On \mathbb{R}-Complex Finsler Space with Special (α, β) -Metric

S. M. Vanithalakshmi, S. K. Narasimhamurthy and M. K. Roopa
Department of Mathematics
Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, India.
Email: vanithateju02@gmail.com, nmurthysk@ gmail.com, roopamk1002@ gmail.com

(Received June 24, 2020)

Abstract

In this paper, we determined the fundamental tensor fields $g_{i j}$ and $g_{i \bar{j}}$ and its inverse of these tensor fields, their determinant. Further, we studied some properties of non-Hermitian \mathbb{R}-complex Finsler space with (α, β) - metric.

Keywords: Special (α, β) - metrics, Hermitian and non-Hermitian \mathbb{R} Complex Finsler space. 2010 AMS Subject Classification: 53C25, 53C40, 53D15.

1. Introduction

The concept of \mathbb{R}-complex Finsler spaces is new in Finsler geometry. Munteanu and Purcuru ${ }^{1}$ have extended the notion of complex Finsler spaces to \mathbb{R}-complex Finsler spaces by reducing the scalars to $\lambda \in \mathbb{R}$. The outcome was a new class of Finsler spaces called \mathbb{R}-complex Finsler spaces. Nicolta Aldea and Gheorghe Munteanu ${ }^{2}$ studied the (α, β)-complex Finsler metric and also determined the fundamental metric tensor and some properties of Hermitian of the complex Randers metrics. Some important results on \mathbb{R}-complex Finsler spaces have been obtained by Purcuru, Shankar and Baby ${ }^{3,4}$. In the present paper, following the ideas from real Finsler spaces with class of (α, β)-metrics, we introduce the notion of \mathbb{R}-complex Finsler space with (α, β)-metric.

2. Preliminaries

Let M be a complex Finsler manifold, $\operatorname{dim}_{c} M=n$. The complexified of the real tangent bundle $T_{C} M$ splits into the sum of holomorphic tangent bundle $T M$ and its conjugate $T^{\prime \prime} M$.

The bundle $T^{\prime} M$ is in its turn a complex manifold, the local coordinate in a chart will be denoted by $\left(z^{k}, \eta^{k}\right)$ and these are changed by the rules,

$$
\begin{equation*}
z^{\prime k}=z^{\prime k}(z), \quad \eta^{\prime k}=\frac{\partial z^{k}}{\partial z^{j}} \eta^{j} \tag{2.1}
\end{equation*}
$$

The complexified tangent bundle of $T^{\prime} M$ is decomposed as $T_{C}\left(T^{\prime} M\right)=T^{\prime}\left(T^{\prime} M\right) \oplus T^{\prime \prime} M$. A natural local frame for $T^{\prime}\left(T^{\prime} M\right)$ is $\left\{\frac{\partial}{\partial z^{k}}, \frac{\partial}{\partial \eta^{k}}\right\}$ which is changes by the rules obtained with Jacobi matrix of the above transformations. Note that the change rule of $\frac{\partial}{\partial z^{k}}$ contains thesecond order partial derivatives. Non-linear connection briefly (c.n.c) is a supplementary distribution is spanned by $\frac{\partial}{\partial \eta^{k}}$ an adapted frame in $H\left(T^{\prime} M\right)$ is $\frac{\partial}{\partial z^{k}}=\frac{\partial}{\partial z^{k}}-N_{k}^{j} \frac{\partial}{\partial \eta^{j}}$, where N_{k}^{j} are coefficients of the c.n.c and an adapted frame in the coefficient of the c.n.c and they have a certain rule of changes at the equation (2.1), so that $\frac{\delta}{\delta z^{k}}$ transform like vectors onthe base manifold M. Next, we use the abbreviations $\partial_{k}=\frac{\partial}{\partial z^{k}}, \delta_{k}=\frac{\delta}{\delta z^{k}}$, $\dot{\partial}_{k}=\frac{\partial}{\partial \eta^{k}}$ and $\partial_{k}, \dot{\partial}_{k}, \delta_{k}$ for their conjugates. The dual adapted basis of δ_{k}, $\dot{\partial}_{k}$ are $\left\{d z^{k}, \delta \eta^{k}=d \eta^{k}+N_{k}^{j} d z^{j}\right\}$ and, $\left\{d \bar{z}^{k}, \delta \bar{\eta}^{k}\right\}$ their conjugates.

We recall that the homogeneity of the metric function of a complex Finsler space ${ }^{5.9}$ is with respect to complex scalars and the metric tensor of the space is a Hermitian one. The slightly changed the definition of complex Finsler spaces as

Definition ${ }^{10}$ 2.1: An \mathbb{R}-complex Finsler metric on M is continuous function $F: T^{\prime} M \rightarrow \mathbb{R}$ satisifying
(a) $L=F^{2}$ is a smooth on $T^{\prime} M \backslash\{0\}$;
(b) $F(z, \eta) \geq 0$, the equality holds if and only if $\eta=0$;
(c) $F(z, \lambda \eta, \bar{z}, \lambda \bar{\eta})=|\lambda| F(z, \eta, \bar{z}, \bar{\eta})$ for all $\lambda \in \mathbb{R}$.

It follows that L is (2,0)-homogeneous with respect to the real scalar λ and is proved that the following identities are fulfilled;

$$
\begin{align*}
& \frac{\partial L}{\partial \eta^{i}} \eta^{i}+\frac{\partial L}{\partial \bar{\eta}^{i}} \bar{\eta}^{i}=2 L ; \quad g_{i j} \eta^{i}+g_{\bar{j} i} \bar{\eta}^{i}=\frac{\partial L}{\partial \eta^{j}}, \tag{2.2}\\
& \frac{\partial g_{i k}}{\partial \eta^{j}} \eta^{j}+\frac{\partial g_{i j}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j}=0 ; \quad \frac{\partial g_{i \bar{k}}}{\partial \eta^{j}} \bar{\eta}^{j}+\frac{\partial g_{i \bar{k}}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j}=0, \tag{2.3}
\end{align*}
$$

where

$$
\begin{aligned}
& 2 L=g_{i j} \eta^{i} \eta^{j}+g_{\bar{i} \bar{j}} \bar{\eta}^{i} \bar{\eta}^{j}, \\
& g_{i j}=\frac{\partial^{2} L}{\eta^{i} \eta^{j}} ; g_{\bar{i} \bar{j}}=\frac{\partial^{2} L}{\eta^{i} \bar{\eta}^{j}} ; g_{\bar{i} \bar{j}}=\frac{\partial^{2} L}{\partial \bar{\eta}^{i} \partial \bar{\eta}^{j}} .
\end{aligned}
$$

Definition 2.2: An \mathbb{R}-complex Finsler space (M, F) is called (α, β) metric if the fundamental function $F(z, \eta, \bar{z}, \bar{\eta})$ is \mathbb{R}-homogeneous by means of functions $\alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \eta, \bar{z}, \bar{\eta})$ depends on $z^{i}, \eta^{i}, \bar{z}^{i}$ and $\bar{\eta}^{i}(i=1,2, \ldots . n)$ by means of $\alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \eta, \bar{z}, \bar{\eta})$.

$$
\begin{equation*}
F(z, \eta, \bar{z}, \bar{\eta})=F(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta})) \tag{2.5}
\end{equation*}
$$

where,

$$
\begin{gathered}
\alpha^{2}(z, \eta, \bar{z}, \bar{\eta})=\frac{1}{2}\left(a_{i j} \eta^{i} \eta^{j}+a_{\bar{i} \bar{j}} \eta^{i} \bar{\eta}^{j}+2 a_{i \bar{j}} \eta^{i} \bar{\eta}^{j}\right), \\
=\operatorname{Re}\left\{a_{i j} \eta^{i} \eta^{j}+a_{i \bar{j}} \eta^{i} \bar{\eta}^{j}\right\},
\end{gathered}
$$

$$
\begin{equation*}
\beta(z, \eta, \bar{z}, \bar{\eta})=\frac{1}{2}\left(b_{i} \eta^{i}+b_{i} \bar{\eta}^{i}\right)=\operatorname{Re}\left(b_{i} \eta^{i}\right) \tag{2.6}
\end{equation*}
$$

with

$$
a_{i j}=a_{i j}(z), \quad a_{i \bar{j}}=a_{i \bar{j}}(z), \quad b_{i}=b_{i}(z) .
$$

We denote,

$$
\begin{equation*}
L(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta}))=F^{2}(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta})) . \tag{2.7}
\end{equation*}
$$

Definition 2.3: An \mathbb{R}-complex Finsler space (M, F) is called Hermitian space, if the tensor $g_{i j}=0$ and the Hermitian metric $g_{i \bar{j}}$ is invertible. An \mathbb{R}-complex Finsler space (M, F) is called non-Hermitian space if the metric tensor $g_{i \bar{j}}=0$ and the Hermitian matric $g_{i j}$ is invertible. Here, $g_{i j}$ and $g_{i \bar{j}}$ are the metric tensors of the space and are given by $g_{i j}=\frac{\partial}{\partial \eta^{i}} \frac{\partial}{\partial \eta^{j}} L$ and $g_{i \bar{j}}=\frac{\partial}{\partial \eta^{i}} \frac{\partial}{\partial \bar{\eta}^{j}} L$.

3. \mathbb{R}-Complex Space with Special (α, β)-metrics

Consider $g_{i j}$ and $g_{i \bar{j}}$ are the metric tensors on \mathbb{R}-complex Finsler space. The Hermitian geometry $g_{i \bar{j}}$ invertible. We discussed Hermitian \mathbb{R}-complex Finsler spaces, if $\operatorname{det}\left(g_{i \bar{j}}\right)=0$ and non-Hermitian \mathbb{R} - complex Finsler spaces, if $\operatorname{det}\left(g_{i j}\right)=0$. In this section, we determine the fundamental metric tensor of complex space with Finsler metric that is $L=\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)^{2}$ and obtained condition for property of non-Hermitian \mathbb{R} - complex Finsler spaces.
Consider \mathbb{R}-Complex Finsler space with special (α, β)-metric,

$$
\begin{equation*}
L(\alpha, \beta)=\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)^{2} \tag{3.1}
\end{equation*}
$$

Then, it follows that $F=\alpha+\beta+\frac{\beta^{2}}{\alpha}$.

Now, we find the following quantities on \mathbb{R}-complex Finsler spaces with the metric (3.1).
From the equations (2.2) and (2.3) with metric (3.1), we have

$$
\begin{align*}
& \alpha L_{\alpha}+\beta L_{\beta}=2 L \text { and } \alpha L_{\alpha \alpha}+\beta L_{\beta \beta}=L_{\alpha}, \tag{3.2}\\
& \alpha L_{\alpha \beta}+\beta L_{\beta \beta}=L_{\beta}, \quad \alpha^{2} L_{\alpha \alpha}+2 \alpha \beta L_{\alpha \beta}+\beta^{2} L_{\beta \beta}=2 L,
\end{align*}
$$

where

$$
\begin{equation*}
L_{\alpha}=\frac{\partial L}{\partial \alpha}, L_{\beta}=\frac{\partial L}{\partial \beta}, L_{\alpha \beta}=\frac{\partial^{2} L}{\partial \alpha \partial \beta}, L_{\alpha \alpha}=\frac{\partial^{2} L}{\partial \alpha^{2}}, L_{\beta \beta}=\frac{\partial^{2} L}{\partial \beta^{2}} . \tag{3.3}
\end{equation*}
$$

$$
\begin{align*}
& L_{\alpha}=2\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(1-\frac{\beta^{2}}{\alpha}\right), \tag{3.4}\\
& L_{\beta}=2\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(1+\frac{2 \beta}{\alpha}\right), \tag{3.5}
\end{align*}
$$

$$
\begin{align*}
& L_{\beta}=2\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(1+\frac{2 \beta}{\alpha}\right), \\
& L_{\alpha \alpha}=2\left[\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(\frac{2 \beta^{2}}{\alpha}\right)+\left(1-\frac{\beta^{2}}{\alpha}\right)\left(1-\frac{\beta^{2}}{\alpha}\right)\right], \tag{3.6}\\
& L_{\beta \beta}=2\left[\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(\frac{2}{\alpha}\right)+\left(1+\frac{2 \beta}{\alpha}\right)\left(1+\frac{2 \beta}{\alpha}\right)\right], \tag{3.7}\\
& L_{\alpha \beta}=2\left[\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(\frac{-2 \beta^{2}}{\alpha^{2}}\right)+\left(1+\frac{\beta^{2}}{\alpha^{2}}\right)\left(1-\frac{\beta^{2}}{\alpha}\right)\right], \tag{3.8}\\
& \alpha L_{\alpha}+\beta L_{\beta}=\alpha\left[2\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\right] \\
& \quad+\beta\left[2\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(1+\frac{2 \beta}{\alpha^{2}}\right)\right]=2\left[\alpha+\beta+\frac{\beta^{2}}{\alpha}\right]^{2}=2 L, \\
& \alpha L_{\alpha \alpha}+\beta L_{\alpha \beta}=\alpha\left[2\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(\frac{2 \beta^{2}}{\alpha^{2}}\right)+\left(1-\frac{\beta^{2}}{\alpha}\right)\left(1-\frac{\beta^{2}}{\alpha}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
& +\beta\left[\left(\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)\left(\frac{-2 \beta}{\alpha^{2}}\right)+\left(1+\frac{2 \beta}{\alpha}\right)\left(1-\frac{\beta^{2}}{\alpha^{2}}\right)\right] \\
= & 2\left[\alpha+\beta-\frac{\beta^{3}}{\alpha^{2}}-\frac{\beta^{4}}{\alpha^{3}}\right]=L_{\alpha} .
\end{aligned}
$$

Now, to determine the metric tensors of an \mathbb{R}-complex Finsler space using the following equations as:

$$
g_{i \bar{j}}=\frac{\partial^{2} L(z, \eta, \bar{z}, \lambda \bar{\eta})}{\partial \eta^{i} \partial \eta^{j}}, \quad g_{i \bar{j}}=\frac{\partial^{2} L(z, \eta, \bar{z}, \lambda \bar{\eta})}{\partial \eta^{i} \partial \bar{\eta}^{j}} .
$$

Each of these being of interest in the following:
We consider,

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial \eta^{i}}=\frac{1}{2 \alpha}\left(a_{i j} \eta^{j}+a_{i \bar{j}} \bar{\eta}^{j}\right)=\frac{1}{2 \alpha l_{i}}, \quad \frac{\partial \beta}{\partial \eta^{i}}=\frac{1}{2} b_{i} \\
& \frac{\partial \alpha}{\partial \bar{\eta}^{i}}=\frac{1}{2 \alpha}\left(a_{\bar{i} \bar{j}} \bar{\eta}^{j}+a_{i \bar{j}} \eta^{j}\right)=\frac{\partial \beta}{\partial \bar{\eta}^{i}}=\frac{1}{2} b_{i}
\end{aligned}
$$

where,

$$
l_{i}=\left(a_{i j} \eta^{j}+a_{i \bar{j}} \bar{\eta}^{j}\right), \quad l_{\bar{j}}=a_{\bar{i} \bar{j}}+a_{i \bar{j}} \eta^{i}
$$

We find immediately,

$$
l_{i} \eta^{i}+l_{\bar{j}} \bar{\eta}^{j}=2 \alpha^{2}
$$

We denote:

$$
\eta^{i}=\frac{\partial L}{\partial \eta^{i}}=\frac{\partial}{\partial \eta^{i}} F^{2}=2 F \frac{\partial}{\partial \eta^{i}}\left(\alpha+\frac{\beta^{2}}{\alpha}\right)
$$

$$
\begin{equation*}
\eta_{i}=\rho_{0} l_{i}+\rho_{1} b_{i} \tag{3.9}
\end{equation*}
$$

Where

$$
\begin{equation*}
\rho_{0}=\frac{1}{2} \alpha^{-1} L_{\alpha} \tag{3.10}
\end{equation*}
$$

And
(3.11) $\quad \rho_{1}=\frac{1}{2} L_{\beta}$.

Differentiating ρ_{0} and ρ_{1} with respect to η^{j} and $\bar{\eta}^{j}$ respectively, which yields:

$$
\frac{\partial \rho_{0}}{\partial \eta^{j}}=\rho_{-2} l_{\bar{j}}+\rho_{-1} b_{\bar{j}}
$$

and

$$
\frac{\partial \rho_{0}}{\partial \bar{\eta}^{j}}=\rho_{-2} l_{\bar{j}}+\rho_{-1} b_{\bar{j}}
$$

Similarly

$$
\frac{\partial \rho_{1}}{\rho \eta^{j}}=\eta_{-1} l_{i}+\mu_{0}, \quad \frac{\partial \rho_{1}}{\partial \eta^{j}} l_{\bar{i}}+\mu_{0} b_{\bar{i}}
$$

where,

$$
\begin{equation*}
\rho_{-2}=\frac{\alpha L_{\alpha \alpha}-L_{\alpha}}{4 \alpha^{3}}, \rho_{-1}=\frac{L_{\alpha \beta}}{4 \alpha}, \mu_{0}=\frac{L_{\beta \beta}}{4} . \tag{3.12}
\end{equation*}
$$

By direct computation, using equation (3.10),(3.11) and equation (3.12), we obtain the following result.

Theorem 3.1: The invariants of \mathbb{R}-complex Finsler space with (α, β)-metric $F=\alpha+\beta+\frac{\beta^{2}}{\alpha}$, the quantities $\rho_{0}, \rho_{1}, \rho_{2}, \rho_{-1}$ and μ_{0} are given by;

$$
\rho_{0}=\frac{\alpha^{4}-\beta^{4}+\alpha \beta\left(\alpha^{2}-\beta^{2}\right)}{\alpha^{4}}
$$

$$
\begin{aligned}
& \rho_{1}=\alpha+3 \beta+\frac{\beta^{2}}{\alpha}\left(3+\frac{2 \beta}{\alpha}\right) \\
& \rho_{-2}=\frac{\alpha^{4}+\beta^{4}-2 \alpha^{2} \beta^{2}\left(\alpha^{2}+2 \beta+2 \beta^{2}\right)}{4 \alpha^{7}} \\
& \rho_{-1}=\frac{\alpha^{3}-2 \beta^{3}-\alpha \beta^{2}(3-2 \beta)}{2 \alpha^{4}}
\end{aligned}
$$

and

$$
\mu_{0}=\frac{3\left(\alpha^{2}+2 \beta^{2}+2 \alpha \beta\right)}{2 \alpha^{2}}
$$

subscripts -2,-1,0,1 gives the degree of homogeneity of these invariants.

3.1 Fundamental tensor of \mathbb{R}-Complex Finsler space with metric:

 Consider the \mathbb{R}-complex Finsler space with special (α, β)-metric,$$
\begin{equation*}
L(\alpha, \beta)=\alpha+\beta+\frac{\beta^{2}}{\alpha} \tag{3.13}
\end{equation*}
$$

The fundamental metric tensors of \mathbb{R}-complex Finsler space with general (α, β)-metric are given by:

$$
\begin{equation*}
g_{i j}=\rho_{0} a_{i j}+\rho_{-2} l_{i} l_{j}+\mu_{0} b_{i} b_{j}+\rho_{-2}\left(b_{j} l_{i}+b_{i} l_{j}\right) . \tag{3.14}
\end{equation*}
$$

Using invariants in theorem 3.1 in equation (3.12) then we have,

$$
\begin{align*}
& g_{i j}=\left(\frac{\alpha^{2}-\beta^{4}+\alpha \beta\left(\alpha^{2}-\beta^{2}\right)}{\alpha^{2}}\right) a_{i j} \tag{3.15}\\
& +\left(\frac{\alpha^{4}+\beta^{4}-2 \alpha^{2} \beta^{2}+2 \alpha^{2} \beta^{2}\left(\alpha^{2}+2 \beta+2 \beta^{2}\right)}{4 \alpha^{7}}\right) l_{i} l_{j} \\
& +\left(\frac{3\left(\alpha^{2}+2 \beta^{2}+2 \alpha \beta\right)}{2 \alpha^{2}}\right) b_{i} b_{j}+\left(\frac{\alpha^{3}-2 \beta^{3}-\alpha \beta^{2}(3-2 \beta)}{2 \alpha^{4}}\right)
\end{align*}
$$

$$
\times\left(b_{j} l_{i}+b_{i} l_{j}\right)
$$

$$
\begin{align*}
& g_{i \bar{j}}=\left(\frac{\alpha^{2}-\beta^{4}+\alpha \beta\left(\alpha^{2}-\beta^{2}\right)}{\alpha^{2}}\right) a_{i \bar{j}} \tag{3.16}\\
& +\left(\frac{\alpha^{4}+\beta^{4}-2 \alpha^{2} \beta^{2}+2 \alpha^{2} \beta^{2}\left(\alpha^{2}+2 \beta+2 \beta^{2}\right)}{4 \alpha^{7}}\right) l_{i} l_{i \bar{j}} \\
& +\left(\frac{3\left(\alpha^{2}+2 \beta^{2}+2 \alpha \beta\right)}{2 \alpha^{2}}\right) b_{i} b_{i \bar{j}}+\left(\frac{\alpha^{3}-2 \beta^{3}-\alpha \beta^{2}(3-2 \beta)}{2 \alpha^{4}}\right) \\
& \times\left(b_{\bar{j}} l_{i}+b_{i} l_{\bar{j}}\right) .
\end{align*}
$$

The metric tensor $g_{i j}$ and $g_{i \bar{j}}$ are reduced to

$$
\begin{align*}
& g_{i j}=\left[A a_{i j}+B l_{i} l_{j}+C b_{i} b_{j}+D \eta_{i} \eta_{j}\right], \tag{3.17}\\
& g_{i \bar{j}}=\left[A a_{i \bar{j}}+B l_{i} l_{\bar{j}}+C b_{i} b_{\bar{j}}+D \eta_{i} \eta_{\bar{j}}\right], \tag{3.18}
\end{align*}
$$

where,

$$
\begin{equation*}
A=\frac{\alpha^{4}-\beta^{4}+\alpha \beta\left(\alpha^{2}-\beta^{2}\right)}{\alpha^{2}}, \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
B=\frac{\alpha^{4}+\beta^{4}-2 \alpha^{2} \beta^{2}+2 \alpha^{2} \beta^{2}\left(\alpha^{2}+2 \beta+2 \beta^{2}\right)}{2 \alpha^{7}}, \tag{3.20}
\end{equation*}
$$

$$
\begin{equation*}
C=\frac{3\left(\alpha^{2}+2 \beta^{2}+2 \alpha \beta\right)}{2 \alpha^{2}}, \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
D=\frac{\alpha^{3}-2 \beta^{3}-\alpha \beta^{2}(3-2 \beta)}{2 \alpha^{4}} . \tag{3.22}
\end{equation*}
$$

We use the following proposition ${ }^{11}$ for further calculations.
Proposition 3.2: Suppose:
(a) $\left(Q_{i j}\right)$ a non-singular $n \times n$ complex matrix with inverse $\left(Q^{j i}\right)$;
(b) C_{i} and $C_{\bar{i}}=\bar{C}_{i}, i=1,2, \ldots, n$ are complex numbers;
(c) $C^{i}=Q^{j i} C_{j}$ and its conjugates; $C^{2}=C^{i} C_{i}=\bar{C}^{i} C_{\bar{i}} ; H_{i j}=Q_{i j} \pm C_{i} C_{j}$. Then,
i. $\operatorname{det}\left(H_{i j}\right)=\left(1+C^{2}\right) \operatorname{det}\left(Q_{i j}\right)$,
ii. Whenever $\left(1 \pm C^{2}\right) \neq 0$, the matrix $H_{i j}$ is invertible and in this case its inverse is

$$
H^{i j}=Q^{j i} \pm \frac{1}{1 \pm C^{2}} C^{i} C^{j}
$$

We will find the inverse of fundamental metric tensor through the below theorem:

Theorem 3.3: For a non-Hermitian \mathbb{R}-Complex Finsler space with (α, β)-metric $F=\alpha+\beta+\frac{\beta^{2}}{\alpha}$, then they have the following:
i) The contravariant tensor $g_{i j}$ of the fundamental tensor $g_{i j}$ is:

$$
\begin{align*}
& g_{i j}=\left[A a^{j i}+\left(\frac{B}{1+B \gamma}-\frac{B^{2} C \epsilon^{2}}{\alpha(1+B \gamma)^{2}}\right) \eta^{i} \eta^{j}+\frac{C}{\varphi} b^{i} b^{j}\right. \tag{3.23}\\
& \left.+\frac{B C \in}{\varphi(1+B \gamma)}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right) \frac{P^{2} \eta^{i} \eta^{j}+P Q\left(\eta^{i} b^{j}+\eta^{j} b^{i}\right) Q^{2} b^{i} b^{j}}{(1+\{P \gamma+Q \in\}) \sqrt{D}}\right]
\end{align*}
$$

where,

$$
P=\left[1+\left(\frac{B}{1+B \gamma}-\frac{B^{2} C \epsilon^{2}}{\alpha(1+B \gamma)^{2}}\right)\right] \gamma+\frac{B C \in}{\varphi(1+B \gamma)^{3}} \text { and } \quad Q=\frac{C q \in}{\varphi}+\frac{B C \in \gamma}{\varphi(1+B \gamma)}
$$

ii) $\operatorname{det}\left(A a_{i j}+B l_{i} l_{j}+C b_{i} b_{j}+D \eta_{i} \eta_{j}\right)=[1+(P \gamma+Q \in) \sqrt{D}]$

$$
\times\left[1+\omega+\frac{B \in^{2}}{1+B \gamma}\right](1+B \gamma) \operatorname{det}\left(a_{i j}\right)
$$

where,

$$
D=\frac{\alpha^{3}-2 \beta^{3}-\alpha \beta^{2}(3-2 \beta)}{2 \alpha^{4}}
$$

Proof: We claim of this theorem proved by following three steps: We write $g_{i j}$ from equation (3.14) in the form.

$$
\begin{equation*}
g_{i j}=\left[A a_{i j}+B l_{i} l_{j}+C b_{i} b_{j}+D \eta_{i} \eta_{j}\right] . \tag{3.24}
\end{equation*}
$$

Step 1: We take $Q_{i j}=a_{i j}$ and $C_{i}=\sqrt{B} I_{i}$. By applying the proposition 3.2 we obtain

$$
Q^{i j}=a^{i j}, C^{2}=C_{i} C^{i}=\sqrt{B} l_{i} \times a^{j i} \times \sqrt{B} l_{j}=B \times l_{i} a^{j i} l_{j}=B \gamma,
$$

and

$$
1+C^{2}=(1+B \gamma) .
$$

So, the matrix $H_{i j}=a_{i j}-B l_{i} l_{j}$, is invertible with

$$
\begin{aligned}
& H^{i j}=A a^{j i}+\frac{1}{1+B \gamma} \eta^{i} \eta^{j}, \\
& \operatorname{det}\left(a_{i j}+B l_{i} l_{j}\right)=(1+B \gamma)=\operatorname{det}\left(a_{i j}\right) .
\end{aligned}
$$

Step 2: Now, we consider

$$
Q_{j i}=A a_{i j}+B l_{i} l_{j} \quad \text { and } C_{i}=C b_{i} .
$$

By applying the Proposition (3.2) we have

$$
\begin{aligned}
& Q^{j i}=a^{j i}+\frac{P \eta^{i} \eta^{j}}{1+B \gamma}, \\
& C^{2}=C_{i} C^{i}=Q^{j i} \times C_{j}=\sqrt{C} b_{i}\left[a^{j i}+\frac{B \eta^{i} \eta^{j}}{1+B \gamma} \sqrt{C} b^{j}\right],
\end{aligned}
$$

$$
c^{2}=C\left[\omega+\frac{B \in^{2}}{1+B}\right]
$$

Therefore,

$$
1+C^{2}=1+C\left[\omega+\frac{B \in^{2}}{1+B \gamma}\right] \neq 0
$$

where, $\in=b_{j} \eta^{j}, \omega=b_{j} b^{j}$.
Its result that the inverse of $H_{i j}=A a_{i j}+B l_{i} l_{j}+C b_{i} b_{j}$ exists and it is

$$
H^{j i}=Q^{j i}+\frac{1}{1+c^{2}} C^{i} C^{j}
$$

$$
\begin{equation*}
H^{j i}=A a^{j i}+\frac{B \eta^{i} \eta^{j}}{1+B \gamma}+\frac{c\left[b^{i}+\frac{B \in \eta^{i}}{1+B \gamma}\right]\left[b^{j}+\frac{B \in \eta^{j}}{1+B \gamma}\right]}{\varphi} \tag{3.25}
\end{equation*}
$$

$$
\begin{align*}
& H^{j i}=A a^{j i}+\left(\frac{B}{1+B \gamma}+\frac{B^{2} C \epsilon^{2}}{\varphi(1+B \gamma)^{2}}\right) \eta^{i} \eta^{j} \tag{3.26}\\
& +\frac{B C \in}{\varphi(1+B \gamma)}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+\frac{C}{\varphi} b^{i} b^{j}
\end{align*}
$$

where

$$
\varphi=1+C\left[\omega+\frac{B \in^{2}}{1+B \gamma}\right]
$$

and

$$
\begin{equation*}
\operatorname{det}\left[A a_{i j}+B l_{i} l_{j}+C b_{i} b_{j}\right]=\left[1+C\left(\omega+\frac{B \in^{2}}{1+B \gamma}\right)\right](1+b \gamma) \operatorname{det}\left(a_{i j}\right) \tag{3.27}
\end{equation*}
$$

and

$$
C_{i}=\sqrt{D} \eta_{i}
$$

Clearly, observe that and obtain

$$
\begin{aligned}
& Q^{j i}=A a^{j i}+\left(\frac{B}{1+B \gamma}+\frac{B^{2} C \epsilon^{2}}{\tau(1+B \gamma)^{2}}\right) \eta^{i} \eta^{j} \\
& +\frac{B C \in}{(1+B \gamma)}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+\frac{C}{1+B \gamma} b^{i} b^{j}
\end{aligned}
$$

and

$$
C_{i}=P \eta^{i}+Q b_{i}
$$

where

$$
\begin{equation*}
P=\left[1+\left(\frac{B}{1+B \gamma}-\frac{B^{2} C \epsilon^{2}}{\alpha(1+B \gamma)^{2}}\right)\right] \gamma+\frac{B C \in}{\varphi(1+B \gamma)^{3}} \tag{3.30}
\end{equation*}
$$

$$
\begin{equation*}
Q=\frac{C}{\varphi}+\frac{B C \in \gamma}{\varphi(1+B \gamma)} \tag{3.31}
\end{equation*}
$$

and

$$
\begin{aligned}
& C^{2}=(P \gamma+Q \in) \sqrt{D} \\
& 1+C^{2}=1+(P \gamma+Q \in) \sqrt{D} \neq 0
\end{aligned}
$$

clearly, the matrix $H_{i j}$ is invertible

$$
C^{i}=A a^{j i}+\left\{\frac{B \eta^{i} \eta^{j}}{1+B \gamma}+\frac{c\left[b^{i}+\frac{B \in \eta^{i}}{1+B \gamma}\right]\left[b^{j}+\frac{B \in \eta^{j}}{1+B \gamma}\right]}{\varphi}\right\} \eta_{j}
$$

and

$$
C^{j}=A a^{j i}+\left\{\frac{B \eta^{i} \eta^{j}}{1+B \gamma}+\frac{c\left[b^{i}+\frac{B \in \eta^{i}}{1+B \gamma}\right]\left[b^{j}+\frac{B \in \eta^{j}}{1+B \gamma}\right]}{\varphi}\right\} \eta_{i}
$$

where

$$
C_{j}=P^{2} \eta_{i} \eta_{j}+P Q\left(\eta_{i} b_{j}+\eta_{j} b_{i}\right)+Q^{2} b_{i} b_{j}
$$

Again by applying proposition 3.2 we obtain the inverse of $H_{i j}$ as:

$$
\begin{align*}
& H^{j i}=A a^{j i}+\left[\frac{B}{1+B \gamma}+\frac{B^{2} C \epsilon^{2}}{\varphi(1+B \gamma)^{2}}\right] \eta^{i} \eta^{j}+\frac{C}{\varphi} b^{i} b^{j} \tag{3.32}\\
& +\frac{B C \in}{\varphi(1+B \gamma)}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+\frac{P^{2} \eta^{i} \eta^{j}+P Q\left(\eta^{i} b^{j}+\eta^{j} b^{i}\right) Q^{2} b^{i} b^{j}}{(1+\{P \gamma+Q \in\}) \sqrt{D}} \\
& \operatorname{det}\left(A a_{i j}+B l_{i} l_{j}+C b_{i} b_{j}+D \eta_{i} \eta_{j}\right)=[1+(P \gamma+Q \in) \sqrt{D}] \tag{3.33}\\
& \times\left[1+\omega+\frac{B \in^{2}}{1+B \gamma}\right](1+B \gamma) \operatorname{det}\left(a_{i j}\right)
\end{align*}
$$

But $g_{i j}=\rho_{0} H_{i j}$, with $H_{i j}$ from last step. Thus

$$
\begin{equation*}
g^{j i}=\frac{1}{A} H^{j i} \tag{3.34}
\end{equation*}
$$

where,

$$
A=\frac{\alpha^{4}-\beta^{4}+\alpha \beta\left(\alpha^{2}-\beta^{2}\right)}{\alpha^{2}}
$$

Therefore, from equation (3.32) in (3.34) and the equation (3.32), then we obtained the claims (i) and (ii). Here, we also observed the terms, γ, ε and δ from above theorem 3.1, then immediately wecan stated as;

Theorem 3.4: Let $F=\alpha+\beta+\frac{\beta^{2}}{\alpha}$ be non-Hermitian \mathbb{R}-complex Finsler space with (α, β)-metric, then they have the following

$$
\begin{equation*}
\gamma+\bar{\gamma}=l_{i} \eta^{i}+l_{\bar{j}} \eta^{\bar{j}}=a_{i j} \eta^{j} \eta^{i}+a_{\bar{j} \bar{k}} \eta^{\bar{k}} \eta^{\bar{j}}=2 \alpha^{2} \tag{3.35}
\end{equation*}
$$

$$
\begin{equation*}
\in+\bar{\epsilon}=b_{j} \eta^{j}+b_{\bar{j}} \eta^{\bar{j}}=2 \beta, \quad \delta=\in, \tag{3.36}
\end{equation*}
$$

where,

$$
\begin{aligned}
& l_{i}=a_{i j} \eta^{j}, \eta_{i}=\frac{\alpha^{2}(\alpha-2 \beta)}{(\alpha-\beta)^{3}} a_{i j} \eta^{i}+\frac{\alpha^{4}}{(\alpha-\beta)^{3}} b_{i}, \gamma=a_{j k} \eta^{j} \eta^{k}=l_{k} \eta^{k}, \quad \in=b_{j} \eta^{j}, \\
& b^{k}=a^{j k} b_{j}, b_{l}=b^{k} a_{k l}, \delta=a_{j k} \eta^{j} b^{k}=l_{k} b^{k}, l_{j}=a^{j l} l_{l}=\eta^{j} .
\end{aligned}
$$

4. Conclusion

The \mathbb{R}-complex Finsler space is an important quantities in complex Finsler geometry and it has well known interrelation with the other quantities like \mathbb{R}-complex Finsler space with class of (α, β) - metrics. In this paper we determined the fundamental metric tensors $g_{i j}$ and $g_{i \bar{j}}$ of \mathbb{R}-complex Finsler space with (α, β)-metrics and also find their determinants. Finally, we studied the property of non-Hermitian \mathbb{R}-complex space with (α, β) - metric.

References

1. G. Munteanu and M. Purcuru, On \mathbb{R} - complex Finsler Spaces, Balkan J. Geom. Appl., 14 (2009), 15-59.
2. N. Aldea and G. Munteanu, (α, β)-Complex Finsler Metrics, Proceedings of the $4^{\text {th }}$ International Colloquium, Mathematics in Engineering and Numerical Physics, October 6-8, Bucharest, Romania, (2006), 1-6.
3. M. Purcuru, On \mathbb{R} - complex Finsler Spaces with Kropina Metrics, Bulletin of the Transilvania University of Brasov, 4(53)(2) (2011), 79-88.
4. G. Shankar and S. A. Baby, \mathbb{R} - Complex Finsler Spaces with Special (α, β)-metrics, Int. J. of appl. Math., 29(5) (2016), 609-619.
5. T. Aikau, On Finsler Geometry on Complex Vector Bundles, Riemann Finsler Spaces, Indian J.
6. M. Abate and G. Patrizio, Finsler Metrics-A Global Approach, Lecturer Notes in Math. 1591, Springer-Verlag, 1994.
7. R. Miron., General Randers Spaces, Kluwer Acad Publ, FTPH, 76 (1996), 126-140.
8. G. Munteanu, Complex Spaces in Finsler-Lagrange and Hamilton Geometries, Kluwer Acad. Publ., FTPH, 141(13) (2004).
9. V. S. Sabau and H. Shimida, Remarkable Classes of (α, β)-metric Spaces, Rep. on Math. Phys., 47(1) (2001), 31-48.
10. S. M. Vanithalakshmi, S. K. Narasimhamurthy and M. K. Roopa, On \mathbb{R} - Complex Finsler Space with Matsumoto Metric, Int. J. of Math and. Appl., 7(1) (2018), 23-30.
11. M. Matsumoto, On Theory of Finsler spaces with (α, β)-metric, Rep. on Math.Phys., 31 (1991), 43-83.
