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Abstract: In the present paper our study is confined to the hypersurface of a 

Finsler space with ( , )  -metric
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 .We have examined the hypersurface 

as a hyperplane of first, second or third kind. 
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1. Introduction 
 

 We consider an n-dimensional Finsler space  ,n nF M L , i.e., a pair 

consisting of an n-dimensional differentiable manifold nM equipped with a 

fundamental function L. The concept of ( , )  metric ( , )L   was 

introduced first of all by M. Matsumoto1 and has been studied by many 

authors1-8. A Finsler metric  ,L x y  is called and  ,    metric if L  is 

positively homogeneous function of   and   of degree one, where 

2 ( ) i j
ija x y y  is a Riemannian metric and ( ) i

ib x y   is a 1-form on nM . 

Well known examples of  ,    metric are Randers metric ,  Kropina 

metric 
2


, Matsumoto metric 

 

2

 
 and generalized Kropina metric 
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1m

m







 0, 1m    whose studies have contributed a lot to the growth of 

Finsler geometry. Hypersurfaces of Finsler spaces with special metrics have 

also been studied by M. K. Gupta, P. N. Pandey and Vaishali Pandey9-13. 

 

2. Preliminaries 

 

We forms on a special Finsler space   , ,n nF M L   , where 
 

(2.1)    
1

0

,
rm

r
r

L


 
 



 . 

 

Partial derivative of (2.1) w. r. t.  and  are given by  
 
 

 
0

1
rm

r
r

L n





  ,
1

1
0

rm

r
r

L r










 ,   
1

0

1
rm

r
r

L r r



 


  ,

 
2

1
0

1
rm

r
r

L r r










  ,  
1

0

1
rm

r
n

L r n









  , 

 

 

where 
L

L






, 
L

L






,
L

L 








,
L

L









, 
L

L 








. 

 

In the Finsler space   , ,n nF M L    the normalized element of support 

i il L   and angular metric tensor 1
ij i jh L L     are given by  

 

(2.1)   
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where j
i ijY a y .  For the fundamental function (2.1), the scalars are given 

by 
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Fundamental metric tensor 21

2
ij i jg L     is given by 

 

(2.3)    0 1 2ij ij i j i j j i i ja b b bY Y Yg b Y         , 

 

where 
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Moreover the reciprocal tensor ijg  of  ijg  is given by8, 

 

(2.5)    1
0 1 2

ij ij i j i j j i i jg a b b b y b y y y   
      , 

 

where i ij
jb a b , 2 .i j

ijb a b b  
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The hv  torsion tensor 
1

2
ijk k ijC g   is given by8. 

 

(2.7)    1 ,2 ijk ij k jk i ki j i j kC h m h m h m m m m       
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where 
 

(2.8)              0
1 03


   





 


, 2

i i im b Y   . 

 

It is noted that the covariant vector im  is a non-vanishing covariant vector 

orthogonal to the element of support .iy We denote by k the covariant 

differentiation by kx with respect to the associated Riemannian connection 

and 
i

j k

 
 
 

 are the Christoffel symbols of the associated Riemannian space

nR . We put ij j ib b  and  

 

(2.9)   2 ij ij jiE b b  , 2 ij ij jiF b b  ,  

 

where ij j ib b . 

 

If we denote the Cartan’s connection C  as  * *
0, ,i i i

jk k jkC   then the 

difference tensor  *i i
jk jk

i

j k
D

 
 


 


 of Matsumoto space is given by 

 

 

(2.10)   0 0
i i i i i i
jk jk k j j k j k k jD B E F B F B B b B b      

   

 
0

,

im i m i m m is
m jk jm k km j jkm s

s i m i m m i
jm sk km sj jk ms

b g B C A C A C A g

C C C C C C

   

  
  

 

where 

 

(2.11)   

    
0 1

2
1 0

00 0 0 0

00 0 0 0

/
,

2

2

, ,

, ,

,,

,i ij k kj
k k k j i ji

ij i j i j

ij

m m m m m k kj
k k k k k i ji

m m m i
i

B b Y B g B F g F

a YY m m
B

A B E B E B F B F B g B

B E B F m B B y

 

   








   

   


  





 





 








 

    



Hypersurface of a Special Finsler Space with Metric
1

0

rm

r
r



 



               

61 

 

And 0  denotes contraction with iy except for the quantities 0 , 0  and 0 . 

3. Induced Cartan Connection 
 

 Let 1nF   be a hypersurface of nF  given by the equation  i ix x u

where 1,2,3, ,( 1)n    . The ( 1)n tangent vectors to the hypersurface 

1nF   are given by 
i

i x
B

u
 





. The element of support iy  of nF  is to be taken 

tangential14 to 1nF  : 
 

(3.1)   ( ) .i iy B u v  

 

The metric tensor g  and hv  tensor C of 1nF  are given by  

 

    ,i j i j k
ij ijkg g B B C C B B B        

  

and at each point  u  of 1nF  , a unit normal vector ( , )iN u v  is defined by  

 

  
   ( , ), ( , ) 0, ( , ), ( , ) 1.i j i j

ij ijg x u v y u v B N g x u v y u v N N    

 
 

Angular metric tensor h  of the hypersurface is given by  

 

(3.2)   , 0, 1.i j i
i i

j
j j

i j
ijh B B h Bh N N Nh      

 

The inverse of   , iiB N  is denoted by  ,i iB N  and is given by  

 

    
0, 0,, ,

, .

j i i i
i ij i i

i i
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The induced connection  * , ,IC G C 
  

   of 1nF  of the Cartan 

connection  * *
0, ,i i i

jk k jkC C     is given by14: 
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         and

0, .

i

i i
B

B B B v
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The quantities M  and H  are called the second fundamental v tensor 

and normal curvature vector respectively14. The second fundamental h 

tensor H is defined as14: 

 

(3.3)    *i i j k
i jkH N B B B M H       ,  

 

where 

 

(3.4)   i j k
i jkM N C B N  . 

 

The relative h  and v covariant derivatives of projection factor iB  with 

respect to IC  are given by  

 

(3.4)   | |, .i i i iB H N B M N        

 

It is obvious from the equation (3.3) that H is generally not symmetric and    

 

(3.5)   H H M H M H        . 

 

The above equations yield: 

 

(3.6)   0 0 0, .H H H H M H        

 

We shall use following lemmas which are due to Matsumoto14 in the coming 

section: 
 

 Lemma 3.1: The normal curvature 0H vH 
 vanishes if and only if the 

normal curvature vector H  vanishes. 
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 Lemma 3.2: A hypersurface 1nF   is a hyperplane of the first kind with 

respect to connection C if and only if 0H  . 

 

 Lemma 3.3: A hypersurface  1nF   is a hyperplane of the second kind 

with respect to connection C if and only if 0H   and 0Q  , where 

|0
i j k

ijkQ C B B N    and then 0H  . 

 

 Lemma 3.4: A hypersurface  1nF   is a hyperplane of the third kind with 

respect to connection C  if and only if 0H   and 0MH   . 

 

4. Hypersurface 
1( )nF C

 of the Special Finsler Space 

 

Let us consider a Finsler spaces with the metric  
1

0

,
rm

r
r

L


 
 



 , where 

vector field ( )i i

b
b x

x





is a gradient of some scalar function  .b x  Now we 

consider a hypersurface  1nF c  given by equation   .b x c  

From the parametric equation  i ix x u of  1 ,nF c  we get  

 

    
( ) ( )

0
i

i
ii

b x b x x
b B

u x u
 

  
  

  
. 

 

Above equation shows that  ( )ib x  are covariant component of a normal 

vector field of hypersurface  1 .nF c  Further, we have  

 

(4.1)   0,i
ib y    i.e., 0.   

 

The induced metric  ,L u v  of  1nF c  is given by  

 

(4.2)   ( , ) , .i j
ijL u v a v v a a B B 

      

 

Writing  0   in the equation (2.2), (2.3) and (2.5), we get for  1 .nF c  
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(4.3) 
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From (2.4), (2.5) and (4.3) we get  
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Thus along  1 ,nF c  (4.4) and (4.1) lead to  
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so, we get  
 

(4.5)   
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2
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(1 2 )
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b
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where b  is the length of the vector .ib  Again from (4.4) and (4.5), we get  

 

(4.6)    
2

2 21 2 .i ij i i
j

b
b a b b b N y


     

 

Thus we have: 
 

 Theorem 4.1: In a special Finsler hypersurface  1 ,nF c  the induced 

Riemannian metric is given by (4.2) and the vector field ib  is along the 

normal to  1 .nF c  
 

At the point of  1nF c  the angular metric tensor ijh  and the metric 

tensor ijg  of nF  are given by 
 

(4.7)  22ij ij i j i jh a b b Y Y  
 
and  13ij ij i j i j j ig a b b bY b Y    , 

 

which are obtained from (2.1), (2.3) and (4.3). 
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From (4.1), (4.7) and (3.2) it follows that if ( )ah  denotes the angular metric 

tensor of the Riemannian ( )ija x  then we have along  1 ,nF c ( )ah h  . 

Thus along  1 ,nF c

 
0 0.









 

From equation (2.6), we get 
6

,


  .i im b  

 

At the points of  1 ,nF c
hv  torsion tensor becomes 

 

(4.8)    
1 3

2
ijk ij k jk i ki j i j kC h b h b h b b b b

 
    , 

 

From relations (3.2), (3.3), (3.5), (4.1) and (4.8), we have  
 

(4.9)   
2

2

1

2 (1 2 )

b
M h

b
 





and 0.M   

 

Therefore from equation (3.6) it follows that H  is symmetric. Thus, we 

have: 
 

 Theorem 4.2: The second fundamental v-tensor of the special Finsler 

hypersurface  1nF c  is given by (4.9) and the second fundamental h-tensor 

H  is symmetric. 

 

From 0.i
ib B   Then, we have 

 

    | | 0.i i
i ib B b B      

 

Therefore, from (3.4) and using | | |
j j

i i j i jb b B b N H   14, we have  

 

(4.10)   | | 0.i i
i j i j

j j i
ib B N HB Hb B b N       

 

Since, ,| h
i j h ijb b C M  and we get | 0.i j

i jb B N   

 

Therefore from equation (4.10), we have  
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(4.11)   
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Because |i jb is symmetric. Now contracting (4.11) with v  and using (3.1), 

(3.6), we get  

 

(4.12)   
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Again contracting equation (4.12) by v  and using (3.1), we get  
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From Lemma (3.1) and (3.2), it is clear that the hypersurface  1nF c  is a 

hyperplane of first kind if and only if 0 0.H   Thus from (4.13) it is obvious 

that  1nF c  is a hyperplane of first kind if and only if | 0.i j
i j yb y   

This |i jb  being the covariant derivative with respect to C  of  nF  depends 

on ,iy but ij j ib b  is the covariant derivative with respect to Riemannian 

connection 
i

j k

 
 
 

 constructed from ( ).ija x Hence ijb  does not depend on .iy  

We shall consider the difference | .ij i jb b The difference tensor 

*i i
jk jk

i

j k
D

 
 


 


 is given by (2.10). Since ib  is a gradient vector from (2.9), 

we have  
 

    0,, 0.i
ij ij ij jE b F F    

 

Thus (2.10) reduces to  
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From (2.11) and (4.3) it follows that for  1 ,nF c  we have  

 

(4.15)  
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we have  0 00, 0i
iB B    which leads to 0 0.m m

kA B b  

 

Now contracting (4.14) by ,ky  we get  

 

    0 0 00 00.i i i m i
j j j jmD B b B b B C b    

 

Again contracting the above equation with respect to jy , we get  
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Paying attention to (4.1), along  1 ,nF c  we get 

 

(4.16)      
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Now, we contract (4.16) by ,jy  we have 

 

(4.17)   
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00 002

2

1
.
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i
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b
b D b
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From (3.3), (4.5), (4.6), (4.9) and 0M  , we have 
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    2 0.m i j
i jmbb C B b M    

 

Thus, the relation | ,r
i j ij r ijb b b D  the equations (4.16) and (4.17) give 
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Consequently, (4.12) and (4.13) may be written as 
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respectively. 

 

Thus the condition 0 0H   is equivalent to 00 0,b   where ijb  does not 

depend on .iy  Using the fact 0i
ib y    on  1 ,nF c  the condition 00 0b   

can be written as ( )( ) 01j i j
ij i j

ib y y b y c y   for some ( ).jc x  Thus, we can 

write  

 

(4.19)   .2 ij i j j ib b c b c   

 

Now, from (4.1) and (4.19), we get 

 

    00 0, 0, 0.i j i j
ij ijBb b B b B y     

 

Hence, from (4.18) we get, 0,H  Again, from (4.19) and (4.15), we get  
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0
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2

i m i j
i j
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b b A B   and

2
.i j

ij B hB B 


  

 

Now, we use equations (3.3), (4.4), (4.5), (4.6), (4.9) and (4.14), to get 
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(4.20)   
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Thus the equation (4.11) reduces to 

 

(4.21)   
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Hence, the hypersurface  1nF c  is umbilical. 

 

 Theorem 4.3: The necessary and sufficient condition for  1nF c  to be 

hyperplane of first kind is that (4.21) holds good. 
 

In this case the second fundamental tensor of  1nF c  is proportional to its 

angular metric tensor. Hence the hypersurface  1nF c  is umbilical. Now 

from lemma (3.3),  1nF c  is a hyperplane of second kind if and only if 

0H   and 0,Q   which implies that 0.H   Thus, from (4.21), we get  
 

0 ( ) 0.i
ic c x y   

 

Therefore, there exists a function ( ),x  such that 
 

( ) ( ) ( ).i ic x x b x  

 

Therefore, from (4.19), we get 
 

2 ( ) ( ) ( ) ( ) ( ) ( ),ij i j j ib b x x b x b x x b x    
 

which gives 
 

(4.22)   ( .)ij i jb x b b  

 

Thus, we have: 
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 Theorem 4.4: The necessary and sufficient condition for  1nF c  to be 

hyperplane of the second kind is that (4.22) hold good. 

Again lemma (3.4) together with (4.9) and 0,M   shows that  1nF c does 

not become a hyperplane of the third kind. 

 

 Theorem 4.5: The hypersurface  1nF c  is not a hyperplane of the third 

kind. 
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