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Abstract: In the present paper, pseudo projectively flat and M-projectively flat
trans-Sasakian manifolds are studied. It is proved that a trans-Sasakian
manifold cannot be pseudo projectively flat unless (2n—-21)(d g — £87) + daog = 0.
If trans-Sasakian manifold is pseudo projectively flat then scalar curvature

-2n(2n+1)a
fr=——~ 7

(1-a)2nb-a?
@n-1)(dp-&Bn)+daog=0. It is also proved that a trans Sasakian manifold
cannot be M-projectively flat unless (2n-1I)grad 8 —¢(grada)=(2n-1)(&B)<. If
trans-Sasakian manifold is M-projectively flat then scalar curvature
r=2n(2n +1)(a2—ﬁ2—§ﬂ), where o and g are related by

(2n-Dgrad B - #(grada) = (2n—1)(£B)<.

(*-p°-éB), where o and B are related by
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1. Introduction

J. A. Oubina® introduced a manifold which generalizes both « -Sasakian
and g -Kenmotsu manifolds. Such manifold was called a trans-Sasakian
manifold of type («, ). Trans-Sasakian manifolds of type (0, 0), («, 0) and
(0, pB) are called cosympletic?, a-Sasakian®“and [-Kenmotsu®® respectively.
Concept of a nearly trans-Sasakian manifold was introduced by C.
Gherghe®. Thus, Sasakian, Kenmotsu and cosympletic manifold are
particular cases of trans-Sasakian manifolds. J. C. Marrero’ constructed
three dimensional trans-Sasakian manifold. R. Prasad and V. Srivastava®
obtained certain results on trans-Sasakian manifolds. Jeong- Sik kim et al.’
studied a generalized Ricci-recurrent trans-Sasakian manifold.
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In 2002, B. Prasad™ defined a tensor field on a Riemannian manifold of
dimension greater than 2 and he called it pseudo projective curvature tensor.
This tensor is a generalisation of projective curvature tensor. Such tensor
was studied on a ¢-recurrent Kenmotsu manifold by Venkatesha and C. S.
Bagewadi'. C. S. Bagewadi, Venkatesha and N. S. Basavarajappa® studied
such tensor on LP-Sasakian manifold while H. G. Nagaraja and G.
Somashekhara® studied such tensor on a Sasakian manifold.

The pseudo projective curvature tensor on an n-dimensional Riemannian
manifold is given by

1

2(n-1)

r (%.m}[g(Y,Z)X -9(X.Z)Y ],

(1.1) P(X.,Y)Z=R(X,Y)Z- b[S(Y,Z)X -S(X,Z)Y]

2n+1
where R, S, r and g are Riemannian curvature tensor, Ricci tensor, scalar
curvature and metric of the Riemannian manifold respectively.

In 1971, G. P. Pokhariyal and R. S. Mishra'* introduced a new curvature
tensor in n-dimensional manifold denoted by W and defined by

1
2(n-1)

+9(Y,Z)QX —g(X,2)QY |-

(1.2)  W(X,Y)Z=R(X,Y)Z-

[S(Y.Z)X -S(X,Z)Y

Such a tensor field W is known as M-projective curvature tensor. M-
projective curvature tensor has been studied by J. P. Singh®, S. K. Chaubey
and R. H. Ojha*®, R. N. Singh and S. K. Pandey'” and many others. In this
paper we study pseudo-projectively flat and M-projectively flat trans-
Sasakian manifolds.

2. Preliminaries
Let M be a (2n+1)—dimensional almost contact metric manifold™® with

almost contact metric structure (¢,&,77,9)where ¢ is a (1,1)tensor field, &

is a vector field, nisa 1-form and g is a compatible Riemannian metric on
M such that

(2.1) ¢ =—1+n®& n(&)=1 ¢&=0,
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(2.2) g(#X,4Y)=9g(X,Y)=n(X)n(Y),
(2.3) g(#X.Y)=g(X.gY), 9(X.&)=n(X),
where X.,Y eTM.
An almost contact metric manifold is said to be contact manifold if
(2.9) dr(X.,Y)=p(X,Y)=g(X,¢Y),

@(X,Y)is being called fundamental 2-formon M .

An almost contact metric manifold M is called trans-Sasakian manifold
if

(2.5) (Vi@)Y =a{g(X.Y)E=n(Y)X}+B{g(¢X.Y)E-n(Y)eX],

where V is Levi-Civita connection of Riemannian metric g and « & §p
are smooth functions on M. From equations (2.1), (2.2) and (2.3), we get

(2.6) (V,0)&=-apX + B[ X —n(X)é],

(2.7) (Vyn)Y =—ag(¢X.,Y )+ By (#X,4Y).

In a (2n+1)-dimensional trans-Sasakian manifold, we have
(2.8) R(X,Y)é=(a” - 5%)[n(Y)X —n(X)Y]

+2af3[ (Y )gX —n(X)PY |+(Y
—(Xa)¢Y+(Yﬁ)¢X—(Xﬁ)¢ ,

(2.9) R(EY)X =(a” = B) g (X.Y)E=n(X)Y |+ (Xa)pY
+208] 9($X.Y)E-n(X)gY |+ g(#X.Y)(grader)
H(XB)LY =n(Y)&]-9(#X. ¢ )(grad ),
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(2.10) n(R(E&Y)X)=g(RE,Y)X,E)
=(a* =B =GB) 9 (X.Y)=n(X)n(Y)],

(2.11) 203 +&Ea =0,

(2.12) S(X,&) =@n(a® - B*)-&Pn(X)-(2n-1) X B—(¢X )
and

(2.13) Q¢ =(2n(a® - %) - EB)E —(2n—1)(grad B) + #(grader).

An almost contact metric manifold M is said to be #-Einstein if its Ricci-
tensor S is of the form

S(X,Y) =ag(X,Y)+bn(X)7(Y),

where a and b are smooth functions on M. An g-Einstein manifold
becomes Einstein manifold if b=0, i. e.

S(X,Y)=ag(X,Y).

If {e,.e,....e,,.&,,,, =&} be a local ortho-normal basis of tangent space in
a (2n+1)-dimensional almost contact manifold M, then we have

2n+1

> g(X,Y)=2n+1.

i=1

2n+l 2n+l

Zg(e..Y)S (X&) ZR (6.Y.X,e)
=S(X,Y).

3. Pseudo Projectively Flat and M-Projectively Flat Manifolds

Let M be a (2n+1)-dimensional Pseudo projectively flat manifold, then
from equation (1.1) we have

(3.1) aR(X,Y)Z =b[S(X,Z)Y -S(Y,Z)X]
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r
+2n+1(%+b][g (Y.Z)X-g(X,Z)Y].

Contracting equation (3.1) with U, we get
(3.2) g(R(X,Y)Z,U) =§[S(X,Z)g(Y,U)—S(Y,Z)g(X,U)]
r a
+ (2n+1)a(%+bj[g(Y,Z)g(X,U)

-9(X,2)g(Y,u)].

Let {e,.e,....e,,,&,,,, =&} be alocal ortho-normal basis of tangent space.

Putting Y =Z =e¢,, in equation (3.2), we get

r

(3.3) S(X.U)=——

g(X,u),

for a=b.

Hence a pseudo projectively flat manifold is Einstein manifold if a=b.
If the manifold is M- projectively flat then from equation (1.2), we have
(3.4) R(X,Y)Z:4—1n[S(Y,Z)X—S(X,Z)Y

+9(Y,Z)QX —g(X,Z)QY].
Contracting equation (3.4) with U, we get
(3.5) g(R(X,Y)Z,U) =4—1n[S(Y,Z)g(X,U)—S(X,Z)g(Y,U)

+9(Y,2)S(X,U)-g(X,2)S(Y,U)].

Let {e,.e,.....e,,.8,,, =&} be alocal ortho-normal basis of tangent space.
Putting Y =Z =e,, in equation (3.5), we get

31
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r

(3.6) S(X.U)=—

g(X,u).
Hence an M- projectively flat manifold is Einstein manifold.

4. Pseudo Projectively Flat Trans-Sasakian Manifold

If a trans-Sasakian manifold is Pseudo projectively flat then from
equation (1.1), we have

(4.1) aR(X,Y)Z=b[S(X,Z)Y =S(Y,Z)X ]

.
+2n+1(%+b][g (Y.Z)X —g(X,Z)Y].

Contracting equation (4.1) with U, we get
(4.2) g(R(X,Y)Z,U) =g[s(x,z)g(v,u)—S(Y,z)g(x,u)]

+ﬁ(zn j[g Y.2)9(xV)-g(X.2)g(v.V)}

Putting U = &and using equation (4.2), we get
(4.3) g(R(x,Y)z,g)=g[s(x,z)n(v)—s(v,z)n(x)]

r

"(ni1)a (Zn )[QYZ n(X)=9(X.Z)n(Y)]

Putting X =&and using equations (2.3), (2.10) and (2.12), we get

(4.4) S(Y’Z){Zr:il(z%mj‘g(“z‘ﬂz‘fﬁ)}(Y’Z)

{%(w2 - =&B)-(2n(a - B*)-B)

_(2:11)(2%+bﬂf7(Y)n(Z)+(2n—1)Zﬁ+(¢z)“’7(Y)'
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From equations (3.3) and (4.4), we have

_ —2n(2n+l)a 2 a1
(4.5) r—m(“ B —EB)
and
(4.6) (2n—1)(d B— EBr) + daog =0.

Theorem 4.1: A trans-Sasakian manifold cannot be pseudo projectively
flat unless (2n-1)(d B —&Bn) +daog =0.

From equations (4.5) and (4.6), we get

Theorem 4.2: The scalar curvature r of a pseudo projectively flat
trans-Sasakian manifold satisfies

r— -2n(2n+1)a

“.7 (—a)2mb—a

(a - B -2B),
where o and g are related by (2n-1)(d 8 —&Bn) +daog =0.

5. M-Projectively Flat Trans-Sasakian Manifolds

Let a trans-Sasakian manifold be M-projectively flat. From equation (1.2),
we have

(5.1) R(X,Y)Zz%[S(Y,Z)X—S(X,Z)Y
+9(Y,Z)QX —g(X,2)QY |-
Contracting equation (5.1) with U, we get
(5.2) g(R(X,Y)Z,U):%[S(Y,Z)Q(X,U)—S(X,Z)g(Y,U)

+9(Y.2)S(X.U)~g(X.2)S(Y.U) .

Putting U =& in equation (5.2) and using equations (2.3), we have



34 Vibha Srivastava and P. N. Pandey
(5.3) g(R(X,Y)Z,g):4—1n[S(Y,Z)77(X)—S(X,Z)77(Y)

+9(Y.2)S(X,£)-g(X,2)S(Y.&) .

Again putting X =¢&in equation (5.3) and using equations (2.3), (2.10) and
(2.12), we have

(5.4) an(e” - =B, 2)-n(Y)n(Z)1=S(Y,2)+{2n(a’ - B*)
=580 (Y)n(2)-(2n-1)Zpn(Y)~(#Z)an(Y)
+2n(a’ - B2 - EB)g (Y,Z)—{Zn(az -B)
=5Bn(Y)n(Z)+(2n-1)Y By (Z) +(#Y )an (2),

(5.5) S(Y.Z)=2n(a* - B ~£B)4(Y,Z) - 4n(a’ - B* ~&B)n (Y )n(Z)
+(2n=1)Zpn(Y)+(42)an(Y)-(2n-1)Y fr(Z)
~(#Y)an(2).

From equations (3.6) and (5.5), we get

(5.6) r=2n2n+1)(a” - B> - &)
and
(5.7) (2n-1)grad B —¢(grada)=(2n-1)(&B)<.

Theorem 5.1: A trans-Sasakian manifold cannot be M-projectively flat
unless (2n—-1)grad 8 —g¢(grade)=(2n-1)(&B)<.

From equations (5.6) and (5.7), we have

Theorem 5.2: If a trans-Sasakian manifold is M-projectively flat then
scalar curvature r=2n(2n+1)(a’ - #° —£3), where o and 3 are related by

(2n-1)grad B —¢(grada)=(2n-1)(&B)<.
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