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Abstract: In this paper, a four dimensional non-linear model is proposed 

and analyzed to study the impact of ecological factors on the spread of 

carrier dependent infectious diseases such as Cholera, Typhoid fever, TB, 

etc. caused by various types of carriers including house flies etc.  It is 

assumed that the density of carrier population follows a general logistic 

model and its intrinsic growth rate and carrying capacity increase as the 

cumulative biomass density of ecological factors increases. It is further 

assumed that the cumulative density of ecological factors is also governed 

by a general logistic model, the growth rate of which increases bilinearly 

with the human population density. The proposed model is analyzed by 

using the stability theory of differential equations and computer 

simulation. The analysis shows that as the cumulative density of 

ecological factors increases (decreases), the spread of carrier dependent 

infectious disease increases (decreases). The computer simulation of the 

proposed model confirms this analytical result. 
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1. Introduction 

 

In general, the spread of infectious diseases in human population 

depends upon many factors such as the number of infectives and 

susceptibles; population migration; modes of transmission (carriers, vectors 

etc.); socio-economic factors; environmental and ecological conditions in 

the habitat. The carrier populations play a very important role in the spread 

of the infectious diseases such as cholera, typhoid fever, TB, dysentery, etc. 

For example, carriers such as flies, cockroaches, ticks, mites etc., grow and 
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survive in the bushes in residential areas, parks, grasses, open drainage, 

garbage stores, ponds, etc. They also grow in the mounds formed by the 

roots of the bushes as well as on branches and leaves of plants and their 

populations increase further as the bushes and plants become denser and 

denser. The carriers carry bacteria of infectious diseases on their body parts 

discharged from infectives to susceptibles contaminating their food and 

drinking water and thus spread infectious diseases in human population 

indirectly1.  
 

The modelling and analysis of various infectious diseases have been 

conducted by many researchers in the past2-6.  However, it is pointed out that 

very little attention has been paid to the study of the spread of such diseases 

by considering the effect of carrier population transporting infectious agents, 

the density of which increases due to natural or human population density 

related ecological factors7-9. Singh et. al.10, 11 presented some mathematical 

models for the carrier dependent infectious disease by considering 

environmental and ecological effects with constant immigration of 

susceptible population. They concluded that the spread of the infectious 

disease increases, when the growth of carrier caused by conducive 

environmental and ecological factors due to population density related 

factors, increases. 
 

In view of the above, in this paper, therefore, the spread of carrier 

dependent infectious diseases by considering explicitly the ecological 

factors, is modelled and analyzed. It is assumed that the density of carrier 

population is governed by a general logistic model, the growth rate and the  

carrying capacity of which increases as the cumulative biomass density of 

ecological factors increases. It is further, assumed that cumulative biomass 

density of ecological factors is also governed by a general logistic model, 

the growth rate of which increases bilinearly as the human population 

density increases. Our main aim is to show that the ecological factors  play  

important roles in the spread of carrier dependent infectious diseases. The 

model is analyzed by the stability theory of differential equations. The 

numerical simulation of the model is also performed to see the influence of 

certain key parameters on the spread of the carrier dependent infectious 

diseases. 

 
2. An SIS Model 

 

Let ( )X t  and ( )Y t  denote densities of susceptible and infective classes 

respectively of total human population density ( ) ( ) ( ).N t X t Y t   Let ( )C t  be 
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the carrier population density and ( )B t  is the cumulative biomass density of 

ecological factors. By assuming simple mass action interaction, an SIS 

model for the growth of a carrier dependent infectious disease, can be 

proposed as follows: 
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where X Y N   and (0) 0, (0) 0, (0) 0, (0) 0.X Y C B     

 

In the model (2.1) A  is the constant immigration rate of human 

population from outside the region, d is the natural death rate constant,   

and  are the transmission coefficients due to infectives and carrier 

population respectively,  is the disease related death rate constant,  is the 

recovery rate constant, s  is the intrinsic growth rate of carrier population, 0s  

is the coefficient related to  intraspecific competition coefficient  (i.e. 0S L ),

L is the measure of the carrier population density and 0sL s  is its carrying 

capacity as compared to the usual logistic model. Further, 1s  is the growth 

rate coefficient of carrier population and 2s is the growth rate coefficient of 

the carrying capacity caused by the growth of cumulative density of 

ecological factors. Similarly, r is the natural growth rate coefficient 

cumulative biomass density of ecological factors, 0r  is the coefficient related 

to intraspecific coefficient 0 ,s L L is the measure of cumulative biomass 

density and 0rK r  is the carrying capacity as compared to the usual logistic 

model. Also 1r   is the growth rate coefficient of ( )B t  due to human 

population density related factors, 2r  is the growth rate coefficient of ( )B t

caused by the bilinear interaction of human population density.  

 
3. Equilibrium Analysis 

 

Since ,X Y N  thus  model (2.1) can be transformed as follows: 
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(3.1)   

   
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It would suffice to analyze the model (3.1) instead of (2.1) and for this we 

need the following lemma which establishes region of attraction for the 

system (3.1). 

 

Lemma 3.1:The set  
 

      , , , : 0 , ,0 ,0 ,m m

A A A
Y N C B Y N N C C B B

d d d

 
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attracts all solutions initiating in the positive orthant, where 
 

(3.2)   
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provided 
 

(3.3)    0 2 ms s B L . 

 

Proof: Here we give only a brief outline of the proof, the detail proof 

can be seen in Freedman and So12. From the second equation of model (3.1), 

we have 
 

dN
A dN Y A dN

dt
      

 

and  
 

 
dN

A dN Y A d N
dt

       . 

 

These equations imply that 
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(3.4)   
A A

N
d d
 


. 

 

From the equation for carrier population density in (3.1), we have 

 
2

2 20 0
1 2 1 3( ) ( )m m m m

s C sdC
sC s B C s B C s s B C s B C

dt L L
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which gives 
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which is positive provided 0 2 .ms s B L  
 

Similarly from the last equation of model (3.1), we have 
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which gives 
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Theorem 3.1: The system (3.1) has following three equilibria: 
 

(i) 0 0, ,0, ,m

A
E B

d

 
 
 

 the disease free and carrier free equilibrium, where mB

is given by (3.6). 
 

(ii)  1 , ,0, ,E Y N B the carrier free equilibrium, which exists if

 
0 1,

A
R

d d



 
 

 
where 0R  is the basic reproductive number. The 

components of 1E  are given as follows: 
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and    
2 0 1

2 2

0

4
.

2

r r NK
B r r N r r N

r K

 
     

    
 

(iii)  * * * * *, , ,E Y N C I : The endemic equilibrium. 

 

The existence of 0E  or 1E  is obvious. The equilibrium point *E  is given as 

the solutions of system of following equations, which are obtained from 

(3.1) by taking left hand sides to zero: 

 

(3.7)    2 ( ) 0Y Y d N C NC            , 

 

(3.8)   
A dN

Y



 , 

 

(3.9)   0
1 2 0
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s s B s BC

L
    , 

 

(3.10)   
2

0
1 2 0

r B
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K
     . 

 

Now, eliminating Y  between equations (3.7) and (3.8), we get 
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where C is given as a function N  by using (3.9) and (3.10). From equation 

(3.11) we note the following:    
 

(3.12)   ( ) 0
A A

F d
d d

 
 
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(3.13)   0
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Thus, there exists a root *N  of ( ) 0F N   in the interval
A A

N
d d

 


. 

Further, this root will be unique if ' ( ) 0,F N  .
A A

N
d d

 


 

To show this, we differentiate (3.11) to get 
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(3.14)      
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Using (3.11) in (3.14), we get on simplification 
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are positive under the condition (3.3). 
 

After, knowing the value of *,N  the value of *,Y *C and *B  can be uniquely 

determined from (3.8), (3.9), (3.10). Hence *E  exists in . 

 

Remark: These conditions imply that the number of infectives increases 

not only on as the carrier population increases but also as the biomass 

density of ecological factors increases.  
 

From (3.8) we note that
dY d dN

dv dv
   for any parameter .  Now 

differentiating (3.11) w.r.t. N  and using it again, we can easily show that 

0
dN
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A A
N
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  and we have, 0,
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

1
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2

0.
dY
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4. Stability Analysis 

 

We shall now study the stability behaviour of above equilibria. The local 

stability result of equilibria 0 ,E 1E and *E are given in the following theorem: 



44      Shikha Singh and Vivek Kumar 
 

Theorem 4.1: The equilibria 0E  and 1E  are locally unstable and the 

equilibrium *E is locally asymptotically stable provided the following 

conditions are satisfied 
 

(4.1)   2 *2 2 *2C d Y  , 
 

(4.2)      
2 2

2 *2 * * 2 * *
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Proof: The local stability behaviour of each of the two equilibria 0E  or 

1E  is studied by computing corresponding variational matrices for system 

(3.1) and for the nontrivial equilibrium point *E it is studied by using 

Lyapunov’s theory. 

 

The variational matrix iM corresponding to equilibrium points is given by: 
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The variational matrix corresponding to equilibrium point 0E is given by: 
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Here one of the eigen value 1 ms s B  is positive and so 0 ,E if exists, will be 

unstable. 
 

Local Stability Behaviourof  1 , ,0,E Y N B : 
 

In this case the variational matrix is given as follows: 
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This variational matrix has a positive eigen value 1s s B  and so 1,E  if exists, 

will be unstable. 
 

Local Stability Behaviourof  * * * * *, , ,E Y N C I : 
 

We study the stability behaviour or *E  by Lyapunov’s method by 

linearising (3.1) with the transformations 
 

   * * * *, , ,Y Y y N N n C C c B B b         

 

and using the following positive definite function, 
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where 1,k 2k  and 3k  are positive constants to be chosen appropriately. 
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   
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Choosing 
*

1 ,
Y

k



  the conditions for

dV

dt
 to be negative definite are as 

follows: 
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 then inequality (A.5) will 

satisfy automatically. Now we can choose 2k  satisfying inequality (A.3) 

and (A.4) provided the following inequality is satisfied, 
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(A.6)      
2 2

2 *2 * * 2 * *
1 2 1 22 ( )B N Y s s C r r B     

22 *2
2 *2 * *0 0

2 1

s r B
Y d s B r N

L K


  
         

 

 

Hence *E is locally stable if (A.2) and (A.6) are satisfied. 
 

The nonlinear stability result for *E  is stated in two following theorem: 
 

Theorem 4. 2: The equilibrium point *E  is nonlinearly asymptotically 

stable in   provided the following inequalities are satisfied: 

 

(4.3)   2 2 2 *2 ,mC d Y   
 

(4.4)      
222 2 * * 2 *

1 2 1 22 ( )m mB N Y s s C r r B     

2 2

2 *2 * *0 0
2 1 .m

s r A
d Y s B B B r

L K d




   
     

   
 

 

Proof: We prove the above theorem by using the following positive 

definite function: 
 

(B.1)    
2

* * *1

*
ln

2

mY
V Y Y Y N N

Y

 
     
 

 

* * * *
2 3* *

ln ln
C B

m C C C m B B B
C B

   
        

   
 

 

where 1 2,m m  and 3m  are positive constants to be chosen appropriately. 
 

Differentiating (B.1) w.r.t. t and using (3.1), we get 
 

 

 

* * *
*

1 2 3

* 2 * 2 * * 20
1 2 2*

* 2 * *0 1
3 1* *

*

*

( ) ( ) ( )

( ) ( )

1 (

dV Y Y dY dN C C dC B B dB
m N N m m

dt Y dt dt C dt B dt

sNC
Y Y m d N N m s B C C

LYY

r r N C
m B B m Y Y N N

K BB Y

N
Y

Y

 

  



       
              
     

  
          

   

   
          

  

 
  

 
 * * * *

2 1 2

* *1
3 2*

)( ) ( )( )

( )( ).

Y C C m s s C C C B B

r
m r B B N N

B

     

 
    

 
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Taking 1 ,m



  

 

(B.2)
  

 * 2 * 2 * *

* *
( ) ( ) ( )

2

dV NC C
Y Y Y Y Y Y N N
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
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         
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 

  * 2

*
( ) .B B

B

 
 

 

 

 

Now 
dV

dt
 will be negative definite if following conditions holds, 

 

(B.3)   2 2 2 *2 ,C d Y   
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Now on maximizing left hand side and minimizing right hand side of (B.3), 

(B.5) and (B.6), we get  
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(B.7)   2 2 2 *2 ,mC d Y   
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If we choose 

0 1
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the inequality (B.10) will satisfy automatically and we can choose 2m  

satisfying inequality (B.8) and (B.9) provided   
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 
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or 
 

(B.11)      
222 2 * * 2 *

1 2 1 22 ( )m mB N Y s s C r r B     
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d Y s B B B r

L K d



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. 

 

Hence *E  is nonlinearly asymptotically stable if (B.7) and (B.11) are 

satisfied.
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5. Numerical Simulation 

 

Here we shall discuss the numerical analysis of the existence and 

stability of the nontrivial equilibrium point by taking the following set of 

parameter values using MAPLE. 
 
 

0 1 2

0 1 2

500, 0.02, 0.03, 0.000005, 0.000001, 0.05,

0.25, 0.99, 25000, 0.002, 0.00000001,

0.3, 0.99, 1000, 0.002, 0.000025.

A d

s s L s s

r r K r r

        

    

    

 

 

For these values of parameters the E  can be found as follows: 
 

* * * *6827,  14758,  51949,  717.Y N C B     
 

The eigen values corresponding to E  can be found from the corresponding 

jacobian matrix as, -0.0537, -0.1114, -0.7527, -1.6843, which are all 

negative. Hence E  is locally stable. Now numerical simulation is 

performed between B  and Y by solving (3.1) for the different initial starts 

and displayed in the Figure1, which shows the nonlinear stability of the 

point  * *,B Y   in B Y  plane.                           

 

 
 

Figure 1: Phase plot between B  and Y  
 

The model (3.1) has also been solved by using MAPLE and the graphs of 

the variable Y with respect to t  for various values of parameters have been 

plotted in Figures 2-10. The following conclusion may be drawn: 
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(i) From Figure 2, it is noted that ( )Y t increases as  increases. 

(ii) From Figure 3, it is noted that  Y t increases as  increases. 

The above results are expected, as the infectives increases with the 

increase in interaction coefficients. Further, 

(iii) From Figure 4, it is noted that ( )Y t increases as s increases. 

(iv) From Figure 5, it is seen that  Y t increases as 1s  increases. 

(v) From Figure 6, we note that  Y t increases as 2s  increases. 

The above results are expected, as the carrier population increases 

with the parameters 1 2, , .s s s  Also 

(vi) From Figure 7, it is seen that  Y t increases as r  increases. 

(vii) From Figure 8, we note that  Y t  increases as 1r decreases. 

(viii) From Figure 9, it is seen that  Y t  increases as 2r  increases. 

 

These results are also expected as increase in the cumulative biomass 

density of ecological factors causes increase in the density of carrier 

population, resulting in the increase of the density of infectives.  
 

Further, from Figure 10 it is noted that  Y t  increases as A  increases. This 

implies that the disease becomes more endemic. 

 

 
 

Figure 2: Plot between Y  and t for different values of   
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Figure 3: Plot between Y  and t for different values of   

 

 
Figure 4: Plot between Y  and t  for different values of s  

 

 
Figure 5: Plot between Y  and t  for different values of 1s  
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Figure 6: Plot between Y  and t  for different values of 2s
 

 

 

 
 

Figure 7: Plot between Y  and t  for different values of r  
 

 

 

 
 

Figure 8: Plot between Y  and t  for different values of 1r  
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Figure 9: Plot between Y  and t  for different values of 2r  
 

 

 

 

 
 

 

Figure 10: Plot between Y  and t  for different values of A  
 

 

6. Conclusions 

In this paper, a non linear mathematical model has been proposed and 

analyzed to study the impact of biomass density of ecological factors on the 

spread of carrier dependent infectious diseases. The equation governing the 

density of carrier population has been assumed to be a generalized logistic 

model with specific growth rate and carrying capacity which increase with 

the biomass density of ecological factors. It has been assumed further that 

the cumulative biomass density of such ecological factors is also governed 

by a generalized logistic model, which depends on human population 

density bilinearly. The model has been analyzed analytically and by 
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computer simulation. The effects of parameters governing the ecological 

factors, conducive to the growth of carrier population, have been studied. It 

has been shown that the disease spread faster due to growth of biomass 

density of ecological factors and the growth of carrier population as well as 

due to their natural growth. It has been found that an infectious disease 

becomes more endemic due to immigration.  
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