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Abstract: A nonlinear mathematical model to study the effect of 

treatment and time delay on the spread of HIV/AIDS in a population 

with variable size structure is proposed and analyzed. The model 

divides the population into four subclasses namely susceptibles, 

asymptomatic infectives, symptomatic infectives and AIDS population. 

The delay is used to represent the time from the start of treatment in the 

symptomatic stage until the treatment effects become visible. The 

analysis of the model is carried out using stability theory of differential 

equations. The model exhibits two equilibria, the disease - free and the 

endemic equilibrium. Some inferences have been drawn regarding 

disease spread by establishing the local and global asymptotic stability 

of the equilibria. Model analysis reveals that with increase in the 

treatment rate, the population of symptomatic infectives decreases 
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which results to increase the population of asymptomatic infectives. 

This decrease in symptomatic infectives  population, as a result of 

treatment, ultimately decreases AIDS population. The time delay, 

however, produces oscillations which increases its amplitude with 

increase in delay period. Numerical analysis of the model is also 

performed to investigate the influence of certain key parameters on the 

spread of the disease and to support the analytical results. 

Keywords: Mathematical model, HIV/AIDS, stability, treatment, 

delay,  numerical simulation 

 
1. Introduction 

The extensive spread of Human Immuno-deficiency Virus (HIV) and the 

associated Acquired Immuno-deficiency Syndrome (AIDS), a dreaded 

disease, has reached the epidemic heights in the most of the countries and 

has affected people all over the world. At the end of 2019, an estimated 38 

million people globally were living with HIV whereas 25.4 million people 

were accessing antiretroviral therapy (ART). Since the start of the epidemic 

32.7 million people have died from AIDS related illness whereas 690000 

people died from AIDS-related illnesses in 2019 itself. Worldwide 1.7 

million people became newly infected with HIV in 2019. New HIV 

infections have been reduced by 40% since the peak in 19981. A 

comprehensive National AIDS Control Programme (NACP) for prevention 

and control of HIV/AIDS in India was launched in 1992 and implemented 

successfully. India is estimated to have around 87.58 thousand new HIV 

infections in 2017, showing new HIV infection decline by 85% since the 

peak of 1995 and by 27% between 2010 - 2017. The total number of people 

living with HIV in India is estimated at 21.40 lakhs in 2017. Since 2005, 

when the number of AIDS related deaths started to show a declining trend, 

the annual number of AIDS related deaths has declined by almost 71%2. 

Mathematical models play an important role in the study of 

transmission of HIV and for short and long term prediction of HIV/AIDS 

incidence. Various modeling studies have been made to understand the 

transmission of HIV infection and specific issues have been addressed3-13. 

In particular, Hyman et al.7
 considered different levels of viral infectivity 

between individuals to study the impact of variations in infectiousness. 

Hsieh and Chen8
 studied a model for a sexually structured population 

consisting of commercial sex workers and sexually active male customers 

with different sexual activity levels. Tripathi et al.10 proposed and analyzed 

a nonlinear model to study the effect of screening of unaware infectives on 

the spread of HIV/AIDS and concluded that the screening of unaware 
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infectives helps in reducing the spread of AIDS epidemic. Naresh et al.12 

highlighted the importance of contact tracing in reducing the spread of 

AIDS epidemic in a homogeneous population with constant inflow of 

susceptibles. The HIV/AIDS models that take into account the treatment of 

infectives have been studied by many investigators14-26. Kirschner and 

Webb16 developed mathematical models for the chemotherapy of AIDS. 

They incorporated AZT chemotherapy as a weakly effective treatment and 

found that AZT treatment does not eliminate HIV, but only restrains its 

progress. Schmitz17 considered a model of HIV/AIDS transmission in a 

homosexual community with genetic heterogeneity and found that neither 

treatment nor vaccination alone can eliminate the disease from the 

population, but that a combination of both vaccination and treatment can 

help eradicate or eliminate the disease provided the quality of vaccines is 

decent. Blower19
 has shown that incidence rates of HIV will fall as more 

HIV- positive individuals gain access to treatment (HAART), but the 

underlying assumption is that treated individuals would change their 

behavior and the level of risky behavior does not increase. Kgosimore and 

Lungu20 proposed a model to study the effect of vaccination and treatment 

on the spread of HIV/AIDS. They have found threshold conditions for the 

existence and stability of equilibria in terms of effective reproduction 

number. The model considers exponential population growth by taking 

different birth and death rates and assumes that vaccine does not wane over 

time. Culshaw21 presented a review and comparison of some models for 

treatment of HIV-1 infections in which treatment is expressed as a forcing 

function. Culshaw et. al.22 proposed optimal control models of drug 

treatment of the HIV and described the interaction between HIV and 

specific immune responses as measured by levels of natural killer cells. 

Kgosimore and Lungu23 developed a model that incorporates treatment of 

both juveniles who were infected with HIV/AIDS through vertical 

transmission and HIV/AIDS infected adults. Naresh et al.24 studied the 

effect of vaccination on the spread of HIV/AIDS in a population with 

variable size structure and obtained a threshold quantity in terms of vaccine 

reproduction number which characterizes the disease eradication.  

Since susceptibles become infected via sexual contacts with infectives, 

the infectives then proceed to develop end stage disease AIDS through 

several stages due to long incubation period of the disease in adults. It is 

possible that a patient infected with HIV may develop different 

epidemiological or clinical stages before developing full blown AIDS 

depending on the level of infection in an individual26. Due to long 

incubation period of the disease, the role of time delay becomes more 
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important in such studies. A very few studies have been made that include 

time delay in the HIV/AIDS transmission models27-30. For example, 

Mukandavire et al.28 proposed  a model with explicit incubation period as a 

system of discrete time delay and studied the impact of epidemic for 

Zimbabwe. Naresh et al.29 
studied a nonlinear model to see the effect of 

screening of infected individuals on the transmission dynamics of 

HIV/AIDS and incorporated time delay in the recruitment of infected 

persons and found that the introduction of time delay in the model has a 

destabilizing effect on the system and periodic solutions can arise by Hopf 

bifurcation. 

It is pointed out here that the delay in starting the treatment of HIV 

infectives may cause the epidemic to continue for a long time. This aspect 

has not been taken into account in the above studies though it plays a very 

important role to capture realistic dynamics of the spread of HIV/AIDS31.  In 

view of the above, in this paper we propose a nonlinear mathematical model 

to study the effect of treatment on the transmission dynamics of HIV in a 

variable size population by considering two stages according to clinical 

manifestation i.e. asymptomatic stage and the symptomatic stage. The delay 

is also incorporated to represent the time from the start of the treatment in 

the symptomatic stage until the treatment effects are visibly observed. Our 

objective is to investigate the qualitative and quantitative behavior of the 

model to see the effect of treatment and delay on disease dynamics.  

 

2. Mathematical Model and Description 

 

Consider a population of size  N t  at time 0t   with constant 

recruitment of susceptibles at a rate 0Q . The population size  N t  is divided 

into four subclasses of susceptibles  S t , asymptomatic infectives  I t , 

symptomatic infectives  J t  and that of AIDS patients  A t  with natural 

mortality rate d  in all the classes. The susceptibles are assumed to become 

infected via sexual contacts with asymptomatic infectives, symptomatic 

infectives and with those in AIDS class. The total population  N t  looses 

individuals at a higher rate from the class  A t  than the others. It may be 

noted that the individuals in symptomatic infectives class and in AIDS class 

may also interact sexually owing to illiteracy, ignorance or other social 

factors especially in underdeveloped nations but the contact rate may be less 

in comparison to that of other infectives  ( 2 1 0    ), where 0 1,   and 2  

are probabilities of disease transmission per contact by infectives in 
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asymptomatic, symptomatic and AIDS class respectively32. The constants 

0 1,c c  and 2c  are the number of sexual partners of an individual infective in 

asymptomatic, symptomatic and AIDS class respectively per unit of time, 1k  

and 2k  are transfer rate coefficients from the asymptomatic infectives class 

 I t  to the symptomatic infectives class  J t  and from symptomatic 

infectives class  J t  to the AIDS class respectively. The coefficient   is 

the treatment rate from the symptomatic infectives class  J t   to the 

asymptomatic infectives class  I t ,   is the disease-related death rate of 

individuals in AIDS class and  is the time from the start of treatment in the 

symptomatic stage  J t  until the treatment effects become visible. It is 

assumed that a symptomatic infective individual is getting treatment at a 

time t . However, for the model to be biologically reasonable, it may be 

more realistic to assume that not all those symptomatic infectives getting 

treatment will survive after time   units and this claim supports the 

introduction of the survival term de  , where 0 < de ≤ 1
33

. 

With the above assumptions and considerations, the dynamics of the 

disease is assumed to be governed by the following system of nonlinear 

ordinary differential equations,  

 

(2.1)   0 0 1 1 2 2
0

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )

c S t I t c S t J t c S t A tdS
Q dS t

dt N t N t N t

  
     , 

   

(2.2)   0 0 1 1 2 2
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

c S t I t c S t J t c S t A tdI

dt N t N t N t

  
    

                             
1( ) ( ) ( )dd k I t e J t     , 

 

(2.3)                1 2( ) ( ) ( ) ( )ddJ
k I t d k J t e J t

dt

      , 

 

(2.4) )()()(2 tAdtJk
dt

dA
 , 

 

with 
  

0)0(,0)0(,0)0(,0)0( 0000  AAJJIISS . 

Since N S I J A    , the above equations can be written as follows,   
 

(2.5)    )()(0 tAtdNQ
dt

dN
 , 
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(2.6)   0 0 1 1 2 2( ( ) ( ) ( ))[ ( ) ( ) ( ) ( )]

( )

c I t c J t c A t N t I t J t A tdI

dt N t

      
  

                            
1( ) ( ) ( )dd k I t e J t      , 

        

(2.7)   1 2( ) ( ) ( ) ( )ddJ
k I t d k J t e J t

dt

      , 

 

(2.8)   )()()(2 tAdtJk
dt

dA
 . 

       

2.1 Positivity and Boundedness  of Solutions: In order to find the bounds 

of dependent variables involved in the model system (2.5) - (2.8), we need 

the  region of attraction which is stated in the form of following lemma 

without proof. 

 Lemma 2.1: The set  

        

(2.9)    , , , ;0 ( ) ;0 ( ) ( ) ( )N I J A N t N I t J t A t I         

                                  

is a region of attraction which attracts all solutions initiating in the interior 

of the positive octant, 

where,      

,
Q

N
d

     0 0

0 0

,
c dQ

I
d c





 
  

 
 

 

In the following, we state a lemma to show the positivity of solutions of the 

model system (2.5) - (2.8). 

Lemma 2.2: Let the initial data be   00 0N N  ,   00 0I I  , 

  00 0J J   and   00 0A A   for all 0t . Then, the solution (  N t ,  I t ,  

 J t ,  A t ) of the model remain positive for all time 0t . 

Proof:  From equation (2.8), we have 

 '( ) ( )A t d A t    and by applying a theorem on differential inequalities34, 

we obtain  
( )( ) 0d tA t Ce    , where C  is a constant of integration. A similar reasoning 

on the remaining equations shows that they are always positive in   for 

0t . 
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3. Computation of Basic Reproduction Number  
 

The basic reproduction number 0R , defined as the effective number of 

secondary infections generated by a typical infected individual in an 

otherwise disease-free population. We calculate 0R  by closely following 

the approach in van den Driessche and Watmough35. We first compute the 

new infectious matrix F  and transfer matrix V , according to formula 

 

(3.1)               

     

     

     

/ / /

/ / /

/ / /

dI dt dI dt dI dt

I J A

dJ dt dJ dt dJ dt
F V

I J A

dA dt dA dt dA dt

I J A

   
 

   
   

   
   

   
 

    

,   

                                         

To calculate F  and V , we only consider equations (2.6), (2.7) and (2.8), 

which correspond to the infected groups  , ,I J A  capable of transmitting 

the disease. The non-negative matrix F , corresponding to new infections 

in the population at disease-free equilibrium is, 

 

 (3.2)             

0 0 1 1 2 2

0 0 0

0 0 0

c c c

F

   
 


 
  

, 

                                                                        

The non-singular matrix V , corresponding to the transfer of individuals 

into and out of the compartment is, 

 

(3.3)              

1

1 2

2

( ) 0

( ) 0

0 ( )

d

d

d k e

V k d k e

k d















  
 

    
   

, 

                                                      
1FV   is the next generation matrix of the system (2.5) - (2.8). It follows 

that the spectral radius of matrix 1FV   is  

 

(3.4)           1 0 0 2 1 1 1 2 2 1 2

1 2

[ ]( ) ( )
( )

( )( )( ) ( )

d

d

c d k e d c k d c k k
FV

d k d k d d d e





     


  






     


    
.                



 

270                     Agraj Tripathi, Dileep Sharma , S. N. Mishra  and Ram Naresh  
 

 

Thus, the basic reproduction number of the system (2.5)-(2.8) is 

 

 (3.5)             0 0 2 1 1 1 2 2 1 2
0

1 2

[ ]( ) ( )

( )( )( ) ( )

d

d

c d k e d c k d c k k
R

d k d k d d d e





     

  





     


    
. 

                        

If 0 1R  , then an infected individual produces less than one infected 

individual over the course of its infectious period and infection cannot 

grow. Conversely, if 0 1R   then an infected individual produces more than 

one new infection and the disease can invade the population.  

 

4. Equilibrium and Stability Analysis 

 

4.1 Equilibria of the Model: The model (2.5)-(2.8) has two non-negative 

equilibria namely,  

(i)  0 0 , 0, 0, 0E Q d , the disease-free equilibrium, which exists without any 

condition. This equilibrium implies that in the absence of any infection, the 

total population size remains at its equilibrium value 0Q d . 

(ii)  , , ,E N I J A     , the endemic equilibrium.  The equilibrium values 

of different variables are obtained by setting right hand side of equations in 

model system (2.5)-(2.8) equal to zero to give, 

 

                  * 0 0 1 1 1 2 2 2 1 2 0( ) (1 )c a c a c d a a Q
N

b

     
 ,  * *

1I a A ,  * *

2J a A , 

 

                * 0 0 1 1 1 2 2 2 1 1 2 0[( ) {( ) }]dc a c a c d k a e a Q
A

b

        
 , 

  

where  

               2
1 2

2

( )dd k e
a a

k

  
 ,   

2

2

( )d
a

k

 
   

  

 and  

 

               0 0 1 1 1 2 2 2 1 2 0 0 1 1 1 2 2 2( ) ((1 ) [( )b c a c a c d a a c a c a c              
 

                 
1 1 2{( ) }]dd k a e a    . 
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These values are all positive when 

               
0 0 1 1 1 2 2 2 1 1 2( ) [( ) ]dc a c a c d k a e a         . 

 

i.e.          0 0 1 1 1 2 2 2

1 1 2

( )
1

( ) d

c a c a c

d k a e a
  

 

 


 
,  which is 0 1R                                                                                             

                                                                                                                                                                                                                                                                                                                                                                                        

4.2 Local Stability of the Equilibria without Delay ( 0 ): To determine 

the local stability of 0E , the following Jacobian matrix of the model system 

(2.5)-(2.8) is computed about 0E  as, 

  

                     
0 0 1 1 1 2 2

0

1 2

2

0 0

0 ( )
( )

0 ( ) 0

0 0 ( )

d

c k d c c
J E

k k d

k d



   





  
 

  
 
   
 

  

, 

              

One root of the characteristic equation of above matrix is d    where as 

other three roots are  determined by the following cubic equation,   

  

          3 2( ) 0f A B C        , 

   

where,  

    

                    1 2 0 03A d k k c        , 

     

                    2 1 2 2(2 ) (2 ) ( )( )B d d k k d k d d k                
       

                       0 0 2 1 1 1(2 )c d k c k        , 

 

                    1 2 0 0[( )( ) ]( ) [ ( )C d k d k d d c d           
 

                       2 1 1 1 2 2 1 2( ) ( ) ]d k c k d c k k         , 

 

From equation (3.5), we get reproduction number 0R  for disease- free 

equilibrium with 0   as follows,  

 

                    0 0 2 1 1 1 2 2 1 2

1 2

[ ]( ) ( )
1

( )( )( ) ( )

c d k d c k d c k k

d k d k d d d

     

  

     


    
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from which we get,   

(4.1)              1 2 0 0 2[( )( ) ]( ) [ ]d k d k d d c d k           
  

                                       1 1 1 2 2 1 2( ) ( )d c k d c k k        , 

                

showing that 0C  .  It can easily be proved that 0A  , 0B   and AB C  

       Thus, the disease - free equilibrium 0E  is locally asymptotically stable 

for 0 1R   which corresponds to inequality (4.1). Therefore, the disease dies 

out and infection does not persist in the population. If 0 1R  , it is unstable 

and the endemic equilibrium E   exists and the disease always persists in 

the population.         

       The equilibrium value of I  in terms of basic reproduction number 0R  

can be written as follows with 0  ,  

   

 (4.2)             * 1 0 1 2 0

1 2 0

0 0 1 1 1 2 2 2 1 2

[( )( )( ) ( )]( 1)

[( )( )( ) ( )]( 1)

( ) (1 )

a Q d k d d k d d R
I

d k d d k d d R

c a c a c d a a

  

   

  

     


     

    

, 

    

where 1a  and 2a  are defined as above with 0  . 

The basic reproduction number for 0   can be obtained from equation 

(3.5) as follows, 

 

 (4.3)             0 0 2 1 1 1 2 2 1 2
0

1 2

[ ]( ) ( )

( )( )( ) ( )

c d k d c k d c k k
R

d k d k d d d e

     

  

     


    
. 

         

From figure 1, we observe that the basic reproduction number 0 1R   is the 

bifurcation point which changes the stability behavior between disease - 

free equilibrium and endemic equilibrium. It is noted that the disease - free 

equilibrium is always stable for 0 1R   and in this case there is no 

possibility for endemic equilibrium to exist and thus the disease is 

eradicated from the population. 
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Figure 1. Bifurcation diagram 

 

       The system shows a forward bifurcation if reproduction number 0R  

slightly exceeds one and disease - free equilibrium becomes unstable and 

an endemic equilibrium appears. Thus, it is observed that the HIV infection 

can be eradicated from the population if we reduce the reproduction 

number 0R  below one successfully and in that case the endemic 

equilibrium does not exist for 0 1R  . 

Now the Jacobian matrix corresponding to endemic equilibrium E   is 

given by, 

 

                     
21 22 23 24*

1 2

2

0 0

( )
0 ( ) 0

0 0 ( )

d

m m m m
J E

k k d

k d







  
 

  
 
   
 

  

, 

    

where   

  

                       21m pq , 22 0 0 1 0 0( )m p c q d k c      ,  
 

                       23 1 1 1 1m p c q c      ,    24 2 2 2 2m p c q c      

 

and  

 

                       
* * *

0 0 1 1 2 2

*
0

c I c J c A
p

N

   
  ,

* * *

*
0

I J A
q

N

 
  . 
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The characteristic equation corresponding to  J E   is given by, 

 

                     4 3 2( ) 0f P Q R S          , 

                           

where           

                    2 223P d k m      , 

 

                      2 22 2 23 1( 2 )( ) ( ) ( 3 )Q d k d d d m k d m k               , 

  

                    2 22 2( )( ) [( 2 )( ) ( )]R d d k d m d k d d d                
 

                       24 1 2 23 1( 2 )m k k m k d   , 

 

                    22 2 24 1 2 21 1 2 23 1( )( ) ( )S m d d k d m k k d m k k m k d d           , 

         

Thus, E   
is locally asymptotically stable if the conditions of the Routh - 

Hurwitz criteria are satisfied i.e. 0P , 0Q , 0R , 0S  ,  PQ R  

and   2  0R PQ R P S   . 

4.3. Global Stability of the Endemic Equilibrium: The global stability of 

the equilibrium E 
 is established using Liapunov method and the result 

obtained is stated in the following theorem. 

       Theorem 4.1: If the endemic equilibrium E   exists, then it is globally 

asymptotically stable provided the following sufficient conditions are 

satisfied in   ,   

    

(4.4)   
2

26 2 28

2

27 2 1

27 ( )

8( )

m k d m

d m k k





 



, 

                                     

(4.5) 
2

2 27 28

2 2 2 2

2 1 25

( )27

8( )

k d m m

d d k k m





 



, 

                                                     

where 

 

   * * * *

0 0 1 10 0
25 * * *

0 0

( *) ( *)c J A I d c J A J dc I
m

N Q N Q N

       
  

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 * *

0 0

*

0

( *)c J A A d

Q N

   
 



, 

 

       * * * *

0 0 1 1 2 2 1 1

26 2 2

0 0 0 0

c I d c J d c I d c A d
m c

Q Q Q Q

       


    
      
 

, 

 

 
*

0 0
27 0 0 1 *

c I
m c d k

N


     , 

 
* **

0 0 0 01 1
28 1 1 *

c I c Jc I
m c

NN N

 
 

 
      
 

 

 

and    2 1 1 28A k A m  

 Proof: Consider the following positive definite function about E  , 

 

(4.6)          
2 2 2 2

* * * *

1 2 3

1 1 1 1

2 2 2 2
V N N A I I A J J A A A        , 

                                       

where Ai,(i = 1, 2, 3) are positive constants to be chosen appropriately. 

Differentiating V with respect to t, we get 

 

     
*

* * *

1 2 3

dV dN I I dI dJ dA
N N A A J J A A A

dt dt I dt dt dt

 
       

 
. 

  

Using model equations (2.5) - (2.8) and simplifying, we get 

 

    
2

* * *dV
d N N N N A A

dt
       

          
2 2 2 * * * * * *

0 0 1 1 2 2 0 0 1 1
1 * * *

( ) ( )c I c J c A c J A I c I A J
A

NN NN NN

        
 


 

          
* * * *

* *0 0 0 0
1 0 0 1* *

( ) ( )
( )( ) ( )

c J I A c I I
N N I I A c d k

NN N

 


  
        

 
 

          
* *

* 20 0 0 01 1 2 2 1 1
1 1 1

( )
( )

c J A c Ic J c A c I
I I A c

N N N N N

   
 

 
        

 
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*

* *1 1 2 2 1 1

* *

( )
( )( )

c A c A c J J
J J I I

N N N

   
    


 

          
* * * *

0 0 1 1 2 2 2 2 1 1
1 2 2

( )c I c J c I c I c A A
A c

N N N N N

    


 
       


 

          * * * *

2 1( )( ) ( )( )A A I I A k J J I I       

          * 2 * * * 2

2 2 3 2 3( )( ) ( )( ) ( )( )A d k J J A k J J A A A d A A           . 

            

After little algebraic calculations, we get the following conditions for dV/dt 

to be negative definite,  

 

(4.7)   
2 2 2 * * * * * *

0 0 1 1 2 2 0 0 1 1
1 * * *

( ) ( )c I c J c A c J A I c I A J
A

NN NN NN

        
 


  

   

                     

2
* * *

0 0

*

( )c J I A

NN

 
 



*

0 0
0 0 1 *

( )2
( )

3

c I I
d c d k

N




 
    


 

 

                     0 0 1 1 2 2
( )c J A c J c A

N N N

   
   


,  

                         

(4.8)    2

3

2

3

d
A d   ,                                                                                                                   

(4.9)    
* * *

0 0 1 1 1 1 2 2 1 1
2 1 1 1 1 * *

( )c I c I c A c A c J J
A k A c

N N N N N

    
 

  
         

 
 

 

           
*

0 0
1 2 2 0 0 1 *

( )2
( ) ( )

3

c I I
A A k d c d k

N


 

 
      


  

 

           0 0 1 1 2 2
( )c J A c J c A

N N N

   
   


,   

                                                                                                                                  

(4.10)  

2
* * * *

0 0 1 1 2 2 2 2 1 1
1 2 2

( )c I c J c I c I c A A
A c

N N N N N

    


 
      


  

 

                     
*

0 0
3 0 0 1 *

( )4
( ) ( )

9

c I I
A d c d k

N


 

 
     


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                     0 0 1 1 2 2
( )c J A c J c A

N N N

   
   


,  

                       

(4.11)     2

3 2 2 2

2

3
A k A d k d     .  

                                                                                              

After maximizing the LHS and minimizing the RHS of the above, the 

stability conditions as given in the statement of the theorem are obtained. 

Thus, dV/dt will be negative definite showing that V is a Liapunov 

function. Hence, the endemic equilibrium E
*
 is globally asymptotically 

stable inside the region of attraction Ω. 

 

5. Local Stability of the Endemic Equilibrium with Delay ( 0 ) 

 

Since the disease-free equilibrium E0 is unstable when 0   and 0 1R  , 

incorporation of delay will not change the instability. Thus, 0E  is unstable 

when 0   and 0 1R  . Now we establish the local stability of endemic 

equilibrium E   with delay. 

The Jacobian matrix  M E   corresponding to endemic equilibrium E   is 

obtained as follows, 

 

           
( )

*

( )

1 2

2

0 0

( )
0 ( ) 0

0 0 ( )

d

d

d

l m n e r
M E

k e k d

k d

 

 









 

 

  
 

   
 
   
 

  

, 

 

where, 

 

pql  ,    00100 )( ckdqcpm   ,  1111 cqcpn   , 
 

 2222 cqcpr      0
*

*

22

*

11

*

00 



N

AcJcIc
p


,  

and  0
*

***





N

AJI
q . 

The characteristic equation corresponding to  M E  is given as,  
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(5.1) 0)()(   eQP  , 

           

where  

 

                    4 3 2

1 2 3 4( )P a a a a         , 

 

                    
3 2

1 2 3 4( )Q b b b b       . 

 

The equation (5.1) can be written as, 

 

(5.2)   4 3 2 3 2

1 2 3 4 1 2 3 4( ) 0a a a a e b b b b               ,  

      

where 

 

1 23 0a d k m     , 

 

2 2 2 1( )( 2 ) ( )( ) 0a m m d d k d d k k n            , 

 

3 2 2 1 2 1( 2 ) ( )( )( ) ( 2 ) 0a dm d k k d d m d rk k k n d             , 

 

4 2 1 1 2( )[ ( ) ] ( ) 0a d d m d k k n k k dr l        , 

 

1

db e   , 

 

2 1( 2 ) db m d k e       , 

 

3 1[ ( ) ( 2 )( )] db d d d m k e        , 

 

4 1( )( ) db d d m k e      . 

                              

When 0  , the equation (5.2) reduces to 

 

(5.3)   4 3 2

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) 0a c a c a c a c            ,   

       

where 1c , 2c , 3c  and 4c  can be found by putting 0   in 1b , 2b , 3b  and 4b  

respectively. Roots of this equation (5.3) has already been discussed in 

Section 4.2. 
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Now we will investigate the distribution of roots of equation (5.2) when 

0  . The transcendental equation (5.2) has roots with positive real parts if 

and only if it has purely imaginary roots7. We determine if equation (5.2) 

has purely imaginary roots, from which we shall be able to find conditions 

for all eigenvalues to have negative real parts. 

Let ( ) ( )u iv     (v > 0), be the eigenvalue of characteristic equation 

(5.2), where ( )u  and ( )v  depend on the delay  . If 0   is sufficiently 

small, we shall assume that ( )u  < 0 and E   is stable. Also )( 0u = 0, for 

certain value of 0 0   so that iv   is purely imaginary root of equation 

(5.2), then the steady state E   loses stability and eventually becomes 

unstable when ( )u  becomes positive. In other words, if such 0( )v  does not 

exist, that is if the characteristic equation (5.2) does not have purely 

imaginary roots for all delays, then the steady state E   is always stable. 

The main purpose here is to study the stability behavior of E   in the case 

when 0  . When 0 1R  , 0  , without loss of generality, assuming iv   

with 0v  and substituting in equation (5.2) we get, 

 

(5.4)   4 2 3 3

2 4 1 3 1 3( ) [( )sinv a v a i a v a v v b vb v         
 

                     2 3 2

2 4 1 3 2 4( )cos ] [( )cos ( )sin ] 0v b b v i v b vb v v b b v           . 

                                                               

Now on separating the real and imaginary parts of equation (5.4) we get, 

 

(5.5)   2 3

2 4 1 3[( )cos ( )sin ]v b b v v b vb v       = 4 2

2 4( )v a v a   , 

       

(5.6)   3 2

1 3 2 4[( )cos ( )sin ]v b vb v v b b v      = 3

1 3( )a v a v   .  

       

On squaring and adding both the equations (5.5) and (5.6) we obtain, 

 

(5.7)   8 2 2 6 2 2 4

1 2 1 2 4 1 3 1 3 2( 2 ) ( 2 2 2 )v a a b v a a a a bb b v         
 

                     2 2 2 2 2

3 2 4 2 4 3 4 4( 2 2 ) ( ) 0a a a b b b v a b        . 

         

Let 2v z , 2 2

1 1 2 12d a a b   , 2 2

2 2 4 1 3 1 3 22 2 2 ,d a a a a bb b       
 

2 2

3 3 2 4 2 4 32 2d a a a b b b   
 
and 2 2

4 4 4d a b  , we get  

 

(5.8)   4 3 2

1 2 3 4 0z d z d z d z d     .            
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The following results on the distribution of roots of equation (5.8) are 

denoted as,  

 

2

1 2 1

1 3

2 16
m d d  , 3

1 1 1 2 3

1 1

32 8
n d d d d   , 

 
3 3

1 1

2 2

n m   
     

   
, 

1 3

2

i


 
 , 

 

1 13 3
1

2 2

n n
y         , 

 

21 13 3
2

2 2

n n
y          , 

 

2 1 13 3
3

2 2

n n
y          , 

 

13

4
i i

d
z y  , i = 1, 2, 3. 

Lemma 5.1: For the polynomial equation (5.8) 

(i) If 4 0d  , then equation (5.8) has at least one positive real root, thus the 

equilibrium is unstable. 

(ii) If 4 0d   and 0  , then equation (5.8) has positive  roots if and only if 

1 0z   and 1( ) 0H z  . 

(iii) If 4 0d   and 0  , then equation (5.8) has positive  roots if and only 

if there exists at least one   *

1 2 3, ,z z z z  such that * 0z  and 
*( ) 0H z  , where 4 3 2

1 2 3 4( )H z z d z d z d z d     . 

Let )()(  ivu  be the eigenvalue of equation (5.2) such that )(u = 0, 

)(v = 0. From equations (5.5) and (5.6), we get the corresponding k  > 0 

such that the characteristic equation (5.2) has a pair of imaginary roots, 
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(5.9)   

6 4

2 1 1 0 1 3 1 3 2 2 4 0

2
1 3 3 2 4 2 4 0 4 4

2 6 2 4 2 2

0 1 0 2 1 3 0 3 2 4 0 0

2

4

( ) ( )

( )1 2
cos

( 2 ) ( 2 )
k

b a b v a b b a b a b v

a b a b b a v a b k

v b v b b b v b b b v v

b


 

     
 
    

 
    
 
  

. 

                

Here, k  =  0,1, 2, ….. and we have the following transversality condition, 

 

(5.10)   
(Re( ))

0

k

d

d  



 

 . 

          

Thus, Hopf  bifurcation occurs at k  and the endemic equilibrium E
*
 is 

asymptotically stable when k  , 

1. The endemic equilibrium E
*
 is asymptotically stable for ),0[ k  . 

2. There exists k  satisfying 0
))(Re(


 k

d

d




.This signifies that 

there exists at least one eigenvalue with positive real part for k  . 

The endemic equilibrium E
*
 of system undergoes a Hopf bifurcation as 

 passes through k . 

 

6. Numerical Simulation  

 

 To see the dynamical behavior of the model system, the system (2.5) - 

(2.8) is integrated numerically by fourth order Runge - Kutta method using 

the following set of parameters values,  

 

0Q  = 2000,  d = 0.02,  α = 1, 0c  = 5,  0  = 0.32, 1 = 0.22, 
 

1c = 4, 2c  = 3,  2  = 0.12,   μ = 0.1,   1k  = 0.5,  2k  = 0.7, 

 

with initial values N(0) = 10000, I(0) = 2000, J(0) = 1000 and A(0) = 200.  

The equilibrium values of different variables are computed as,  

 

  N
*
 = 10816, I

* 
= 4262, J

*
 = 2599 and A

*
 = 1784. 

 

The eigenvalues corresponding to endemic equilibrium  E* are obtained as, 
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-0.6443596291 0.3655557399i,  -0.3692482209,  -1.202314984. 

 

Since all the eigenvalues are either negative or have negative real parts, the 

endemic equilibrium E* is locally asymptotically stable. 

 The computer simulations are performed for different initial starts and 

results are displayed in the Figs. 2-3. We see from these figures that for any 

initial start, the solution trajectories tend to the endemic equilibrium E
*
 

showing that the equilibrium E
*
 is globally asymptotically stable. In figs. 

(4) - (6), the variation of asymptomatic infectives, symptomatic infectives 

and AIDS population, respectively has been shown with time t for different 

delay periods  , which represents the time period from the start of 

treatment in the symptomatic stage until the treatment effects become 

visible to join the asymptomatic class.  It is observed that as delay period 

increases, the population of asymptomatic infectives decreases (fig.4). This 

decrease in the population of asymptomatic infectives results to increase 

the population of symptomatic infectives and hence the disease remain 

endemic in the population (fig.5). As a consequence of increased 

population of symptomatic infectives, the AIDS population also increases 

(fig.6). These populations, however,  reach their steady states as time 

increases. It is also noted from these figures that time delay produces 

oscillations in the beginning which increases its amplitude with increase in 

delay period  .  
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Figure 2. Global stability in I - J - A plane for 0  



              

                     Mathematical Modeling and Analysis of an HIV/AIDS Model…                 283 

  

0

5000

10000

15000

0

5000

10000
0

2000

4000

6000

N(t)I(t)

J
(t

)

 
 

Figure 3.  Global stability in N - I - J plane for 0  

 

 

 
 

Figure 4. Variation of asymptomatic infectives  with time for  

different values of  . 
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Figure 5. Variation of symptomatic infectives with time for 

different values of  . 

 

 
 

Figure 6. Variation of AIDS population with time for different values of  . 

 

7. Conclusions 

 

In this paper, a nonlinear mathematical model has been proposed and 

analyzed to study the effect of treatment and time delay on the spread of 

HIV/AIDS in a population with variable size structure. In the modeling 

process. the total population is divided into four subclasses namely 

susceptibles, asymptomatic infectives, symptomatic infectives and AIDS 
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population. The delay incorporated in the model represents the time from 

the start of treatment in the symptomatic stage until the treatment effects 

become visible. The model has been analyzed qualitatively using stability 

theory of differential equations and computer simulations. The model 

exhibits two equilibria namely, the disease-free and the endemic 

equilibrium. The local and global stability results of these equilibria have 

been established. Analysis of the model shows that with increase in the 

treatment rate of symptomatic infectives, its population decreases which 

results to increase the population of asymptomatic infectives. The decline 

in the symptomatic infectives population, as a result of treatment, 

ultimately decreases the AIDS population. It is observed that as delay 

period increases, the population of asymptomatic infectives decreases 

which makes the population of symptomatic infectives to increase and as a 

consequence the AIDS population also increases. It is noted that delay 

makes the system unstable. As time delay increases, the amplitude of 

oscillations increases while in absence of delay the model system 

approaches to steady state without  oscillations.  
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