ISSN 0974 - 9373

Vol. 20 No. 1 (2016) Journal of International Academy of Physical Sciences pp. 57-71

Hypersurface of a Special Finsler Space with Metric)’ '[f_l
r=0 &

H. S. Shukla and Manmohan Pandey

Department of Mathematics and Statistics
D. D. U. Gorakhpur University, Gorakhpur-273009, India
Email: profhsshuklagkp@rediffmail.com, manmohanp752@gmail.com

B. N. Prasad

C-10, Avas Vikas Colony, Gorakhpur-273015
Email: baijnath_prasad2003@yahoo.com

(Received December 24, 2015)

Abstract: In the present paper our study is confined to the hypersurface of a

m . or

Finsler space with («, S8)-metric Z% .We have examined the hypersurface
r=0 o

as a hyperplane of first, second or third kind.
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1. Introduction
We consider an n-dimensional Finsler space F" =(M“,L), i.e., a pair

consisting of an n-dimensional differentiable manifold M " equipped with a
fundamental function L. The concept of («, 8)—metricL(a, f)was

introduced first of all by M. Matsumoto' and has been studied by many
authors™®. A Finsler metric L(x,y) is called and («,8)— metric if L is

positively homogeneous function of « and g of degree one, where
o’ =a;(x)y' y'is a Riemannian metric and A=D(x)y" is a 1-form on M".

Well known examples of («,8)— metric are Randers metric « + 4, Kropina
2 2
metric <, Matsumoto metric
p (@=5)

and generalized Kropina metric
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m+1

a — (m=#0,-1) whose studies have contributed a lot to the growth of

Finsler geometry. Hypersurfaces of Finsler spaces with special metrics have
also been studied by M. K. Gupta, P. N. Pandey and Vaishali Pandey®*.

2. Preliminaries

We forms on a special Finsler space F" = {M L(e, ,B)} where

m

(2.1)

r=0 (Z

Partial derivative of (2.1) w. r. t. oo and 3 are given by

r=0 r=0 & r=0 (24
m r-2 m r-1

B B

Ly =2 1(r=1) == Ly =D r(n-1)~—,
r=0 24 n=0 o

oL
where La=i, Lﬂ:i,Lw:aﬁ,Lﬁﬁz_ﬂ’ aﬂ:%-
oa op o op op

In the Finsler space F" ={M“,L(a,ﬂ)} the normalized element of support

I, =0,L and angular metric tensor hy =L"9,0;L are given by

L =a LY, +Lh,
2.1y

hij = ll,lau +T0bi bj +T—l(ble +iji)+T—2Yin’

where Y; = & y). For the fundamental function (2.1), the scalars are given
by

r+s m r+s-2
(22) H= LLaa—l z (1 S)IB To = LLﬂﬂ - Z S(S_l) ﬂr+s—2
r,s=0 r,s=0 a

m

m r+s-1 r+s
1= Z S(S—l)ﬁ Tes ' P27 z (82 _1) ﬁr+s+2'

r,s=0 o r,s=0 (04
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Fundamental metric tensor g; =%3i 8,2 is given by

(2.3) Oij = Hay + Loy b +ﬂ—1(b|Yj +b;Y; )"‘,U_zYin ,
where
m r+s-2
o=ty + 5= Y {2 (r-1)r) .
r,s=0 o
N m r+s+t-1
(24) ,Ll_l=2'_1+|__ ILILﬂZ Z (S—l)(s—l__lt)m,
r,s,t=0 o
m 32 -1 r+s m
/U—ZZT—Z-’_'UZL_Z: Z( 2 )ﬂr+s+|‘_22(l_s)2(
rs=0 «& a r,s=0

Moreover the reciprocal tensor g" of g;; is given by?,
(2.5) g =i 'al —oyb'b — o, (b'y! +bly ) -, ¥y,
where b'=a’b;,b*=a;b'b’.

o Zi{ﬂﬂo (o 11y~ 120,

1
26 o =%{ﬂﬂ_1+(ﬂo 7P —ﬂi)ﬂ},

0 zé{ﬂﬂ-z +(ﬂo H_p —ﬂfl)bz}i

The hv - torsion tensor Cy =%6k g;; is given by?.

(2.7) 21 Gy =:u71(hijmk +hjm, +hkimj)+pmi m; M,

0= 112+ pigb” + 1, B) + (ot o - 1 ) (b7 = B°).

59



60 H. S. Shukla and Manmohan Pandey

where

(2.8) PZ#%—&U—NO’ m =b —a” BY;.

It is noted that the covariant vector m, is a non-vanishing covariant vector
orthogonal to the element of support y'.We denote byV, the covariant
differentiation by x*with respect to the associated Riemannian connection

and {jlk} are the Christoffel symbols of the associated Riemannian space

R". We put b; =V ;b and

(2.9) 2E; =by +by;, 2F; =by —by;,

where b; =V b.

If we denote the Cartan’s connection CI' as (F ?L,ngk, 'Jk) then the

difference tensor D}k =1“’}‘k —{ 'Ik} of Matsumoto space is given by
J

- 0mgImBjk _C}mAkm _CII<mAJr'n +CjkmAsmgls
+2°(CjuC +CinC3 —CiCris ),

where

By = toby + £44Yy, B' = giij’ Fik =g" Fii.

B _ {/,l_l(aij _a_ZYin)+(a/lO /618)mlmj}

(2.11) i = 2 ’

A" = BI'Eg + B"E,o + BRI + B!, BY = g9 B,
A" =B"Egy +2B,F"m, By =B, ',
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And 0 denotes contraction with y' except for the quantities 1, 7, and o, .
3. Induced Cartan Connection

Let F™* be a hypersurface of F" given by the equation x’ =xi(u“)
where «=123,...,(n-1). The (n-1)tangent vectors to the hypersurface

- I .
F"* are given by B, =§X—a. The element of support y' of F" is to be taken
u

tangential**to F"*:
(3.2) y' =B (u)v®.
The metric tensor g,, and hv-tensor C,,, of F"are given by
—q.RB BRI _ i R Rk
gaﬂ - glj Ba Bﬁ’ Caﬂ;f _Cijk Ba B,B By
and at each point (u"‘) of F"™?, a unit normal vector N'(u,v) is defined by
g {X(U,V), y(u,v)} B, NT =0, g;; {x(u,v), y(uW}N'N’ =1.
Angular metric tensor h,; of the hypersurface is given by
(3.2) h,s =h; B, B, hy B, NI =0, hy N'NJ =1,
The inverse of (B; N i) is denoted by (Bi"‘, Ni) and is given by

Bf =9“g; B}, B,B/ =57, B'N'=0, BN, =0,
N; =gyN', BLBY +N'N; =4].

The induced connection ICF:(F};,G;‘,CZy)of F'lof the Cartan

connection CI" = (T, Tk, Cix ) is given by*:
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*a _ pa i *I pipk a
T =B (B), +TkBIBY )+ MG H,,
a _ pa i *Inij a _ paei ] pk
Cs=8 (Boﬁ+l“ojBﬁ),Cﬂy—Bi Cl BJ B,
i j pk a a i *ipi
where M, =N,CjB}Bf, Mg=g“M,,, H,=N;(By,+Ig;B}) and

B _aB/I/J) Bi _Bi Ve
pr= 5y OB T Cap
The quantities M, and H, are called the second fundamental v-tensor

and normal curvature vector respectively*. The second fundamental h-
tensor H ,, is defined as*:

i
(3.3) Hy, =N;(B}, +THBJBY )+ M4H
where

The relative h and v—covariant derivatives of projection factor B! with
respect to ICT are given by

(3.4) gy =Hap N' Byp =M N
It is obvious from the equation (3.3) that H 4, is generally not symmetric and

(3.5) H,

y ~Hyp=MgH, =M H,.
The above equations yield:
(3.6) Ho, =H,, H,o=H, +M Hy.

We shall use following lemmas which are due to Matsumoto* in the coming
section:

Lemma 3.1: The normal curvature H; = Hﬂvﬁ vanishes if and only if the
normal curvature vector H, vanishes.
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Lemma 3.2: A hypersurface F"* is a hyperplane of the first kind with
respect to connection CIif and only if H, =0.

Lemma 3.3: A hypersurface F"* is a hyperplane of the second kind
with respect to connection CI'if and only if H, =0 and Q,; =0, where

Lemma 3.4: A hypersurface F"* is a hyperplane of the third kind with
respect to connection CI" ifand only if H, =0 and H,; =M, =0.

4. Hypersurface F™(C) of the Special Finsler Space

,Br

r—

m
Let us consider a Finsler spaces with the metricL(a,8)=>" , Where

r=0 &

vector field b, (x) =§—bi is a gradient of some scalar functionb(x). Now we
X

consider a hypersurface F"*(c) given by equationb(x)=c
From the parametric equation x' = x' (u“)of F"*(c), we get

ob(x) _ ab(x) o

o o B0

a

Above equation shows that b (x) are covariant component of a normal
vector field of hypersurface F"*(c). Further, we have

(4.1) by =0, ie,S=0.
The induced metric L(u,v) of F"(c) is given by
(4.2) L(u,v)=\la,, vV’ a,, =a;B] B).

ij Pa

Writing B=0 in the equation (2.2), (2.3) and (2.5), we get for F"*(c).
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u=1 =3,,ufl=a_1,,u72 =0,7p=2,7,=0,7, =—a_2,

2 .1
(1+20%)° ’1_a(1+2b2)' 2 o (1+20%) |

(4.3)

0=(1+20"),0, =

From (2.4), (2.5) and (4.3) we get

b? i

i 2 i 1
| o (1+20%)a o

(4.4) g'=a —(1+2b2) b —m(b‘yj+bjy‘)+

Thus along F"*(c), (4.4) and (4.1) lead to

b2

9" b b, =m,

so, we get

| P 2 _ i
(4.5) b.(x(u))—,/ oy e e

where b is the length of the vector b'. Again from (4.4) and (4.5), we get

2

(4.6) b' =a'b, =,/b2(1+2b2)Ni+%yi.

Thus we have:

Theorem 4.1: In a special Finsler hypersurface F"*(c), the induced
Riemannian metric is given by (4.2) and the vector field b, is along the
normal to F"*(c).

At the point of F"*(c) the angular metric tensor h; and the metric

tensor g;; of F" are given by
(4.7 hy =a; +2bb;—a ?Y,Y; and g; =a; +30b; +a*(bY; +b)Y;),

which are obtained from (2.1)’, (2.3) and (4.3).
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From (4.1), (4.7) and (3.2) it follows that if hc(j‘ﬁ) denotes the angular metric
tensor of the Riemannian a;(x) then we have along F"(c), h,; =h©).

%o _,
op

From equation (2.6), we get pz—E, m;, =b,.
a

Thus along F"*(c),

At the points of F"*(c), hv - torsion tensor becomes

1 3
(4.8) Cii =Z(hijbk +hyb +hkibj)—5b,bjbk ,

From relations (3.2), (3.3), (3.5), (4.1) and (4.8), we have

1 b2
4.9 M, =— f—h andM_ =0.
(49) P20\ (14 20%) “

Therefore from equation (3.6) it follows that H,, is symmetric. Thus, we
have:

Theorem 4.2: The second fundamental v-tensor of the special Finsler
hypersurface F"(c) is given by (4.9) and the second fundamental h-tensor

H,; is symmetric.
From b.B\ =0. Then, we have

Therefore, from (3.4)" and using by, =b|“.B}, +hy N/ H,*, we have

(4.10) by;BLBS +by;BLNTH ; +bH, 4N =0.

1|j “a

Since, b|;=—h,CJ, M,, and we get by ;B],N’ =0.

Therefore from equation (4.10), we have
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b2
(411) m b||] aBﬂZO,
Because b ; is symmetric. Now contracting (4.11) with v# and using (3.1),
(3.6), we get
b? i
i
(412) mH +b||JBa yJ =0.

Again contracting equation (4.12) by v* and using (3.1), we get

b® -

From Lemma (3.1) and (3.2), it is clear that the hypersurface F"*(c) is a
hyperplane of first kind if and only if H,=0. Thus from (4.13) it is obvious
that F"*(c) is a hyperplane of first kind if and only if by;y'y’ =0.

This by;
ony',but by =V ;b is the covariant derivative with respect to Riemannian

being the covariant derivative with respect to CI" of F" depends

connection {jlk} constructed froma;; (x). Hence by; does not depend on y'

We shall consider the differenceb —b,;.The difference tensor

ij
D} =T _{jlk} is given by (2.10). Since b, is a gradient vector from (2.9),
we have

=b;, F; =0, F} =0.

Thus (2.10) reduces to
(4.14) D)y = B'by, + B} by + By by + 4°(C,Clt +Cirn 5 —CRChi )
_bOmgimBjk _C}mpkm _ClimAEn +CjkmASmgiS’
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From (2.11) and (4.3) it follows that for F"*(c), we have

. - 2 J— .
Bk:3bk+£Yk’B|:L2bl+ W 2
p (L+ 207) 72 (1+ 20%)

(4.15) A" =B" by, By =
TN WCT S

R
B;=Z(5}—a2ij')+mbbi_Ea (1+202)

1 _
—(a; —a YY),
(04

A =B byg +B™ byo.

we have B} =0,B,=0 which leadsto A =B™h,.
Now contracting (4.14) by y*, we get

Djo =B'bjo + Bjbgy —B™ Ciyy bxo-

Again contracting the above equation with respectto y!, we get

D 2 i |1+3p%A-a)|
D, =B, = bi + v .
0T {(1+2b2) {a2(1+2b2)} ]OO

Paying attention to (4.1), along F"*(c), we get

: 2b? 3+ 2h? 2
(4.16) bDl, = > bib™C}, boo-

(1+202) 7 2a(1+20?) (14202
Now, we contract (4.16) by y’, we have

2b?

(4.17) b Dy = mboo

From (3.3), (4.5), (4.6), (4.9) and M, =0, we have
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bb™C! BJ =b*M,, =0,

jmPa

Thus, the relation by; =b; —b, Dj, the equations (4.16) and (4.17) give

j
O 2b?
b||j y'y! =gy =, Dgg Zmboo-
Consequently, (4.12) and (4.13) may be written as

b? 2b?

H + bi Bi =0,
(L+202) “ 1+2p2 °°

(4.18)
b? 2b?
H, + by, =0
1+202) ° 14+2p%

respectively.

Thus the condition H,=0 is equivalent to by =0, where b; does not
depend on y'. Using the fact A=by' =0 on F"*(c), the condition by, =0
can be written as byy'y’ =(by')(c;y’)=01 for some c;(x). Thus, we can
write

Now, from (4.1) and (4.19), we get

by =0, b;B}, B} =0, b, B, y/ =0.

Ij ~a
Hence, from (4.18) we get, H, =0, Again, from (4.19) and (4.15), we get

2
i CbT m o nip inj_ 2

ij Pa

b,ob

Now, we use equations (3.3), (4.4), (4.5), (4.6), (4.9) and (4.14), to get
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L p?(3p%+2)
(4.20) b DBl B} =—————h,,.
2
2ar(1+2b%)

Thus the equation (4.11) reduces to

b2 cob2(3b2+2)h .
B =V.

(4.21) Hop+——— T,
1+20) " o (14 207)

Hence, the hypersurface F"(c) is umbilical.

Theorem 4.3: The necessary and sufficient condition for F"*(c) to be
hyperplane of first kind is that (4.21) holds good.

In this case the second fundamental tensor of F"*(c) is proportional to its
angular metric tensor. Hence the hypersurface F"*(c) is umbilical. Now
from lemma (3.3), F"*(c) is a hyperplane of second kind if and only if
H, =0 and Q,; =0, which implies that H,; =0. Thus, from (4.21), we get

G =G ()Y =0.

Therefore, there exists a function y(x), such that
6 () = ()b (x).

Therefore, from (4.19), we get

20, =, (X (¥)b; () + by (Y (X)by (%),

which gives

Thus, we have:
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Theorem 4.4: The necessary and sufficient condition for F"(c) to be

hyperplane of the second kind is that (4.22) hold good.
Again lemma (3.4) together with (4.9) and M, =0, shows that F"*(c)does
not become a hyperplane of the third kind.

Theorem 4.5: The hypersurface F"*(c) is not a hyperplane of the third

kind.
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