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Abstract: The thermal stability of an incompressible, electrically 

conducting non-Newtonian ferromagnetic fluid saturated horizontal 

porous layer heated from below subjected to a magnetic field is 

investigated. The rheology of the ferromagnetic fluid is described by 

Walter’s (model B ) for calculating the shear stresses from the 

velocity gradients. The Darcy law for the non-Newtonian ferromagnetic 

fluid of the Walter’s (model B ) type is used to model the momentum 

equations. The boundaries are considered to be stress-free. The 

employed model incorporates the effects of buoyancy magnetization, 

kinematic viscoelasticity, medium porosity and medium permeability. 

The linear theory   and normal mode technique are used to reduce the 

coupled non-linear partial differential equations to linear differential 

equations and the eigenvalue problem is solved analytically by using 
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trial functions satisfying the boundary conditions in the Galerkin 

Weighted Residuals method. The criteria for both stationary and 

oscillatory modes are also derived analytically. Numerical results are 

computed using the software MATHEMATICA version 5.2 and 

presented graphically. It is observed that the magnetic field and 

buoyancy magnetization stabilize, whereas the medium permeability 

and medium porosity destabilize the physical system for both the cases 

of stationary and oscillatory motions. It is also found that oscillatory 

modes are not allowed in the absence of magnetic field and 

viscoelasticity implying thereby that principle of exchange of stabilities 

is valid.  

Keywords Linear theory, Normal mode technique, Galerkin Weighted 

Residual method, Buoyancy magnetization, Exact solutions, Walter’s 

(model B ). 

 

1. Introduction 

 

       Ferromagnetic fluid are magnetic fluids formed by a stable colloidal 

suspension of magnetic nanoparticles suspended in a carrier fluid usually 

organic solvent such as kerosene, heptane or water. These fluids deal with 

the mechanics of fluids motions influenced by strong forces of magnetic 

polarization. In the absence of an externally applied field ferrofluids does 

not retain its magnetization(Albrecht1 )and thus are often other classification 

as “Super paramagnets” rather than ferromagnets. In the recent years, the 

investigators on Ferrofluids has attracted researchers due to their 

applications in various fields like medical sciences, instrumentation, vacuum 

technology, oscillation damping, cooling of loudspeakers and high- speed 

silent printers etc.Convection instability of a ferromagnetic fluid for a fluid 

layer heated from below in the presence of uniform vertical ferromagnetic 

fluid has been considered by Finlayson2. He explained the concept of 

thermomechanical interaction in ferromagnetic fluids. Thermoconvective 

stability of ferromagnetic fluids without considering buoyancy effects has 

been investigated by Lalas and Carmi3, whereas Shliomis4 analyzed the 

linearized relation for magnetized perturbed quantities at the limit of 

instability. 

       The B e  nard convection in ferromagnetic fluid has been considered by 

many researchers(Siddheswar 5, 6, Venkatasubramaniam7 Aggarwal8, Sunil et 

al.9). The medium has been considered to be non- porous in all the above 

studies. There has been a lot of interest, in recent years, in the study of the 

breakdown of the stability of a fluid layer subjected to a vertical temperature 

gradient in a porous medium and the possibility of the convection flow. The 

original work on the stability of flow of a fluid through a porous medium 
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using Darcy law was studied by Lapwood10 and then by Wooding11.Many 

researchers (Lee et al.12, Borglin et al13 Qin and Chadam14 etc.) have 

investigated the onset of convection in ferromagnetic fluid saturating porous 

media due to its wide range of applications in oil reservoir modelling, 

petroleum industry, geothermal energy system, biological propulsion, solar 

collectors etc. The magnetic field, on the onset of convection has vast 

applications in physics and engineering. Practical cases of magnetic field are 

magneto- hydrodynamic generators, magnetic field sensor, magnetic storage 

media, cooling electronic devices, thermal insulators etc. Stileset at.15 

investigated the thermoconvective instability of a ferrofluid in a strong 

magnetic field and they found reduction in critical temperature gradient. 

Odenbach and Thurm16 studied experimentally the  magnetoviscous effects 

in ferrofluid and they investigated that the upper fraction containing only a 

negligible amount of large particles shows weak magneto viscous effect; 

whereas the lower fraction react noticeable on increasing magnetic field 

strength. They further found using rheumatically investigation that the 

application of an oscillatory mode gives direct access information about 

viscoelastic information. 

       With the growing importance of non-Newtonian fluids in modern 

technology and industries, the investigation of such fluids is desirable. There 

are many viscoelastic fluids that cannot be characterized by Maxwell’s or 

Oldroyd’s constitutive relations. Others classes of viscoelastic fluids are 

Rivlin- Ericksen and Walters’ (model B ) fluids, Walters17 reported that 

mixture of polymethyl methacrylate and pyridine at 25 
o
C containing 30.5 g 

of polymer per liter with density 0.98g per litre behaves very nearly as the 

Walters’ (model B ) fluid. This types of viscoelastic fluid forms the basis for 

the manufacture of many important polymers and useful products in the 

manufacture of parts of space–crafts, aeroplanes, agriculture, 

communication and engineering appliances and in biomedical appliances. 

       Motivated by the various application mentioned above, an attempt has 

been made to study the thermal stability of a layer of ferromagnetic 

viscoelastic fluid heated from below saturating a porous medium in the 

presence of a horizontal magnetic field for stress free bounding surfaces. 

The rheology of the ferrofluids is described by the Walters’ (model B ), 

which is an extension of the work on ferroconvective instability of fluidsby 

Vaidyanathan and Sekar18. In which they have shown the stability non- 

existence of oscillatory modes. The Galerkin-type weighted residuals 

method is used. We examine analytically the stability of the various non- 

dimensional parameters. It is observed that oscillatory modes occur due to 
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the presence of a magnetic field, magnetization, medium permeability and 

medium porosity. 

 

2. Nomenclature and Greek Symbols 

 

a   dimensionless wave number, [-], d   depth of layer,[m], 

 e  charge of an electron,[C], E   Ratio of heat capacity,  

F  dimensionless viscoelastic number,[-], g  acceleration due to 

gravity,[ms
-2

], h   perturbation in magnetic field H,[G],  

fH   magnetic field vector, [G], K   Stokes’ drag coefficient, [kgs
-1

], 

 k   wave number, [m
-1

], 1k   medium permeability,[m
2
],  

fM = Magnetization, 
'N = electron number density,[m

-3
],  

N = growth rate, [s
-1

], 1P = dimensionless medium permeability,[-],  

 fp = fluid pressure,[Pa],  1p =Prandtl number, [-], 

2p =magnetic Prandtl number,[-], Q = dimensionless Chandrasekhar 

number, [-], 

fq =filter velocity, [ms
-1

], fR = dimensionless thermal Rayleighnumber,[-], 

T = temperature,[K], f   coefficient of thermal expansion,[K
-1

], 

 f   uniform temperature gradient, [K m
-1

], f   electrical resistivity, [m
2
 

s
-1

],    medium porosity , [-], perturbation in temperature,[K],  

f   thermal diffusivity, [m
2
 s

-1
],    dynamic viscosity,[kg m

-1
 s

-1
], 

 e   magnetic permeability, [H m
-1

],    kinematic viscosity, [m
2
 s

-1
], 

    kinematic viscoelasticity, [m
2
 s

-1
], f  . density, [kg m

-1
] 

 

3. Theoretical Model 

 

       An infinite, incompressible, electrically non-conducting thin horizontal 

layer of Walters’(model B )viscoelastic ferromagnetic fluid, bounded by the 

planes z  0  and z  d  saturating in a porous medium is heated from 

below so that a uniform temperature gradient 
dT

dz
f
 
 
 

is maintained. 
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  Hmf = (H, 0, 0)

Incompressible Viscoelastic 
Ferrofluid in a porous mediumZ

X

Ρ0T0

T1 Ρ1

Z = 0

Z = d

 

g(0, 0, -g) 

 
 

 

 

The fluid layer is assumed to be flowing through an isotropic and 

homogeneous porous medium of porosity   and medium permeability 1k . 

The temperature T at the bottom and top surfaces are 0T  and   1T  

respectively. The both bounding surfaces are assumed to be free. The 

thermo physical properties of viscoelastic ferrofluilds (viscosity, 

viscoelasticity, density, thermal conductivity and specific heat) are as 

constant for the analytical formulation. A uniform horizontal magnetic field 

 ,0,0fH H perpendicular to z-axis and gravity force  0,  0,  gg   pervade 

the physical system.  The mathematical equations of continuity, momentum 

and energy for viscoelastic ferromagnetic fluids through porous medium, 

using Boussinesq approximation  relevant to the problimare  
 

(3.1)              . 0,fq   

 

(3.2)               *
0 0

1 1 1
. 1

f

f f f

q
q q p g

t



   

   
         

    

 

 

                       *
0 1 0

. 1
,

4

f f e
f f f

M H
q H H

k t


 

 

  
      

 
 

 

(3.3)                 2

*
. ,f f

T
E q T k T

t


   


 

Figure 1. Geometrical configuration 
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The magnetic permeability ,e  the kinematic viscosity v  and the thermal 

diffusivity fk  are all assumed to be constants and  1 s s

i i

c
E

c


 



 
    

 
where  

s , sC and ,i iC  are density and specific heat of solid (porous matrix) 

material and fluid.  

The density equation of state is given as  
 

(3.4)              0 01 ,f f T T        

 

The magnetic induction and Gauss divergence equations are given as 
 

(3.5)               2

*
., 0f f

f

f f f

H
Hq H

t
H   


   


 .  

    

The equation of state specifying fM  by two thermodynamic variables only 

( fH and T ), is necessary to complete the system. In the present case, it is 

assumed that the magnetization is independent of the magnetic field 

intensity so that  f fM M T  only. As a first approximation, it is assumed 

that 
 

(3.6)               0 01f fM M T T       

 

where f  is the pyromagnetic coefficient and is defined by 

  

                    

a

f

TT

M


 

 

  


. 

 

The primary flow representing the basic state is assumed to be quiescent (no 

setting of suspended magnetic nanoparticles) . Initially, no motions are 

present in the ferrofluid flow and time – independent solutions of equations 

(3.1)-(3.5) are taken. Therefore , the basic state satisfying equations (3.1)- 

(3.5) is given by  
  

                       0,0,0 0, ,b ff bq q p p z    

 

                     bT T z      0 0 , 1  ., f bf f bT z Mz M zz            
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To study the stability of the system, infinitesimal perturbations onto basic 

state, which are of the forms  
 

(3.7)              

*

*

*

*

* *

0 , ,

, ,

, ,

b

f b f b

f b

f

b

f

f

T T Tq q

M

p p p

H H h M M

  






   

   

  

 

 

 

where * * * * *, , , , ( , , )x y zp M T h h h h and * ( , , )fq u v w  denote the perturbations in 

density f , pressure fp , magnetization fM , temperatureT , magnetic field 

( ,0,0)f HH and filter velocity fq  (zero initially), respectively which are 

superimposed into the basic state. The change in magnetization *M  and 

density *  caused by the perturbations *T and f  in temperature and 

concentration, is given by 
 

(3.8)              * * * *
0 0, .f fM M T T              

  

Using the equation (3.7) in the equations (3.1)-(3.6), as we obtain 
 

(3.9)              * *

0 0

*

*

*

0.1 1 ff f

f

q H
g

M
T T

t
p



  


 
    


 

 

                       *

*
1 0

*1
,

4

e
f fq H

k t
h


 



 
     

 
 

 

(3.10)             *. 0,fq   

  

(3.11)             2
*

*
,fE w k T

t

T



  


 

       

(3.12)               * 2

*

*
*. ,ff f

h
H q

t
h 


  


 

         

(3.13)             *. 0h  .        

  

Cartesian form of above equation (3.9), (3.10), (3.12) and (3.13) becomes  
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(3.14)              *

*
0

0 *

*
0 1

.1 1 1
,

ff M
T

Hu
p u

x kt t


 

  

   
     

  
 

 

(3.15)              
0 **

* *
0 0 1

.1 1 1ff HM
T

v
p v

y kt t


 

  

   
     

  
 

 

                              
0

,
4

e f

y x

H
h h

x y





  
  

  
 

 

(3.16)              
0* *

*
0 0

*
.1 1 f

f

f M Hw
p g T

zt
T




  

 
   


 

 

                              
*

1 0

1
,

4

e f

z x

H
w h h

k x zt


 



     
      

    
 

 

(3.17)              0,
u v w

x y z

  
  

  
 

 

(3.18)              2

*
. ,x

f f x

h
H u h

xt
 
  

   
  

 

 

(3.19)              2

*
. ,

y

f f y

h
H v h

xt
 
  

   
  

 

 

(3.20)              2

*
. ,z

f f z

h
H w h

xt
 
  

   
  

 

 

(3.21)              0.
yx z

hh h

x y z

 
  

  
 

 

 Operating equation (3.9) by 
x




 equation (3.10) by

y




 and then adding, we 

get 

(3.21)              
2 2

*

* * 2 2
1 0

1 1 1u v
p

k x yt t x y
 

 

         
         

          
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2 2

2
0

*

0

0 .
,

4

f e f

y x

f H H
h h

x y

M

x y
T

y

 

 

      
     

       
 

which upon using equation (3.17) and then operating by
z




 yields 

 

(3.23)              
2 2 2

*

* * 2 2 2
1 0

1 1 1w
p

k zt t z x y
 

 

          
         

         
 

 

                      
2 2

0

2

*

0 0

.
,

4

e ff f

y x

H H
h h

z x y z x y y

M
T

 

 

        
     
         

 

 

Operating equation (3.16) by
2 2

2 2x y

  
 

  
, we have 

(3.24)              
2 2 2 2

*

* * 2 2 2 2
1 0

1 1 1
w p

k zt t x y x y
 

 

           
          

          
 

 

                      
2 2 2 2

*

2 2 2

*

2
0

0 . f

f

f M

y y
T

H
g T

x x






      
      

      
 

 

                      
2 2

2 2
0

,
4

e f

z x

H
h h

x zx y





     
    

     
 

 

Adding equation (9.5) and (9.6), we obtain 
 

(3.25)              
2 2

2

* * 2 2
1

1 1
w

kt t x y
 



      
       

       
 

  

                      
0 * 2

0 0

.
,

4

f e f z
f

f H H h
g

x

M
T

 


 

   
         

 

Operating equation (3.14) and (3.15) by 
y




  and 

x




respectively and 

algebraic simplification, one obtain 
 

(3.26)              
* *

1 0

1 1
,

4

e fH

k xt t

 
  

 

      
      

     
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where 
v u

x y


 
 
 

 is the z-component of vorticity,
y x

h h

x y


 
 
 

 is the z-

component of current density.  

Operating equation (3.18) and (3.19) by-
y




  and 

x




 respectively and using 

equation (3.21), we get  
 

(3.27)              2

*

f

f

H

xt


 



    
     

   
 

 

z- component of equation (3.20) is 
 

(3.28)              2

*

f

f z

H w
h

xt




    
     

   
 

4. Normal Mode Analysis 

 

      Analyzing the disturbances into normal modes, the perturbation 

quantities are assumed to be of the form 
 

(4.1)                         *, , , , , , , ,zw T h W z z X z Z z K z       
 

 

                        *exp ,x yik x ik y n t       

where xk  and yk  are wave numbers along x-and y-directions, 

respectively,  
1

2 2 2
x yk k k

 
  
  

 is the resultant wave number of the disturbance 

and *n  is the growth rate (in general, a complex constant). For functions 

with this dependence on ,x y  and t ,
2 2

2

2 2
k

x y

  
   

  
and 

2
2 2

2
k

z

 
   

 
 

Using the expression (4.1) in the equations (3.26),  (3.27), (3.27), (3.28) and 

(3.13) in which we already eliminating horizontal component of filter 

velocity, magnetic field and pressure p    in non-dimensional form as 

 

(4.2)                 
2 2

02 2

1 0

1 f f

f

a d M H
F D a W g

P

 


   

  
          

   

 

                                                                
2

2 2

0

,
4

x eik Hd
D a K



 
   
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(4.3)                
2

1 0

1
,

4

x eik Hd
F Z X

P




  

 
   

 
 

 

(4.4)                 
2

2 2
2 ,xik Hd

D a p K W


     

 

(4.5)                 
2

2 2
2 ,xik Hd

D a p X Z


     

 

(4.6)                 
2

2 2
1 .

d
D a Ep W





      

where
2

, cos , ,x

nd d
a kd k k D

dz
 


     and the non-dimensional 

parameters are 1p



   is the  thermal Prandtl number, 2p




  is the 

magnetic Prandtl number, 1
1 2

k
P

d
  is the dimensionless medium permeability 

and 
1

F
k

 
   is non – dimension viscoelastic parameter. 

Operating equation (4.2) by  2 2
1D a Ep   and using equation (4.6), one 

gets  

(4.7)                  2 2 2 2 2
1

1

1
fF D a D a Ep R a W

P


 



  
       

   

 

 

                         
2

2 2 2 2
1

0

0
4

x eik Hd
D a D a Ep K




 
     , 

Eliminating Z from equation (4.3) and (4.5), we get 
 

(4.8)                 
2 2

2 2
2

1

1
0xk d Q

F D a p X
P


 

 

  
       

   

. 

 

The appropriate boundary conditions for both bounding surfaces stress- free; 

using expression (4.1) in non- dimensional form transform to 
 

(4.9)            2 20, 0, 0, 0, 0W D W X DX D Z K        at 0z  and 1z  . 
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5. Method of Solution 

 

       The  Galerkin weighted residuals method is used to obtain an 

approximate solution to the W , X  and K of equations with the 

corresponding boundary conditions (4.9). In this method, the weighted 

functions are the same as the trial functions. Accordingly, the base functions 

W , X  and K are taking in the following way   
  

(5.1)                
1 1

,
N N

q q q q

q q

W A W X B X
 

    and 
1

N

q q

q

K C K


 ,        

               

where      2 3 1 2 3 12 ,   2 , .q q q q q q q q
q q qW z z z X z z z K z z              

The trial solutions satisfying the dimensionless boundary conditions qA , qB  

and qC   are unknown coefficients, and q = 1,2,3,4,…..N. Using the 

expressions for W , X  and K  from (5.1) in equations (4.4), (4.7) and (4.8) 

for a first approximation i.e., N = 1 and multiplying the first and third 

equation by qK  and second by qW   and then integrating in the limits from 

zero to unity, we obtain following a set of linear homogeneous equations. 

This set of equations admit non-trivial solution only if its determinant is 

equal to zero. Therefore, it equating the determinant is equal to zero gives 

rise to the characteristic equation of the system in terms of the Rayleigh 

number for ferromagnetic fluid  

4
0

0

.f f

f

f

M H d
R g

  

  

  
   
    

 as follows 

 

(5.2)          
1

1
2 2 2

11 3 11 228 1 co51 s 868fR L P F L a P QL a P L  


         , 

 

where 4 2
3 1 117 168(10 ) (336 17 ),L a Ep a Ep       

2 4 2
1 2 2 1 1(10 ), 3024 31 306 (612 31 ),L a p L a Ep a Ep           

 

It is observed from expression (5.2) that fR  is function of the non- 

dimensional parameters, 
2 2

04

e

f

H d
Q



 

 
 
 
 

is the Chandrasekhar number 

accounting for magnetic field, 1 2 1, ,p p P and F . 
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6. Mathematical Analysis 

 

(a) Stationary Convection: When the instability sets in as stationary 

convection, the marginal state is characterized by putting 0  in 

eq.(5.2),which yields the Rayleigh number for the stationary convection 

f

sR as 

(6.1)                

 

 
 

1

2 4

4

6

2 2 2

2 2
1

28 30240 9144 922 31

5 1680 336 17 cos

868 10

1

f

s

a a a

a

a
R

a

Pa Q

P

a 











  
 
 






 .  

  

The critical cell size at the onset of instability is obtained from the condition 

  2 2

2 0
f

ca

s

a
d aR d


 , which gives a very complicated equation in 2

ca . 

Therefore, the critical values of the wave number 2
ca  and the corresponding 

critical Rayleigh number 
fc

sR  are obtained numerically using Mathematica 

5.2. It is noteworthy from expression (6.1) that the thermal Rayleigh number 

is independent for stationary convection viscoelastic parameter due to 

vanishing of  . Thus the viscoelastic ferrofluid behaves like a regular 

(Newtonian) Ferrofluid. In order to investigate the effects of magnetic field, 

medium permeability and medium porosity, we examine   analytically the 

behavior of 
1

,

s s
f fdR dR

dQ dP
and 

s
fdR

d
. 

Eq. (6.1) gives  

(6.2)                
1

2 4

2 2
1

(3024 612 31 )
,

31

s
fdR a a

dP a P

  
  

 

(6.3)                
2 4 2

2

51(1680 336 17 )
,

868 (10 )

s
fdR a a cos

dQ a

 



 

 

(6.4)                
2 4 2

2 2

51(1680 336 17 )
.

868 (10 )

s
fdR a a Qcos

d a 

 
 


 

         

It is observed from eqs. (6.2) and (6.4) that the medium permeability and 

medium porosity has always a destabilizing effect for all values of the wave 
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numbers. Eq.(6.3) depicts that magnetic field has a stabilizing effect on the 

stationary modes for all wave numbers.  

In order to investigate the analytical effect of magnetization, s
fR  is replaced 

by 
4

s
fR


 in equation (6.1), which yields  

(6.5)                

 

 
 

1

2 4

4

6

2 2 2

2 2
1

28 30240 9144 922 31

5 1680 336 17 cos

868 10

1
s
f

a a a

a
R

a a

Pa Q

P

a 











  
 
 






    

                           
4

0

0

1
f f

f

M H

g





 






  

To see the effect of magnetization, we examine analytically the behavior 

of
0

s
fdR

dM
. Equation (6.2) gives 

(6.6)               

 

 

  
1

4

2 4 6

4
0

2 2 2

2 2
0

2

0 01

1680

28 30240 9144 92

336 17 cos

8

2 31

5

8

1

6 10

f f f

f f

s

f

f
adR

d

a a a
H g

a a P Q

M H gM a P a


   

  





   
 
 
 


 

 



 

  

which shows that magnetization parameter has always stabilizing effect on 

the system. 

(b) Oscillatory motion: Here we examine the possibility of oscillatory 

modes, if any, on stability problem due to the presence of viscoelasticity 

parameters F. Equating the imaginary parts of equation (5.2) by 

putting ii  ,we obtain 

 

(6.7)               2 2 2 2 2 2
3 1 2 3 2[( 28 (10 ) 51 ) (28 )] 0,i ia a Qa Pb cos a p        

  

It is evident from equation (6.7) that i  may be either zero or non-zero, 

meaning thereby that the modes may be either non-oscillatory or oscillatory. 

In the absence of magnetic prandtl parameter, 2p and viscoelastic parameter, 

F , equation (6.7) reduces to 
 

(6.8)               2 2 2 2
1 23[( 28 (10 ) 51 )] 0,i a a Qa Pb cos       
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which is identical with the earlier result by Vaidhyanathan et al.19. The term 

inside the square bracket of equation (6.8) is positive definite for all a . 

Hence 0i  , which implies that oscillatory modes are not allowed and the 

principle of exchange of stabilities is satisfied for a porous medium in the 

absence of magnetic prandtl parameter and viscoelastic parameter. Thus 

from equation (6.1), it is observed that the oscillatory modes are introduced 

due to the presence of magnetic prandtl parameter and viscoelastic 

parameter, which were non- existent in their absence. 

(c)The case of overstability: Since for overstability, we wish to determine 

the  thermal Rayleigh number for the onset of instability  is determined via a 

state of pure oscillations, it suffices to find conditions for which equation 

(6.7) will admit of solutions with i  real. The pure oscillatory motion of 

increasing amplitude are obtained by putting 0ii    in eq. (5.2), and 

after some algebraic simplification, we have  
 

(6.9)               f r i iR i     ,        

 

where 

(6.10)             

2 2 2 2 2 2 4 2
1 1 2 2 2 2

2 2 2
1 1 3

2 2 2 2 2
1 2

28( (10 ) ( (10 ) ) )

51 ( )cos

868 ((10 ) )
,

i i

i

r
i

a a a p a a a p

Qa P b b

a P a p

 



 



     

 
 

 
  

 

 (6.11)            2 2 2 2 2 2
3 1 22 3[( 28 (10 ) 51 cos ) (28 )] 0.i ia a Qa Pb a p        

 

Since 0i    for oscillatory modes, therefore equation (6.9)  implies that 

0i   which on simplification yields a dispersion relation as  

 

(6.12)             2 2 2 2 2 2
3 2 3 1 228 [28 (10 ) 51 ] 0,ia p a a Qa Pb cos       

 

Also equation (6.12) with OSC
f rR     on simplification gives the thermal 

Rayleigh number for oscillatory modes as  
 

(6.13)             

2 2 2 2 2 2 4 2
1 1 2 2 2 2

2 2 2
1 1 3

2 2 2 2 2
1 2

28( (10 ) ( (10 ) ) )

51 ( )cos

868 ((10 ) )

OSC
f

i i

i

i

a a a p a a a p

Qa P b b
R

a P a p

 









     

 


 
. 

 

where 4 2 2
1 2 1 1 1(3024 31 612 ), ( 1 )(306 31 ),a a a a P F Ep a Ep           
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4 2 2

3 1 1 1

4 2 2 2
1 2 13 1

( 1 )(3024 31 612 ) (306 31 ),

(1680 17 336 )(10 ), (168 17 )

a P F a a Ep a Ep

b a a a b p Ep a Ep

       

     
 

          2 2 4 2
2 1 1 2(10 )(168 17 ) (1680 17 336 ).b a Ep a Ep p a a       

Since i  is real for overstability, the two values of i  must be positive. The 

oscillatory neutral solutions of equation (6.13) are obtained by firstly 

determining the roots of eq. (6.12). For overstability i  is real, at most one 

root must be positive of eq. (6.12) for which the critical thermal Rayleigh 

number for oscillatory modes is obtained for various values of non- 

dimensional wave numbers. 

 

7. Results and Discussions 

 

       Expressions of thermal Rayleigh number for both stationary and 

oscillatory motions are given by equation (6.1) and (6.13), respectively. The 

variation of thermal Rayleigh number with respect to non- dimensional 

wave number has been plotted by using eq.(25) for stationary case and eq. 

(6.13) for overstability case with 150, 1.4,Q P  150, 1.4,Q P  1 7,p   

2 1, 0.5, 2.5p F   , 45 , 10,o
f   0.5, 10f o   , 10,H   where in  the 

experimental values and the fixed permissible values of the dimensionless 

parameters are used to investigate the effects of various parameters o  the 

system numerically. These computations have been carried out by using the 

software Mathematica -5.2.  

Figures 2 and 3 represent the variation of thermal Rayleigh number fR   

versus wavenumber a  for various values of medium permeability parameter  

1P =1.2, 1.4, 1.6. For stationary convection and oscillatory motion 

respectively the Rayleigh number decreases with the increase in the 

parameter 1P  showing thereby the destabilizing effect of the medium 

permeability parameter on the system. 

Figures 4 and 5 display the variation of thermal Rayleigh number fR   

versus wavenumber a  for the stationary convection and the case of 

overstability respectively, for various values of the  magnetic field 

parameter Q =30, 50, 70. It is clear from the Figures 4 and 5 that the 

Rayleigh number increases with the increase in the parameter Q  implying 

thereby the stabilizing effect of the magnetic field parameter on the system. 

The variation of Rayleigh number fR  for the stationary convection and the 

case of overstability corresponding wavenumber a  for different values of 

medium porosity parameter  =0.5, 0.6, 0.7(stationary) and   =0.50, 0.52 
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(overstability) is displaced in the figures 6 and 7. From the figures, it is 

found that the Rayleigh numbers for both the cases decreases with the 

increases in the parameter  ,  showing thereby the destabilizing effect of 

the medium porosity parameter on the system.  

Fig. 8 and 9 depicted that the variation of fR  verses a  for oscillatory and 

non- oscillatory found that stabilizing effect of the magnetization on the 

system. Figure 10 illustrates  the effect of thermal Rayleigh number fR  

(oscillatory) with  wavenumber a  for different values of viscoelastic 

parameter F = 2.5, 2.6.The thermal Rayleigh number decrease with increase 

in the viscoelastic parameter F  depicting the destabilizing effect of the 

viscoelastic parameter on the system. It is clear from the figures 2-10 that 

overstability is the dominant mode of stability (seen in table 1 and 2).   
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Figure 2. The variation of thermal 

Rayleigh number fR  (stationary) versus 

wavenumber a for three different values 

of the medium permeability parameter 

1P  1.2, 1.4, 1.6. 

 

 

Figure 3: The variation of thermal 

Rayleigh number fR (overstability)  

versus wave number a for three 

different values of the medium 

permeability parameter 1P  1.2, 

1.4, 1.6. 
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Figure 4. The variation of thermal 

Rayleigh number fR  (stationary) 

versus wavenumber a   for three 

different values of the magnetic field 

parameter Q  30, 50, 70. 

 

Figure 5: The variation of thermal Rayleigh number 

 (overstability) versus wavenumber a  for three 

different values of the magnetic field parameter  

=30, 50, 70. 
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Figure 5. The variation of thermal 

Rayleigh number fR  (overstability) 

versus wavenumber a   for three 

different values of the magnetic field 

parameter Q  30, 50, 70. 

 

Figure 7: The variation of thermal 

Rayleigh number fR (overstability) 

versus wavenumber a  for two 

different values of the medium  

porosity parameter   0.50, 0.52. 

 

Figure 6: The variation of thermal 

Rayleigh number fR  (stationary) 

versus wavenumber a   for three 

different values of the medium  

porosity parameter   0.5, 0.6, 0.7. 
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Figure 8. The variation of thermal 

Rayleigh number fR  (stationary) 

versus wavenumber a  for three 

different values of the magnetization 

parameter 0M  10, 20, 30. 

 

Figure 9. The variation of thermal 

Rayleigh number fR  (overstability) 

versus wavenumber a   for three 

different values of the magnetization 

parameter 0M  10, 20, 30. 

 

 

Figure 10. The variation of thermal Rayleigh number 

fR  (overstability) versus wavenumber a   for 

different values of the viscoelastic number parameter 

F  2.5, 2.6. 
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8. Conclusions 

 

      In the present paper, the combined effect of medium permeability, 

horizontal magnetic field, medium porosity, viscoelastic number and 

magnetization has been considered on the thermal stability of a 

ferromagnetic fluid. The effect of various parameters such as medium 

permeability, horizontal magnetic field, medium porosity, viscoelastic 

number and magnetization has been investigated analytically as well as 

graphically. The main results from the analysis of the paper are as follows. 

(i)  It is found that magnetic field and magnetization have a stabilizing effect 

whereas medium permeability and medium porosity have a destabilizing 

effect on the stationary modes. The reasons for stabilizing effect of 

magnetic field are accounted by Chandrasekhar20.This is also valid for 

second- order fluids as well. 

(ii) It is found that for overstability convection magnetic field and 

magnetization have a stabilizing effect whereas medium permeability 

and medium porosity as well as viscoelastic number parameter have a 

destabilizing effect on the system. 

(iii) In the absence of magnetic prandtl parameter(and hence magnetic field) 

and viscoelastic parameter oscillatory modes are not allowed and the 

principle of exchange of stabilities is valid for a porous medium. 
 

Table 1.   Rayleigh number with respect to wave number for stationary convection with 

1 1 250, 1.4, 7, 1, 0.5, 0,Q P p p F      45 , 10,o
f   0.5, 10f o   , 10.H   

a  0.5 1 1.5 2 2.5 3 

1 1.2P   847.12 641.532 659.295 731.747 838.095 973.231 

1 1.4P   798.88 627.45 651.516 726.017 833.143 968.519 

1 1.6P   762.257 616.888 645.681 721.72 829.428 964.985 

30Q   596.524 410.267 409.58 449.361 511.771 592.42 

70Q   1001.24 844.632 893.452 1002.67 1154.51 1344.62 

0.6   714.565 536.957 550.709 610.744 699.238 811.811 

0.7   654.34 472.319 478.705 528.406 603.592 699.877 

0 10M   82002 64405.3 66875.6 74522.9 85518.9 99414.7 

0 20M   86661.2 68064.7 70675.3 78757.1 90377.9 105063 

0 30M   91881.7 72165 74932.9 83501.5 95822.3 111392 
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Table 2.   Rayleigh number with respect to wave number for overstablility convection with 

1 1 250, 1.4, 7, 1, 0.5, 2.5Q P p p F      , 45 , 10,o
f   0.5, 10f o   ,

10.H   

A  1 2 3 4 5 6 

1 1.2P 

 

522967 98142.3 74881.2 77436.5 88604 104491 

1 1.4P 

 

105379 68599.5 63994.3 70909.1 83717 100391 

1 1.6P 

 

65587 56115.7 57771.1 66723.4 80405.1 97525.3 

30Q   61558.6 40269.7 37375.4 41038.3 47838.6 56421.6 

70Q   149199 96929.3 90613.1 100780 119596 144360 

0.52 
 

60687 52880 54697 63176.3 75953.2 91755.5 

0 10M 

 

1.08167E7 7.04147E

6 

6.56876E

6 

7.27854E

6 

8.59323E

6 

1.03047

E7 

0 20M 

 

1.14313E7 7.44156E

6 

6.94199E

6 

7.6921E6 9.08148E

6 

1.08902

E7 

0 30M 

 

1.21199E7 7.88984E

6 

7.36018E

6 

8.15548E

6 

9.62856E

6 

1.15462

E7 

2.6F   57340.7 52477 55451.5 64680.5 78156.7 94690.5 
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