B^{m} C_{j m}^{i} b_{00} .
$$

Again contracting the above equation with respect to $y^{j}$, we get

$$
D_{00}^{i}=B^{i} b_{00}=\left[\frac{2}{\left(1+2 b^{2}\right)} b^{i}+\left\{\frac{1+3 b^{2}(1-\alpha)}{\alpha^{2}\left(1+2 b^{2}\right)}\right\} y^{i}\right] b_{00} .
$$

Paying attention to (4.1), along $F^{n-1}(c)$, we get

$$
\begin{equation*}
b_{i} D_{j 0}^{i}=\frac{2 b^{2}}{\left(1+2 b^{2}\right)} b_{j 0}+\frac{3+2 b^{2}}{2 \alpha\left(1+2 b^{2}\right)} b_{j} b_{00}+\frac{2}{\left(1+2 b^{2}\right)} b_{i} b^{m} C_{j m}^{i} b_{00} . \tag{4.16}
\end{equation*}
$$

Now, we contract (4.16) by $y^{j}$, we have

$$
\begin{equation*}
b_{i} D_{00}^{i}=\frac{2 b^{2}}{\left(1+2 b^{2}\right)} b_{00} . \tag{4.17}
\end{equation*}
$$

From (3.3), (4.5), (4.6), (4.9) and $M_{\alpha}=0$, we have

$$
b_{i} b^{m} C_{j m}^{i} B_{\alpha}^{j}=b^{2} M_{\alpha}=0
$$

Thus, the relation $b_{i \mid j}=b_{i j}-b_{r} D_{i j}^{r}$, the equations (4.16) and (4.17) give

$$
b_{i \mid j} y^{i} y^{j}=b_{00}-b_{r} D_{00}^{r}=\frac{2 b^{2}}{1+2 b^{2}} b_{00} .
$$

Consequently, (4.12) and (4.13) may be written as

$$
\left\{\begin{array}{l}
\sqrt{\frac{b^{2}}{\left(1+2 b^{2}\right)}} H_{\alpha}+\frac{2 b^{2}}{1+2 b^{2}} b_{i 0} B_{0}^{i}=0,  \tag{4.18}\\
\sqrt{\frac{b^{2}}{\left(1+2 b^{2}\right)}} H_{0}+\frac{2 b^{2}}{1+2 b^{2}} b_{00}=0
\end{array}\right.
$$

respectively.
Thus the condition $H_{0}=0$ is equivalent to $b_{00}=0$, where $b_{i j}$ does not depend on $y^{i}$. Using the fact $\beta=b_{i} y^{i}=0$ on $F^{n-1}(c)$, the condition $b_{00}=0$ can be written as $b_{i j} y^{i} y^{j}=\left(b_{i} y^{i}\right)\left(c_{j} y^{j}\right)=01$ for some $c_{j}(x)$. Thus, we can write

$$
\begin{equation*}
2 b_{i j}=b_{i} c_{j}+b_{j} c_{i} . \tag{4.19}
\end{equation*}
$$

Now, from (4.1) and (4.19), we get

$$
b_{00}=0, b_{i j} B_{\alpha}^{i} B_{\beta}^{j}=0, b_{i j} B_{\alpha}^{i} y^{j}=0 .
$$

Hence, from (4.18) we get, $H_{\alpha}=0$, Again, from (4.19) and (4.15), we get

$$
b_{i 0} b^{i}=\frac{c_{0} b^{2}}{2}, \lambda^{m}=0, A_{j}^{i} B_{\beta}^{j}=0 \text { and } B_{i j} B_{\alpha}^{i} B_{\beta}^{j}=\frac{2}{\alpha} h_{\alpha \beta} .
$$

Now, we use equations (3.3), (4.4), (4.5), (4.6), (4.9) and (4.14), to get

$$
\begin{equation*}
b_{r} D_{i j}^{r} B_{\alpha}^{i} B_{\beta}^{j}=-\frac{c_{0} b^{2}\left(3 b^{2}+2\right)}{2 \alpha\left(1+2 b^{2}\right)^{2}} h_{\alpha \beta} \tag{4.20}
\end{equation*}
$$

Thus the equation (4.11) reduces to

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{\left(1+2 b^{2}\right)}} H_{\alpha \beta}+\frac{c_{0} b^{2}\left(3 b^{2}+2\right)}{2 \alpha\left(1+2 b^{2}\right)^{2}} h_{\alpha \beta}=0 . \tag{4.21}
\end{equation*}
$$

Hence, the hypersurface $F^{n-1}(c)$ is umbilical.

Theorem 4.3: The necessary and sufficient condition for $F^{n-1}(c)$ to be hyperplane of first kind is that (4.21) holds good.

In this case the second fundamental tensor of $F^{n-1}(c)$ is proportional to its angular metric tensor. Hence the hypersurface $F^{n-1}(c)$ is umbilical. Now from lemma (3.3), $F^{n-1}(c)$ is a hyperplane of second kind if and only if $H_{\alpha}=0$ and $Q_{\alpha \beta}=0$, which implies that $H_{\alpha \beta}=0$. Thus, from (4.21), we get

$$
c_{0}=c_{i}(x) y^{i}=0
$$

Therefore, there exists a function $\psi(x)$, such that

$$
c_{i}(x)=\psi(x) b_{i}(x)
$$

Therefore, from (4.19), we get

$$
2 b_{i j}=b_{i}(x) \psi(x) b_{j}(x)+b_{j}(x) \psi(x) b_{i}(x)
$$

which gives

$$
\begin{equation*}
b_{i j}=\psi(x) b_{i} b_{j} \tag{4.22}
\end{equation*}
$$

Thus, we have:

Theorem 4.4: The necessary and sufficient condition for $F^{n-1}(c)$ to be hyperplane of the second kind is that (4.22) hold good.
Again lemma (3.4) together with (4.9) and $M_{\alpha}=0$, shows that $F^{n-1}(c)$ does not become a hyperplane of the third kind.

Theorem 4.5: The hypersurface $F^{n-1}(c)$ is not a hyperplane of the third kind.

## References

1. M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Otsu, 520, Japan, 1986.
2. Hashiguchi and Y. Ichijyo, On some special $(\alpha, \beta)$ - metric, Rep. Fac. Sci. Kagasmia Univ. (Math., Phys., Chem.), 8 (1975) 39-46.
3. S. Kikuchi, On the condition that a space with $(\alpha, \beta)$ be locally Minkowskian, Tensor, N. S., 33 (1979) 242-246.
4. M. Kitayama, On Finslerian hypersurface given by $\beta$ - change, Balkan Journal of Geometry and its Application, 7(2) (2002) 49-55.
5. I. Y. Lee, H. Y. Park and Y. D. Lee, On a hypersurface of a special Finsler space with metric $\alpha+\frac{\beta^{2}}{\alpha}$, Korean J. Math. Sciences, 8 (2001) 93-101.
6. M. Matsumoto, The induced and intrinsic Finsler connection of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ., 25 (1985) 107-144.
7. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev., 2(59) (1941) 195-199.
8. C. Shibata, On Finsler spaces with $(\alpha, \beta)$ - metric, J. Hokkaido Univ. of Education, 35 (1984) 1-16.
9. M. K. Gupta and P. N. Pandey, On hypersurface of a Finsler space with Randers conformal metric, Tensor N.S., 70(3) (2008) 229-240.
10. M. K. Gupta and P. N. Pandey, On Hypersurface of a Finsler space with a special metric, Acta. Math. Hungar., 120 (2008) 165-177.
11. M. K. Gupta and P. N. Pandey, On Subspaces of a Finsler Space with Randers Conformal Metric, J. Int. Acad. Phy. Sci., 13(4) (2009) 351-357.
12. M. K. Gupta and P. N. Pandey, Hypersurfaces of conformally and h-conformally related Finsler space, Acta Math. Hungar., 123(3) (2009) 257-264.

Hypersurface of a Special Finsler Space with Metric $\sum_{r=0}^{m} \frac{\beta^{r}}{\alpha^{r-1}}$
13. M. K. Gupta, P. N. Pandey and Vaishali Pandey, On Hypersurface of a Finsler space with an exponential $(\alpha, \beta)$ metric, Jour. Pure Math., 29/30 (2013) 33-46.
14. M. Matsumoto, Theory of Finsler space with $(\alpha, \beta)$ - metric, Rep. on Math, Phys., 31 (1992) 43-83.
15. U. P. Singh and Bindu Kumari, On a Matsumoto space, Indian J. Pure appl. Math., 32 (2001) 521-531.

