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Abstract: There are a wide variety of graph matrix representations, 

among these are the adjacency matrix, incidence matrix, circuit matrix, 

Laplacian matrix and Signless Laplacian matrix. Spectra of Sierpinski 

graph can also be derived by studying eigenvalues. The choice of 

matrix representation clearly has a large effect on the suitability of 

spectrum in a number of pattern recognition tasks. The objective of this 

research are to find possible results using graph matrix representation. 

Keywords: Signless Laplacian matrix, Spectra, Sierpinski Eulerian 

graph, Adjacency Matrix. 

 

1. Introduction 

 

       Graph theory is a branch of mathematics started by Euler as early as 

1736. It took a hundred years before the second important contribution of 

Kirchhoff had been made for the analysis of electrical networks. There are 

many physical systems whose performance of a structure depends on the 

characteristics of its members. On the other hand, if the location of a 

member is changed, the properties of the structure will again be different. 

Therefore, the connectivity (topology) of the structure influences the 

performance of the entire structure. Hence, it is important to represent a 

system so that its topology can clearly be understood. The graph model of a 

system provides a powerful means for this purpose. In this section, basic 

concepts and definitions of graph theory are presented. Since some of the 

readers may be unfamiliar with the theory of graphs, simple examples are 

included to make it easier to understand the main concepts. Some of the uses 

of the theory of graphs in the context of civil engineering are as follows. A 

graph can be a model of a structure, a hydraulic network, a traffic network, a 

transportation system, a construction system or a resource allocation system. 



 

302                                        Ashish Kumar and Mohit James 

 

 

These are only some of such models, and the applications of graph theory 

are much extensive. In this book, the theory of graphs is used as the model 

of a skeletal structure, and it is employed also as a means for transforming 

the connectivity properties of finite element meshes to those of graphs. This 

section will also enable the readers to develop their own ideas and methods 

in the light of the principles of graph theory. Some basics terminology and 

then discuss some important concepts in graph theory with many 

applications of graphs. Types of graph are pseudo graph, multiple graph, 

simple graph. A graph G  consists of sets of vertices V  and a set of edges E  

such that each edges is associated with an unordered pair of vertices then the 

graph is known as undirected graph and if each edges of graph is associated 

with an ordered pair of vertices then the graph is called directed graph or 

digraph. Although graphs are frequently stored in a computer as list of 

vertices and edges, they are pictured as diagrams in the plane in a natural 

way. Vertex set of graph is represented as a set of points in a plane and edge 

is represented by a line segment or an arc (not necessarily straight). 

       Sierpinski’s Triangle is one of the most famous examples of a fractal 

although we should note that Benoit Mandelbrot first used the term fractal in 

1975, almost sixty years after Sierpinski created his famous triangle.  

Sierpinski Gasket graphs are strongly related to the well known fractal 

called the Sierpinski Gasket. Sierpinski Gasket graphs appear in different 

areas of graph theory, topology, probability, pscychology. Sierpinski Gasket 

graphs nS  are the graphs naturally defined by the finite number of iterations. 

       To construct a Sierpinski triangle, first draw an equilateral triangle. 

Determine the midpoints of each side of the triangle. Connect the midpoints 

with straight lines to divide the original triangle into four smaller congruent 

equilateral triangles. Remove the middle triangle and repeat the same 

procedure for each remaining outer three triangles. Continue to repeat this 

entire process. 

       We denote by nS  the Sierpinski triangle obtained at the n
th

 stage of the 

iterative process. 

                                                 
Step 1: 1S            Step 2: 2S                Step 3: 3S       
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The generalised Sierpinski graph, as per the above definition of the 

Sierpinski graphs ).,( knS  The vertex set of ),( knS consists of all n tuples 

of the integers (for every 1and1  kn ) i.e. .},..........3,2,1{)),(( nkknSV   

Two different vertices ),...,,(and),...,,( 2121 nn vvvvuuuu  are adjacent if 

and only if there exists an },....,2,1{ nh such that 
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       In 1736 Euler noticed that the river Pregel flows through the city of 

Konigsberg dividing the city into four land regions of which, two are banks 

and two are islands and the four land regions were connected by 7 bridges. 

From here the existence of graph came out and now a day’s it becomes an 

interesting part of study. Since earlier, Euler came out with the solution in 

terms of graph theory. He acknowledged that it was not possible to walk 

through the seven bridges exactly one time. He abstracted the case of 

Konigsberg by eliminating all unnecessary features. He drew a graphical 

picture consisting of “nodes” that represented the landmasses and the line-

segments representing the bridges that connected those land masses. Euler 

not only proved that it is not possible, but also explained why it is not and 

what should be the characteristic of the graphs, so that its edge could be 

traversed exactly once.  He came out with the then new concept of degree of 

nodes. 

       The Degree of Node can be defined as the number of edges touching a 

given node. Euler proposed that any given graph can be traversed with each 

edge traversed exactly once if and only if it had, zero or exactly two nodes 

with odd degrees. The graph following this condition is called, Eulerian 

circuit or path. Exactly two nodes are, (and must be) starting and end of 

your trip. If it has even nodes than we can easily come and leave the node 

without repeating the edge twice or more. Using this theorem, we can create 

and solve number of problems.   

       Trail that visits every edge of the graph once and only once is called 

Eulerian trail. Starting and ending vertices are different from the one on 

which it began. A graph of this kind is said to be traversable. An Eulerian 

circuit is an Eulerian trail that is a circuit i.e., it begins and ends on the same 

vertex.  A graph is called Eulerian when it contains an Eulerian circuit. A 

digraph in which the in-degree equals the out-degree at each vertex. 
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      The existence of an Euler path in a graph is directly related to the 

degrees of the graph’s vertices. Euler formulated the following theorems of 

which the first two set a sufficient and necessary condition for the existence 

of an Euler circuit or path in a graph respectively. 

      Theorem 1.1: An undirected graph has at least one Euler path if and 

only if it is connected and has two or zero vertices of odd degree. 

       Theorem 1.2: An undirected graph has an Euler circuit if and only if it 

is connected and has zero vertices of odd degree. 

       Figure shown below, graphs indicating the distinct cases examined by 

the preceding theorems. Graph (a) has an Euler circuit, graph (b) has an 

Euler path but not an Euler circuit and graph (c) has neither a circuit nor 

path. 

 

Figure 1.(a) 

 

  

  

a 

b 

c d 

e f 
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Figure 1. (b) 

 

Figure 1.(c) 

 (a) A graph containing an Euler circuit  

     ( )c d f b e c a d b a b c            

(b) Containing an Euler path ( )b a c d g f e       but not Euler circuit. 

(c) A non-Eulerian graph, it does not contain Eulerian circuit since it is not 

connected. 

 

u 

w 

v 

x 

a 

d 

e 

b 

f 

c 

g 

  

v
2
 

v
3
 

v
4
 

v
1
 v

5
 

v
6
 



 

306                                        Ashish Kumar and Mohit James 

 

 

      Proposition 1.1:  Sierpinski’s Gasket has an Euler circuit if and only if 

it is has two  or  zero vertices of odd degree. 

For the case of no odd vertices, the path can begin at any vertex and will end 

there; for the case of two odd vertices, the path must begin at one odd vertex 

and end at the other. Any finite connected graph with two odd vertices is 

traversable. A traversable trail may begin at either odd vertex and will end at 

the other odd vertex. 

 

 
 

       Proposition 1.2: Sierpinski’s Gasket is Eulerian if and only if its 

vertices are all of even degree. 

       Proof: Case 1. (Eulerian as shown in figure): Suppose G be a 

Sierpinski Graph is Eulerian, then G has an Eulerian trail which begins and 

ends at “a”. If traverse along the trail then each and every time traverse a 

vertex having two edges. It is necessary condition that starting and ending 

nodes are same and each and every vertices must contain even degree 

(deg(v)) of vertices.   

Case 2. ( not Eulerian as shown in figure): Suppose G be a Sierpinski 

Graph is not Eulerian, then G has not Eulerian trail which begins at “a1” but 

does not ends at “a1”. If traverse along the trail then each and every time 

traverse a vertex having two odd vertices or even vertices but above figure 

does not satisfy the Eulerian condition. Since each vertex in the middle of 

the trail is associated with three edges (G can not have just one odd vertex). 

Let 2 3 4 6 7, , , ,a a a a a and 8a be odd vertices in the connected graph G(not 

Eulerian). If we connect the vertices in pair 2 8 3 6( , ),( , )a a a a and 4 7(a ,a )  then 
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the not Eulerian graph becomes the Sierpinski Eulerian. Hence all the 

vertices become even after connecting the odd vertices. 

 

 

 

 

 

 

 

 
 

2. Eigenvalues of a Graph 

 

Let A be the adjacency matrix of the graph Γ of order N. Let I be the identity 

matrix of order N, and let λ be a scalar. Then the determinant A I  which 

is an ordinary polynomial in λ of N-th degree with scalar coefficients, is 

called the characteristic polynomial of Γ. The roots of the equation |A−λI| = 

0 are called the eigenvalues of the graph Γ (also of the matrix A). The set of 

eigenvalues is called the spectrum of the graph Γ. The multiplicity of an 

eigenvalue λ is called the algebraic multiplicity of λ. The equation Au u  

is called an eigenvalue equation. A nonzero solution u of the equation is 

called an eigenvector or eigenfunction for the eigenvalue λ. The vector 

space constructed from the set of eigenvectors corresponding to a particular 

eigenvalue λ is called the eigenspace of λ. The dimension of the eigenspace 

of an eigenvalue λ is the geometric multiplicity of λ. For a symmetric 

matrix, the geometric and algebraic multiplicities of an eigenvalue are equal. 

 

3. Laplacian Matrix 

 

       We consider graphs which has no loops or parallel edges, unless stated 

otherwise. Thus a graph ))(),(( GEGVG  , consist of a finite set of vertices, 

),(GV and a set of edges, ),(GE each of whose elements is a pair of distinct 

vertices. Given a graph, one associates a variety of matrices with the graph. 

Some of the important ones will be defined now. Let G  be a graph with 

}.,....,,{)(},,.....,2,1{)( 21 neeeGEnGV  The adjacency matrix )(GA  of G  
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is an nn matrix with its rows and columns indexed by )(GV and with the 

),( ji entry equal to 1 if vertices ji, are adjacent (i.e., joined by an edge) 

0(zero) otherwise. Thus )(GA is a symmetric matrix with its thi  row (or 

column) sum equal to ),(Gdi  which by definition is the degree of the vertex 

i , .,.....,2,1 ni   Let )(GD denote the nn diagonal matrix, thi diagonal 

entry is .,.....,2,1),( niGdi   

 The Laplacian matrix of ,G  denoted by ),(GL is simply the matrix 

).()( GAGD   
 

       There is another way to view the Laplacian matrix. Suppose each edge 

of G  is assigned an orientation, which is arbitrary but fixed. The (vertex-

edge) incidence matrix of ,G denoted by ),(GQ  is the mn  matrix defined 

as follows. The rows and the columns of )(GQ are indexed by )(),( GEGV  

respectively. The )(ofentry),( GQji   is 0(zero) if vertex i edge je  are not 

incident and otherwise it is 1 or -1 according as je originates or terminates 

at i  respectively. 

       A simple verification reveals that the Laplacian matrix )(GL  equals 

,)()( TGQGQ (where T denotes transpose), suggests that the Laplacian might 

depend on the orientation, although it is evident from the definition that the 

Laplacian is independent of the orientation. 

 

4. Signless Laplacian Matrix 

 

      The adjacency matrix )(GA  of G  is an nn matrix with its rows and 

columns indexed by )(GV and with the ),( ji entry equal to 1 if vertices 

ji, are adjacent (i.e., joined by an edge) 0(zero) otherwise. Thus )(GA is a 

symmetric matrix with its thi  row (or column) sum equal to ),(Gdi  

which by definition is the degree of the vertex i , .,.....,2,1 ni   Let 

)(GD denote the nn diagonal matrix, thi diagonal entry is 

.,.....,2,1),( niGdi   

The Signless Laplacian matrix of ,G  denoted by ),(GL is simply the matrix 

).()( GAGD   
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        Theorem 4.1: Let G be a graph on n vertices with vertex degrees 

nddd ,.....,, 21 and largest Q-eigenvalue .1q  Then .max2min2 1 ii dqd   

For a connected graph G, equality holds in either of these in equalities if 

and only if G is regular. 

       Theorem 4.2: Let G be a graph on n vertices with vertex degrees 

nddd ,.....,, 21 and largest Q-eigenvalue .1q Then  
  

                      ),max()min( 1 jiji ddqdd 
 

 

where (i,j) runs over all pairs of adjacent vertices of G. For a connected 

graph G, equality holds in either of these inequalities if and only if G is 

regular or semi-regular bipartite. 

       Proof: The line graph L(G) of G has largest eigenvalue .21 q Consider 

an edge u of G which joins vertices i and j. The vertex u of L(G) has degree 

.2 ji dd Hence, ),2max(2)2min( 1  jiji ddqdd which prov- 

es the theorem. 

       Lemma 4.1: Let )(xp be a given polynomial. If  λ is an eigenvalue of A , 

while x is an associated eigenvector, then )(p  is an eigenvalue of the 

matrix )(Ap and x is an eigenvector of )(Ap associated with p(λ). The 

characteristic polynomial of A is defined by 

)det()( AtItA   

Notes: The roots of the characteristic polynomial A are exactly the 

eigenvalues of A. By the Fundamental Theorem of Algebra we know that 

every polynomial with degree n has exactly n complex roots (counted with 

multiplicities).  

       Lemma 4.2: Let A be a nn matrix with eigenvalues 

.,....,, 21 n Then .)(tr
1





n

i

iA   

       Lemma 4.3: Let A be a symmetric real matrix. Suppose v and w are 

eigenvectors of A associated with the eigenvalues λ and µ respectively. If 

λ µ then v ⊥ w, i.e. v and w are orthogonal. 

       Proposition 4.1: The least eigenvalue of the signless Laplacian of a 

connected graph is equal to 0 if and only if the graph is bipartite. In this 

case 0 is a simple eigenvalue.  
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       Proof: Let ).,......,( 1 n

T xxx  For a non-zero vector x we have Qx=0 if 

and only if .0xRT  The later holds if and only if ji xx  for every edge, 

i.e. if and only if G is bipartite. Since the graph is connected, x is 

determined up to a scalar multiple by the value of its coordinate 

corresponding to any fixed vertex i. 

       Theorem 4.3: (Spectral Theorem) Let A be a n×n symmetric real 

matrix. Then there are n pairwise orthogonal (real) eigenvectors vi of A 

associated with real eigenvalues of A. 

       Consider λ1(A) ≤ ... ≤ λn(A) are eigenvalues of a symmetric matrix A. 

Some of these eigenvalues can be equal; we say that those eigenvalues have 

multiplicity greater than 1. Thus we denote the spectrum of A also in the 

form 
][

2

][

1
21 ,.......,

mm
 , where i  is an eigenvalue with multiplicity mi. 

       Theorem 4.4: (Rayleigh-Ritz) Let A be an n×n real symmetric matrix, 

and let λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of A. Then 

                  
,maxmax

10
Axx

xx

Axx T

xx
T

T

x
n T 

  

                  
.minmin

10
1 Axx

xx

Axx T

xx
T

T

x T 


 

       Definiton 4.1: (Adjacency eigenvalues) The eigenvalues of A(G) are 

called the adjacency eigenvalues of G. The set of all the adjacency 

eigenvalues are called the (adjacency) spectrum of the graph G. 

      Lemma1 4.4: Let G be a graph on n vertices.  

i) The maximum eigenvalue of G lies between the average and the maximum 

degree of G, i.e. . nd   

ii) The range of all the eigenvalues of a graph is   −∆ ≤ λ1 ≤ λ2 ≤ ... ≤ λn ≤ ∆. 

      Proof: i) The Rayleigh quotient for some special vector is greater 

than .d This suffices to get the first inequality, because the maximum of the 

Rayleigh quotient is λn. The other inequality in (i) follows from the second 

point. Set x = (1, 1,..., 1)T. The Rayleigh quotient for this vector equals: 
 

d
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ii) We have to show that the absolute value of every eigenvalue is less than 

or equal to the maximum degree. Let u be an eigenvector corresponding to 

the eigenvalue λ, and let uj denote the entry with the largest absolute value. 

We have  

                

  .
~~

j

ji

jji

ji

ijjj uuduuAuuu  

 
 

Thus we have |λ|≤ ∆ as required. 

       Definiton 4.2: (Laplacian eigenvalues) The eigenvalues of L(G) are 

called the Laplacian eigenvalues. The set of all the Laplacian eigenvalues 

are called the (Laplacian) spectrum of the graph G.  

       Lemma2 4.5: Let G be a graph on n vertices with Laplacian 

eigenvalues λ1 = 0 ≤ λ2 ≤ ... ≤ λn and maximum degree ∆. Then 0 ≤ λi ≤ 2∆ 

and λn ≥ ∆.  

       Proof: All eigenvalues are nonnegative by positive semidefinite 

matrices. Let u be an eigenvector corresponding to the eigenvalue λ, and let 

uj denote the entry with the largest absolute value. We have  
 

                  ~ ~

2 2 .j j j j i j j i j j j

i j i j

u u d u u d u u d u u         
    

 

 

Thus, we have |λ|≤ 2∆ as required. Let j be the vertex with maximal degree, 

i.e. dj = ∆. We define the characteristic vector x:  

 

                 

 


otherwise.,0

; if,1 ji
xi   

 

Now, the desired inequality follows: 
 

                 

 

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 
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5. Result and Discussion 

 

       The Adjacency, Laplacian and Signless laplacian eigenvalues of the 

representation matrices LA, and L  of Siepinski graph and Sierpinski 

Eulerian graph are shown in Fig.. The eigenvalue spectra become more 
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comparable via the proposed notations 2,1   of Sierpinski graph and 

Sierpinski Eulerian respectively.  
 

Table 1. Spectrum of Sierpinski graph 2
nd

 iteration on 3 vertices (i.e. S(2,3)) 

round off to 2 decimal placces 
 

Sr. 

No. 

Adjacency 

matrix 
Laplacian matrix Signless Laplacian Matrix 

1 -2.00 0.00 1.00 

2 -1.53 0.70 1.00 

3 -1.53 0.70 1.00 

4 -0.73 3.00 1.44 

5 -0.35 3.00 2.38 

6 -0.35 3.00 2.38 

7 1.88 4.30 4.62 

8 1.88 4.30 4.62 

9 2.73 5.00 5.56 
 

 

Table 2. Spectrum of Sierpinski graph 3
rd

 iteration on 3 vertices (i.e. S(3,3)) 

 round off to 2 decimal places 
 

Sr. 

No. 
Adjacency matrix Laplacian matrix Signless Laplacian Matrix 

1 -2.00 0.00 1.00 

2 -2.00 0.14 1.00 

3 -2.00 0.14 1.00 

4 -2.00 0.70 1.00 

5 -1.87 0.70 1.00 

6 -1.87 0.70 1.00 

7 -1.47 1.10 1.09 

8 -1.41 1.10 1.30 

9 -1.41 1.38 1.30 

10 -1.00 3.00 1.87 

11 -1.00 3.00 1.87 

12 -0.62 3.00 2.20 

13 -0.46 3.00 2.38 

14 -0.40 3.00 2.38 

15 -0.40 3.00 2.38 
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16 0.00 3.62 3.00 

17 0.00 3.90 3.00 

18 0.00 3.90 3.00 

19 1.62 4.30 4.62 

20 1.76 4.30 4.63 

21 1.76 4.30 4.62 

22 2.00 4.86 4.80 

23 2.17 4.86 5.12 

24 2.17 5.00 5.12 

25 2.75 5.00 5.70 

26 2.75 5.00 5.70 

27 2.93 5.00 5.91 

 

Table 3. Spectrum of Sierpinski Eulerian graph 2
nd

 iteration on 3 vertices  

(i.e. S(2,3))  round off to 2 decimal places 
 

Sr. 

No. 
Adjacency matrix Laplacian matrix Signless Laplacian Matrix 

1 -3.00 0.00 1 

2 -1.41 1.27 1.27 

3 -1.41 1.27 1.27 

4 -0.56 3.00 1.63 

5 0.00 4.00 4.00 

6 0.00 4.00 4.00 

7 1.41 4.73 4.73 

8 1.41 4.73 4.73 

9 3.56 7 4.73 

 

Table 4. Spectrum of Sierpinski Eulerian graph 3
rd

 iteration on 3 vertices 

 (i.e. S(3,3))  round off to 2 decimal places 
 

Sr. 

No. 
Adjacency matrix Laplacian matrix Signless Laplacian Matrix 

1 3.90 0 7.87 

2 3.44 0.33 7.37 

3 -2.84 1.29 5.68 

4 3.49 6.83 7.42 

5 1.93 0.30 4.82 

6 -1.60 1.71 3.89 
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7 -1.18 5.58 2.43 

8 -1.18 3.05 1.14 

9 0.42 4.53 1.43 

10 -0.18 4.53 1.36 

11 1.29 4.14 1.26 

12 -2.73 6.73 1.35 

13 -1.78 1.72 2.40 

14 1.29 5.72 4.83 

15 0.73 3.27 4.73 

16 2.00 4.28 6.00 

17 2.00 7.00 6.00 

18 -3.00 7.00 1.00 

19 -3.00 2.00 1.00 

20 -1.00 2.00 3.00 

21 -1.00 4.00 3.00 

22 -1.00 4.00 4.00 

23 0.00 5.00 4.00 

24 0.00 5.00 4.00 

25 0.00 4.00 4.00 

26 0.00 4.00 4.00 

27 0.00 4.00 4.00 



           Comparison of Spectra Using Matrix Representations for Sierpinski Graphs         315 

 

 

 

 

 

Results: for adjacency matrix of Sierpinski and Sierpinski Eulerian graph 

dataset: (a) eigenvalues λ1 of adjacency matrix of  Sierpinski Graph and (d) 

eigenvalues λ2 of adjacency matrix of Sierpinski Eulerian graph. 

 

a 

 

d 
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Results: for Laplacian matrix of Sierpinski and Sierpinski Eulerian graph 

dataset. (b) eigenvalues λ1 of Laplacian matrix of  Sierpinski Graph and (e) 

eigenvalues λ2 of Laplacian matrix of Sierpinski Eulerian graph. 

 

b 

 

e 
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Results for Signless Laplacian matrix of Sierpinski and Sierpinski Eulerian 

graph dataset:: (c) eigenvalues λ1 of Signless Laplacian matrix of  

Sierpinski Graph and (f) eigenvalues λ2 of Signless Laplacian matrix of 

Sierpinski Eulerian graph. 

      The specific manipulation of graphs i.e. addition of connected 

components which allows us to order the spectra of the graphs observed in 

the above graphs. As above we see that we can obtain Sierpinski Eulerian 

graph from Sierpinski graph by adding an edges between pair of odd degree 

vertices and that we can obtain Sierpinski Eulerian graph by adding the 

 

c 

 

f 
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connected components.  Having in view the above data, in applications the 

Signless Laplacian-spectrum and Laplacian-spectrum is used to encode 

graphs rather than Adjacency-spectrum, i.e. the Signless Laplacian -

spectrum, Laplacian-spectrum has more representational power than the 

Adjacency-spectrum, in terms of resulting of above graphs. The above data 

show that it is even better to use signless Laplacian eigenvalues and 

Laplacian eigenvalues  since they have stronger characterization properties. 

Recently, a spectral theory of graphs based on the signless Laplacian has 

been developed3-5. There are many results in the mathematical literature on 

spectral characterizations of particular classes of graphs. For example, 

complete graphs, paths and circuits are characterized by their A-spectra up 

to an isomorphism. There are also characterizations with some exceptional 

cospectral maps and graphs. However, these results hardly could be applied 

to graphs which appear in applications to computer science, science, 

mathematics and other aspects of NP problems.  This is a strong basis for 

believing that almost all graphs are determined by their spectra when “n” 

tends towards the infinity, as conjectured6,7.  

 

6. Conclusion 

 

      We have compared the spectra of the three graph representation 

matrices: the adjacency matrix A, the Laplacian matrices and the Signless 

Laplacian matrices and found differences in the spectra corresponding to 

generalised Sierpinski graphs. As a result of this work, we hope to have 

increased awareness about the importance of the choice of representation 

matrix for graph signal processing applications and other fields of 

communications1,8. 
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