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Abstract: D.E.Blair' introduced contact metric manifold in 2001.In the
present paper some important results in contact metric manifols have
been investigated. Nijenhuis tensors have been studied with a new light.
Some results have also been investigated in K-contact and sasakian
manifolds" %

Key words: Nijenhuis tensors, K-contact, sasakian manifolds

1. Introduction

Definition(1.1). By contact manifold we mean a C~ manifold M

together with I-form n such that 77/\(d7])n¢0. In  particular

nA(dn) #0 is a volume element on M so that a contact manifold in

orientable.
Note that on a contact manifold M we have a characteristic vector field or
Reeb vector field of the contact structure 7 satisfyingl’z.

(1.1) dn($,X)=0,17(5)=1.
We have!
(1.2) Ln=0, L.dn=0.

Definition (1.2). Almost contact metric structure: A C”-manifold
M* s called almost contact metric manifold with structure ((0, En, g)
satisfying
(13) @) ¢*=-1+7®&, ©®) n(5)=1, © ¢(£)=0

@ n(pX)=0, (e) g(pX,p¥)=¢(X.Y)-n(X)n(Y)

where and in the following X,Y,Z,W... etc are vector fields; unless

otherwise stated.
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Let us define following four tensors
(14) NY(X,Y)=N,(X.,Y)+2dn(X.Y)¢E,
where N, is Nijenhuis tensor corresponding to ¢
(1.5) NP(X.,Y)=(Lyn)(Y)-(Lm)(X),
(1.6) N9 (X)= (L) (X).
(1.7)  N9(X)= (Ln)(X).
Definition(1.3). Almost contact metric structure (@,&,1,g) is normal if

and only if these four tensors vanish’.
It is known' that vanishing of N® implies the vanishing of N® N& N®
so that the normality condition is simply
N,(X.Y)+2dn(X,Y)E=0.

Definition(1.4). An almost contact metric manifold (¢,&,n,g) is called
contact metric manifold if g(X,9Y)=dn(X,Y) and structure (¢,&£,n,8) is
called contact metric structure’.

Note(1.1). Contact metric structure is also known as “Contact
Riemannian Structure”

Remark(1.1). In Contact metric manifold following results hold :

(i) dn(X,$)=0,

(ii) o[X.£]-[px.¢]=(Lep) (X) =NV (X),

(iii) n[¢. ¢X]=0,

(iv) oN,(X,&)=—- N,

v) (L) (pX) =0

(vi) (L) (£)=0.

(vii) (Lem) (X ) (L:g)(X.§)=0=N",

(viii) (Leyn) (Y)=2dn(pX.Y)=2g (¢X,pY) < N* vanishes,

(%) (Lexm) (¥ ( Lyn)(X) = (Lo 8) (Y.6) (L) (X.E)
+g (V. [px.£]-g (X)[or.£]),

(x) (Lox17) (&) =n([0X.¢]) =

seel’2 .
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Remark (1.2). For a contact metric manifold (¢, &, 7, g), N® and N@

vanish.
Remark (1.3). For contact metric manifold N¥=0 < & is Killing.

Proof. For contact metric manifold

(Ledn) (X.¥)=0= (L;g) (X.0Y) + g (X. (L) (Y) =0

(L.g)=0=¢is Killing < (L.¢)(Y)=0& N =0.

Remark (1.4). On contact metric manifold the interval curve of &
geodesici.e. V,.£=0 andV, 4 =0.

Remark (1.5). On contact metric manifold we have, (seel)

(V)(X) =X —h*9X —R(X.£,§)————()

and %(R((f, X, &)= pR(EPX.E) =X +FX ————(2)
from (1) we have R(&,X,§)=h’X +¢’X —p(V h) X
and OR(E.0X £ =X — X —§(V )X |

where h =% : P

Definition (1.5)K-Contact Structure: A K-contact structure is a
contact metric structure for which the vector field & is killing i.e. the
symmetric operator h=%2 L.¢=0.

Definition (1.6)(Sasakian manifold): Almost contact metric manifold
(¢,&.1m, ) is a Sasakian if and only if (V,@)(Y)=g(X,Y)E-n(Y)X .

In the following R(X,Y,Z)=V,V,Z-V,V,Z-V ,Z is curvature

tensor, where V is covariant differentiation.
R(X,Y) will stand for Ricci tensor and R(X,Y)=g(R(X).Y) where R(X)
in a tensor of type (1.1). Contraction on X in R(X)gives ‘t’, V(X,Y,Z) stands
for conformal curvature tensor given by:
V(X.,Y,Z)=R(X,Y,Z) —%{R(Y,Z)X ~-R(X,Z)Y}
n —

~8(X.Z)R(Y)+g(X.Z) R(X)}

+m{g(Y’Z)X—g(X’Z)Y}-
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2. Some Propositions on Contact Manifold

In the following M*™! stands for contact metric manifold.

Let h =% @ . It is known that

2.1) V. E=—pX —phX
where V is Levicivita connection.
Proposition (2.1). On contact metric manifold we have

(2.2) 2hX =& 0X ] -9[&, X],
where [,], stands for Lie bracket.
Proof. L.oX =(L,p) X +¢(L.X)

or [§9X]=2nX +9[S,X]

which gives (2.2).
Proposition (2.2). Ler N, be Nijenhuis tensor in M

(2.3) N, (¢, 0X) =~ phpX.
Proof. N,(X.Y)=[¢X,pY]|-0[pX.Y]|-0[X,pY]|+¢*[X.Y]

N, (£.9X)==9[&.0°X |+ 9 [£,0X]

=-p{[£.0°X ]-p[£.0X])
=—@QhepX.

, then

Hence proved.
Proposition(2.3). On M*"*, we have

(2.4) (V:N)(E.X)=¢*(V:h) X —9h VX .
Proof. We have
N(&X)=-phX

—{—(pX +h2¢X—(p2R()?,§,§)}—(ph V.X
=—(V.p)h X - —(pX+h2(pX+(p2R(§,)?,§)}—¢h V.X.
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Recalling V.9 =0 and h¢+@h=0, we have
(VN)(EX)+N(EVX)=0X -I’pX —p(-1*X -9’ X )
~9((Veh)X)-@hV, X
=—¢*(V:h)(X)-@hV,X.

Proposition (2.4). On contact metric manifold M*"*!

2.4) (A) ON (X,£)=2¢°hX .
Proof. We have
N(X’f):_¢[¢X’é:]+¢2 [X’é:]
oN (X.8)=¢" [pX.&]- o[ X .¢]
== (V&-V.0X)-9(V,E-V.X)
=— ¢’ (-¢"X - phoX —(V.0)(X)-¢V.X)
- ¢ (-¢X —phX -V,X)

, we have

=— @’ X+ PhpX + @'V . X + @’ X +@’hX + ¢V . X

=2¢° hX ,
which is (2.4) (A).
Propostion (2.5). On contact metric manifold M we have
(2.5) —oN (X.E)+2R (&.hX &) =2n"X —2¢(V ;1) hX .

Proof. Recall that'
R(EX.E =X +¢’X—¢p(V.h)X .
(2.6) 2R (&.hX &) =+2h°X +2¢0°hX =29 (V1) hX .
From (2.4) (A) and (2.6), we have
2R (E,hX,E)=+21°X + N (X,£)-2¢(V.h) hX .
which is (2.5).
Theorem (2.6). On contact metric manifold we have

2.7 QN (X,E)+20R (£, phX &) =—21"X - 29(V:h) hX .

Proof. Recall that
PR (E,0X.E)=-I’X -’ X —@(V.h) X

which gives
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(2.8) 20R (&,0hX &) =-21"X = 2¢°hX —2¢(V .h) hX .
Adding (2.4) (A) and (2.8) we get (2.7).

Corollary (2.1). On contact metric manifold M*"*', we have
(2.9) R(&.hX.E) +@R (&, 0hX &) ==20(V,h) hX
or
2.10)  R(EMX.EZ) +9(R(E.0hX ). Z)=-29((V,h) hX.Z)
where ‘R(X,Y,Z,W)=g(R(X.,Y,Z)W) and @(X.Y)=g(¢X.Y).

Proof. Adding (2.5)(a) and (2.7), we get (2.9), equation (2.10)
immediate from (2.9).

3. Propositions on K-Contact Manifold

Let us define on M2n+1, the conformal curvature tensor
V(X,Y,Z) :K(X,Y,Z)—%{R(Y,Z)X —R(X,Z)Y
n—
~g(X.Z)R(Y)+g(¥.Z) R(X )}

r
+— Y. Z)X-¢g(X,Z)Y}.

Let X be orthogonal to &, then on K-contact manifold

Ric (£,&)=2n,R(E,X,6E)=¢"X,8(X,£)=0, or

n7(X)=0, R(&)=2né, then

V(EX.€) =9 X~ {Ric(X.£)§-20X ~R(X)}

+m{—x}
=—X+7(X) f—ﬁ{Ric(X,f)é‘—ZnX —R(X)}_W);_l)_
O =

Thus, we have
Theorem(3.1). On a K-contact metric manifold M
field ‘X’ orthogonal to & we have

, with a vector
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(2n—r)X +2nR(X)-2n Ric(X,&)&
2n(2n—1)

V(£ X, €)=

and
V(£,X,85.8)=0
where V(&,X,E,E)=¢g(V(EX,6)E).

Corollary(3.1). On K-contact manifold M*"*', with a vector field X,
orthogonal to & conformal curvature V (&, X, &) vanishes if and only if

2n—r

Ric(X,£)E=R(X)+ X.

Corollary(3.2). On K-contact metric manifold we have
PN (X,&) or ‘N (X,&,0Z)=0
where ‘N(X.,Y,Z)=¢g(N(X.Y),Z).
Proof. Since in K-contact metric manifold h=0, we get from (2.7) that
PN (X,&)=0.
Theorem (3.2). On Sasakian manifold we have V (Y,£)=0.
Proof. Recall that an almost contact metric manifold becomes Sasakian
iff (V@) (Y)=g (X.Y)E-n(Y)X.
In a Sasakian manifold, we have
K(X.v.¢)=n(Y)X-n(X)Y,
Ric(Y,&)=2nn(Y),
R(Y)=2nY,
R(&)=Ric(&,6)=2n¢,
V(Y,Z) :CXV(X,Y,Z).
Then by easy calculations, we get
V(r.£)=0.
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