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Abstract: We have considered the well known restricted three body 

problem under the influence of perturbations in the form of radiation 

pressure and lack of sphericity of the primaries, respectively. In the present 

article, author is interested to analyzed linear stability in case of three main 

resonances and hence, effect of perturbations on the stability regions. In 

order to achieve the goal, first, we have determined triangular equilibrium 

point then examined its linear stability and found that points are stable for 

the mass ratio 0 0.0396478,c   in the presence of perturbations. 

Perturbed mass ratio for three main resonance cases is obtained and noticed 

that it is increasing function of radiation pressure but it decreases with 

respect to oblateness. It is also, observed that stability region expands with 

radiation pressure, in the presence and absence of oblateness but it contracts 

with oblateness. Again, effects of perturbations are analyzed and found that 

they affect the motion of restricted mass significantly, in space. Results are 

helpful to study more generalized problem in the presence of some other 

type of perturbations such as P-R drag and solar wind drag etc. 
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1. Introduction 
 

Recent developments in the field of non-linear dynamics have revived 

interest in the dynamics of space objects, especially problems of three 

bodies. Restricted three body problem (RTBP) concerns the motion of a 

body with negligible mass under the gravitational influence of two massive 

bodies, called primaries, which orbit in circular Keplerian motion about 

their common center of mass on account of their mutual attractions. In 

classical RTBP, there are five equilibrium points out of them, three i.e. 1,2,3L    
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are unstable, called collinear equilibrium points whereas, remaining two i.e. 

4,5L
 
are stable for all mass ratio within the range of linear stability region 

0 0.0385209   Szebehely
1
, called triangular equilibrium points. 

 

The classical RTBP has no more existence when at least one of the 

interacting bodies is an intense emitter of radiation. There are many stellar 

dynamics problems where it is altogether inadequate to consider only 

gravitational force. For example, when a star acts upon a particle in a cloud 

of dust or gas, then in spite of gravitational attraction of star, the repulsive 

force of radiation pressure (Schuerman
2
), although drag forces, which have 

been neglected here, also work therein. Therefore, model is modified by 

superimposing a light repulsion field whose source is same as of 

gravitational field hence; the word ‘photogravitational’ is used. Several 

studies (Hamilton and Burns
3
; Singh and Ishwar

4
; Ishwar and Kushvah

5
; 

Singh
6
; Kushvah et al

7
; Kishor and Kushvah

8
 of the restricted problem have 

included radiation pressure force. In RTBP, it is assumed that masses 

concerned are spherically symmetrical in homogeneous layers, but there are 

several celestial bodies (Saturn, Jupitor, Earth etc.) which are sufficiently 

oblate. Moreover, minor planets (e.g. Ceros) and a number of meteoroids 

have irregular shapes (Millis et al
9
; Norton and Chitwood

10
). Therefore, we 

have considered photo gravitational RTBP with an oblate body. The study 

of stability property of a dynamical system is a necessary step which brings 

not only the system to tackle many realistic problems of the world but also 

helps to understand the motion of test particle for a long time of evolution.   

Author is interested to examine the linear stability of the triangular 

equilibrium point under the influence of perturbations for three main cases 

of resonance and then to analyze effects of radiation pressure and oblateness 

on the stability region.  Marchal
11

 has discussed the linear stability in 

resonance cases whereas, Markellos et al
12

 have examined the same in the 

presence of oblateness and observed that stability region decreases with 

respect to the oblateness. Kushvah
13

 have performed the linear stability test 

in resonance cases in the generalized problem of RTBP in the presence of 

radiation and obtained perturbed mass ratio for the system whereas, Kishor 

and Kushvah
8
 have discussed same for the Chermnykh-like problem in 

presence of a disc with power-law profile. In the present article, in spite of 

linear stability in the resonance case, we have analyzed the stability region 

under the influence of perturbations. In order to examine linear stability in 

photogravitational RTBP with an oblate body, in case of resonance, first, we 

have performed the test for for general case with the algorithms described in 

Moulton
14

; Murray and Dermott
15

 and then proceeded for resonance cases.  
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The whole work is organized as follows: problem is formulated in Sec. 

(2) whereas; triangular equilibrium points and its linear stability are studied 

in Sec. (3) and (4) respectively. Linear stability in resonance cases is 

described in Sec. (5). Finally, the results are concluded in Sec. (6). 

Algebraic as well as numerical computation has been performed with the 

help of Mathematica® Wolfram
16

 software package. For numerical 

computations, we have used 69.0032789 10   , mass parameter of the 

Sun-Earth system in addition to the other parametric values. 

 
2. Equations of Motion 

 

It is supposed that forces governing the motion of restricted body (the 

mass which does not affects gravitationally to the motion of finite bodies) 

are gravitational attractions of both the primaries (the Sun and the Earth). 

Radiation pressure force of the first primary is also taking into account and 

its opposing nature to the gravitational attraction results that the mass 

reduction factor 1 (1 )
p

g

F
q

F
  (Schuerman

2
), where pF   and gF  be the 

radiation pressure and gravitational attraction forces, respectively. The 

oblateness of the Earth comes into picture in the form of oblateness 

coefficients 
2 2

2 25

e pR R
A

R


 (McCuskey

17
), where eR  and pR  be the equatorial 

and polar radii of the oblate body, respectively and R  is the separation of 

both the primaries. The units of mass, distance and time, are normalized in 

such a way that Gaussian constant 12k   which results that the mean 

motion of the system is 1 2

3

2
n q A  . Now, let us suppose that ( ,0)  and 

(1 , 0)  be the co-ordinates of the first and second primaries, respectively 

and ( , ,0)P x y  be the coordinate of restricted body, relative to the synodic 

frame of reference OXYZ where e

S e

M

M M
 


 be the mass parameter be in 

the Sun-Earth system with SM  and eM  are masses of the Sun and the Earth 

respectively.  
 

 The equations of motion of the restricted body in xy -plane are written 

as (Kushvah et al
7
): 

 

(2.1)  2 ,xx ny   
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(2.2)  2 ,yy nx   
 

 

(2.3)   2 1 2

3 3 5

1 2 2

(1 )( ) 3 ( 1)( 1)
,

2
x

q x A xx
n x

r r r

        
      

 

(2.4)  2 1 2

3 3 5

1 2 2

(1 ) 3
,

2
y

q y A yy
n y

r r r

 
      

 

with 2 2r x y  , 2 2

1 ( )r x y    and 2 2

2 ( 1)r x y     be the 

distances of the restricted mass from both the primaries and from common 

center of mass of the system, respectively. The last term on the right hand 

side in equations (2.3) and (2.4) is due to oblateness. 

 
3. Triangular Equilibrium Points ,L4 5  

 
 

The point, at which the motion of a moving particle ceases, is known as 

equilibrium point. The triangular equilibrium point (as it forms triangle with 

the first and second primary, hence name) can be obtained from equations 

(2.1) and (2.2) in addition to the vanishing conditions of the velocity as well 

as acceleration of the restricted body. In other words, we have evaluated the 

triangular equilibrium point of the problem by solving the equations 

 

(3.1)   0  and  0,x y     

 

simultaneously for space variables. Analytically, to solve above equations 

for real x  and y , is a cumbersome task. Therefore, for convenience it is 

assumed that perturbed distances 1/3

1 1 1(1 )r q    and 2 21r   , where

1, 21  . Hence,  

 

(3.2)  

2 2 2 2/3 2

1 1 1

2 2 2 2

2 2

( ) (1 )

 ( ,1) (1 )

r x y q

r x y

 

 

    

     





 

 

which provides 
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(3.3)  
2

3 2

3

2
23

1 3
1 1 2

1

21

13
1 1 1 2

( ) ,(say)
2

1 (2 ) ,(say)
4

e

e

q
x q x

q
y q q y

  

 





  
  
    

    

      

 

 

under linear approximation of 
1  and 

2 , where  

 

(3.4)  
   

 
1 2

1
1 2

2

5

2

3
1

12 , .
3

3 1

q A
q

A

 
 


 



 

 

In the expression of ey , ‘+’ sign corresponds to 4L  point and ‘’ for 5L . 

We study the dynamics of 4L  point whereas, motion about 5L  is similar to 

that of 4L . Above, 's are obtained with the help of equations (3.1-3.4) in 

addition with a suitable approximation in simplification of the expression. 

 
Table 1: Co-ordinates of 4,5 4 4: ( , )L x y

 
for different values of parameters  

1 2, q A  at mass parameter 69.32789 10  
 
of the Sun-Earth system. 

 

 
 

1q  
2A  x4

 y4  

1.0 0.0000 

0.0002 

0.0004 

0.0006 

0.499991 

0.499891 

0.499791 

0.499691 

0.866025 

0.865968 

0.865910 

0.865852 

0.9 0.0000 

0.0002 

0.0004 

0.0006 

0.463815 

0.463738 

0.463661 

0.463585 

0.881440 

0.881378 

0.881317 

0.881256 

0.8 0.0000 

0.0002 

0.0004 

0.0006 

0.421663 

0.421610 

0.421557 

0.421504 

0.888772 

0.888708 

0.888645 

0.888581 

 

The coordinates (3.4) of the triangular equilibrium points are agree with 

the classical results for the classical values of parameters. Numerically, we 

have computed co-ordinates of 4,5L  for the Sun-Earth system at different 

values of mass reduction factor and oblateness (Table-1). From, Table (1), it 
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is observed that positions of the triangular equilibrium points deviated from 

the classical results in the presence of radiation pressure as well as 

oblateness. 

 

4. Linear Stability 

 

We have examined linear stability of triangular equilibrium point by 

linearising the equations of motion of the restricted body in the vicinity of 

4 : ( , )e eL x y  point (Moulton
14

; Murray and Dermott
15

). Let us take a small 

displacement and a small velocity so that coordinates of restricted body and 

components of its velocity are ,  ,e ex x X y y Y x X     
 and ,y X 

where , ,  X Y X , and Y  are initially very small quantity. Substituting these 

into equations (2.1) and (2.2), and then expanding right hand side of 

resulting equations about ( , )e ex y  by Taylor's series up to first order terms in 

X  and Y , we have new differential equations in the neighborhood of 

equilibrium point such as 

 

(4.1)  
0 02 ,xx xyX nY X Y       

 

(4.2)   0 02 ,yx yyY nX X Y     
 

 

where 0 0 0,  , xx xy yx    and 0

yy  are second order partial derivatives with 

respect to x  and y  respectively, of the effective potential   of the system 

and which are obtained with the help of equations (3) and (4). Superfix‘0’ 

denotes the corresponding value at equilibrium point. In order to solve 

equations (9) and (10), let  

 

(4.3)  and ,t tX Pe Y Qe  
 

 

where ,P Q are constants and   is parameter. On substituting these into 

equations (4.1) and (4.2) and dividing out by common factors, a linear 

system of equations is obtained as follows:   

 

(4.4)  2 0 0( ) ( 2 ) 0,xx xyP n Q          

 

(4.5)  0 2 0(2 ) ( ) 0.yx yyn P Q         
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Since, for nontrivial solutions  

 

                  
2 0 0

0 2 0

2
0.

2

xx xy

yx yy

n

n

 

 

    


   
 

 

On simplifying the above determinant, we get a bi-quadratic equation in   

known as characteristic equation: 

 

(4.6)   4 2 0,A B     

 
(4.7)   2 0 0 0 0 0 24 and  ( )  .xx yy xx yy xyA n B         

 
 

Substituting the values of 0 0 0 , ,  xx xy yx    and 0

yy  in equation (4.7), it is 

found that, 
 

 

(4.8)   2 22 1 2
05 5 5 2

2,0 1,0 2,0 2,0

3 5
and 9 (1 ) 1

2

A q A
A n B y

r r r r


 

    
        
    

 
 

where, subscript ‘0’ indicates value at triangular equilibrium point. Let 

1 2 3,  ,    and 4  be the roots of bi-quadratic (4.6). Then, general solution of 

the system of linear differential equations with constant coefficients (4.1) 

and (4.2), can be expressed in terms of exponential such as 

 

(4.9)  
4 4

1 1

( ) ; ( ) ,j jt t

j j

j j

X t P e Y t Q e
 

 

  
 

 
where constants jQ  are related to arbitrary constants , 1,2,3,4  jP j   

respectively, by the mean of linear equations (4.4) and (4.5). From, solution 

(4.9), it is clear that if , 1,2 ,3,4j j   are pure imaginary then X  and Y  are 

expressible in the form of periodic function and hence the solution (4.9) are 

said to be stable. However, if roots are of same magnitude i.e. multiple pure 

imaginary, then due to presence of secular term in the solution, it will be 

unstable. On the other hand, if , 1,2 ,3,4j j   are real then solutions are said 

to be unstable. In case of complex roots, if real part of at least one root is 

positive, then due to presence of exponential term in the solution, it unstable 

whereas, if all the real parts of the complex roots have negative sign then 
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solution is said to be asymptotically stable (Boccaletti and Pucacco
18

). Now, 

from the characteristic equation (4.6), we have 

 
 

(4.10)  

1 1

2 22 2

1,2 3,4

( 4 ) ( 4 )
.

2 2
,

A A B A A B
 

        
      

     
 

These four roots depend in a simple manner on the parameters 2, A and 1q . 

In order to insure the stability of 4,5L  points, four roots , 1, 2,3,4j j   of 

the characteristic equation (4.6) must be pure imaginary. In other words, 

sign of the quantity 
2( 4 )A B  in the equation (4.10) determine the scenario 

of stability property. Therefore, three cases arise which are given as  

 

(i)  
2 4 0 or cA B      

 

(ii)  
2 1

4 0 or
2

cA B     
 

 

(iii) 2 4 0 or 0 .cA B       

 

Case (i) corresponds to the critical value of the mass ratio c . That is 

 

(4.11) 

2

2 2 22 1 2
05 5 5 2

2,0 1,0 2,0 2,0

3 5
4 0 36 (1 ) 1

2

A q A
A B n y

r r r r


 

    
          

      

 
provides the value of 0.0396478c   at 1 0.9q   and 2 0.0005A   under the 

Taylor's series expansion about 0   up to order second. At the classical 

values of parameters i.e. 1 1q   and 2 0A  , equation (4.11) provides Routh's 

value of critical mass ratio 0.0385209c c   . Moreover, when 

2 4 0A B  , equation (4.10) gives 1,3
2

A
i   and  2,4 .

2

A
i  

 
That is the 

characteristic equation (4.6) have multiple pure imaginary roots. Since, the 

multiple roots give secular terms in the solution of the equations of motion 

of restricted body and hence, triangular equilibrium points are unstable in 

this case.  
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(a) 

 

 
(b) 

Figure 1: Numerical values of the real and imaginary components of the root 

, 1, 2, 3, 4j j  of the characteristic equation for triangular  

equilibrium points as the function of (0, 0.5).   
 

 

In case (ii) 
 

i.e. when 
1

2
c   , roots are of the form i    and so 

there will always be a positive real part hence, perturbed motion is unstable.. 

However, in case (iii)
 

i.e. when 0 c   , roots are of the form 1i , 2i  

and so, perturbed motion is stable. Figure1 (a, b) shows, how the nature of 

roots varies with the mass parameter. The nature of curves shown in Figure1 

(a, b) can be understand by considering the analytical solutions to the 

characteristic equation (4.6). Figure 2 (a, b) show the variations of critical 

mass ratio in the absence of oblateness as well as radiation pressure force. It 
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is observed that value of critical mass ratio increases with radiation pressure 

as well as oblatenessof the primaries, respectively 
 

 

 
(a) 

 

 

 
(b) 

Figure 2: Variation of critical value of mass ratio c  in the absence of  

(a) oblateness, (b) radiation pressure. 

 
 

5. Resonance Cases and  Perturbed Mass Ratio   

 

 In this section, we have described resonances in the frequencies of stable 

solution. The three main cases of the resonance (Marchal
11

; Markellos et 

al
12

; Kishor and Kushvah
8
) of the problem are obtained as follows: 
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(5.1)  
1 2 0, 1,2,3.      

 

Now, with the help of equation (18), we get 
 

 

 

(5.2)   

2 2
2 1

2
2

4
,

4

A A B

A A B






   
  
    

 

 

and then using equation (15), we have 
 

(5.3)  

222
2 21 2 2
0 5 5 2 5

1,0 2,0 2,0 2,0

5 31
9 (1 ) 1 0.

2

q A A
y n

r r r r


 



     
          

      
 

 

Since, 1 2(0,1]; 1q A  , so let us suppose that 1 ,q 1    . Now, 

expanding above expression using Taylor's formula up to order second, 

about 0   under a suitable approximation, we have obtained a quadratic 

equation in   which provides the critical mass ratio   for these three main 

resonance cases as follows: 

 

(5.4)   1 2 20.0385209 0.0089175 0.0627796 0.1575610A A       

 

(5.5)  2 2 20.0242939 0.0055365 0.0368506 0.0977076A A       

 

(5.6)  3 2 20.0135160 0.0030453 0.0193830 0.0536684A A       

  

It can be see that mass ratio depends significantly on the radiation 

pressure and oblateness of the primaries, respectively. These expressions of 

the perturbed mass ratio agree with that of Deprit and Deprit-Bartholome
19

 

for classical values of parameters i.e. at 2 0A   moreover, it is similar to 

that of Markellos et al
12

 for 0,  and 20 0.1A   up to first order in 2A , 

Kushvah
20

 and Kishor and Kushvah
8
 etc. The values of perturbed mass ratio 

  for several values of parameters 1q  and 2A , are computed up to seven 

decimal places (Table-2). It is notice that perturbed mass ratio is a 

decreasing function of oblateness 2A
 
and , whereas it is an increasing 

function of radiation pressure. It provides the information about the linear 

stability region i.e. it shows the upper bound of the stability regions on the 

 -axis at the different values of  1q  and 2A with 1,2,3  . Figures (3-4) 

represent the linear stability regions corresponding to main resonance curves 
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in the
2A  and

1q  spaces, respectively. From Figure3 (a, b), it is 

observed that stability region decreases with the increment in the value of 

2A  for all three main resonance cases, in the absence of radiation pressure 

but in the presence of it, rate of decrement become slow.  

 

 
(a) 

 

 

 
 

(b) 

Figure 3: Linear stability region of 
4L  in the 

2A   space and the resonance  

curves 
1 2  0, 1,2,3.      (a) without radiation pressure  

(b) with radiation pressure. 
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(a) 

 

  

(b) 

Figure 4: Linear stability region of 
4L  in the 

1q   space and the resonance  

curves 
1 2  0, 1,2,3.      (a) without oblateness (b) with oblateness. 

 

Figure 4 (a, b), shows that stability region increases with radiation 

pressure in the absence as well as presence of oblateness. On the basis of 

numeric as well as graphical results, it is observed that the perturbation 

factors have a significant effect on the motion of a spacecraft or satellite in 

space. It is noticed that the nature of the motion is unaffected but the 

stability region of the motion varies with the variations of radiation pressure 

and oblateness. The influence of oblateness of smaller primary is very less 

but considerable where as radiation pressure force affects significantly.  
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Table 2:  Mass ratio 1 2  ( , ), 1, 2, 3, 4, 5q A     at different values of 
1q
 
and

2A  . 
 

q1
 

 
q

1
( , 0.0)  q

1
( , 0.0002)  

1
( , 0.0004)q  

1
( , 0.0006)q  

1.0 1 

2 

3 

0.0385209 

0.0242939 

0.0135160 

0.0385083 

0.0242865 

0.0135121 

0.0384958 

0.0242792 

0.0135083 

0.0384832 

0.0242718 

0.0135044 

0.9 1 

2 

3 

0.0394126 

0.0248475 

0.0138205 

0.0394032 

0.0248421 

0.0138177 

0.0393938 

0.0248367 

0.0138149 

0.0393844 

0.0248313 

0.0138121 

0.8 1 

2 

3 

0.0403044 

0.0254012 

0.0141251 

0.0402981 

0.0253977 

0.0141233 

0.0402919 

0.0253943 

0.0141216 

0.0402856 

0.0253908 

0.0141199 

 
 

6. Conclusion 
 
 

We have considered a photo gravitational RTBP with an oblate body 

and then analyzed the linear stability of triangular equilibrium points, in 

case of three main resonances. In order to examined linear stability, first, we 

have determined triangular equilibrium points under the influence of 

perturbations for the Sun-Earth system which are agree with classical results 

in the absence of perturbations. Linear stability of the equilibrium points are 

examined in the presence of radiation pressure and oblateness and it is found 

that these are stable under Routh's condition of critical mass ratio

0.0396478c  . Again, perturbed mass ratio , ,2 1 ,3    for the three 

main cases of resonance, are obtained and it is noticed that these increase 

with radiation pressure but decrease with respect to oblateness. Further, 

stability region in case of resonance is observed and found that it spans with 

radiation pressure in presence and absence of oblateness whereas, it 

contracts with oblateness. Thus, it is concluded that presence of radiation 

pressure and oblatenessaffects the motion of restricted body (spacecraft, 

asteroid, satellite etc.) significantly and these results are very helpful to 

observe the same in the Sun-Planet system. The present study and 

observations are also, applicable to analyze more generalized problems in 

addition with some other type of perturbations like P-R drag, solar wind 

drag etc. 
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