On Contact Metric Manifold*

H. B. Pandey

Department of Mathematics, R. B. S. College, Agra

S. P. Pandey

Department of Applied science, FET R. B. S. College, Agra

(Received February 20, 2010)

Abstract: D.E.Blair¹ introduced contact metric manifold in 2001.In the present paper some important results in contact metric manifols have been investigated. Nijenhuis tensors have been studied with a new light. Some results have also been investigated in K-contact and sasakian manifolds^{1,2}.

Key words: Nijenhuis tensors, K-contact, sasakian manifolds

1. Introduction

Definition(1.1). By contact manifold we mean a C^{∞} manifold M^{2n+1} together with 1-form η such that $\eta \wedge (d\eta)^n \neq 0$. In particular $\eta \wedge (d\eta)^n \neq 0$ is a volume element on M so that a contact manifold in orientable.

Note that on a contact manifold M we have a characteristic vector field or Reeb vector field of the contact structure η satisfying^{1,2}.

(1.1)
$$d\eta(\xi, X) = 0, \eta(\xi) = 1.$$

We have¹

$$(1.2) L_{\xi}\eta = 0, \quad L_{\xi}d\eta = 0.$$

Definition (1.2). Almost contact metric structure: A C^{∞} -manifold M^{2n+1} is called almost contact metric manifold with structure (φ, ξ, η, g) satisfying

(1.3) (a)
$$\varphi^2 = -I + \eta \otimes \xi$$
, (b) $\eta(\xi) = 1$, (c) $\varphi(\xi) = 0$

(d)
$$\eta(\varphi X) = 0$$
, (e) $g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$

where and in the following X,Y,Z,W... etc are vector fields; unless otherwise stated².

^{*}Presented at CONIAPS XI, University of Allahabad, Feb. 20-22, 2010.

Let us define following four tensors²

(1.4)
$$N^{(1)}(X,Y) = N_{\varphi}(X,Y) + 2d\eta(X,Y)\xi$$
,

where N_{φ} is Nijenhuis tensor corresponding to φ

$$(1.5) N^{(2)}(X,Y) = (L_{\varphi X}\eta)(Y) - (L_{\varphi Y}\eta)(X),$$

$$(1.6) N^{(3)}(X) = (L_{\varepsilon}\varphi)(X),$$

$$(1.7) N^{(4)}(X) = (L_{\varepsilon}\eta)(X).$$

Definition(1.3). Almost contact metric structure (φ, ξ, η, g) is normal if and only if these four tensors vanish².

It is known¹ that vanishing of $N^{(1)}$ implies the vanishing of $N^{(2)}$, $N^{(3)}$, $N^{(4)}$ so that the normality condition is simply

$$N_{\varphi}(X,Y) + 2 d\eta(X,Y) \xi = 0.$$

Definition(1.4). An almost contact metric manifold (ϕ, ξ, η, g) is called contact metric manifold if $g(X, \phi Y) = d\eta(X, Y)$ and structure (ϕ, ξ, η, g) is called contact metric structure¹.

Note(1.1). Contact metric structure is also known as "Contact Riemannian Structure"

Remark(1.1). In Contact metric manifold following results hold:

(i)
$$d\eta(X,\xi) = 0,$$

(ii)
$$\varphi[X,\xi] - [\varphi X,\xi] = (L_{\varepsilon}\varphi)(X) = N^{(3)}(X),$$

(iii)
$$\eta[\xi, \varphi X] = 0,$$

(iv)
$$\varphi N_{\varphi}(X,\xi) = -N^{(3)},$$

(v)
$$(L_{\xi}\eta)(\varphi X) = 0 ,$$

(vi)
$$(L_{\xi}\eta)(\xi) = 0 ,$$

(vii)
$$(L_{\xi}\eta)(X) = (L_{\xi}g)(X,\xi) = 0 = N^4,$$

(viii)
$$(L_{\xi X}\eta)(Y) = 2d\eta(\varphi X, Y) = 2g(\varphi X, \varphi Y) \Leftrightarrow N^2 \text{ vanishes,}$$

(ix)
$$(L_{\xi X} \eta)(Y) = (L_{\varphi Y} \eta)(X) = (L_{\varphi X} g)(Y, \xi) - (L_{\varphi Y} g)(X, \xi)$$
$$+ g(Y, [\varphi X, \xi] - g(X)[\varphi Y, \xi]),$$

(x)
$$\left(L_{\varphi X}\eta\right)(\xi) = \eta\left(\left[\varphi X,\xi\right]\right) = 0$$
, see^{1,2}.

Remark (1.2). For a contact metric manifold (φ, ξ, η, g) , $N^{(2)}$ and $N^{(4)}$ vanish.

Remark (1.3). For contact metric manifold $N^{(3)}=0 \Leftrightarrow \xi$ is Killing.

Proof. For contact metric manifold

$$(L_{\xi}d\eta)(X,Y) = 0 \Rightarrow (L_{\xi}g)(X,\varphi Y) + g(X,(L_{\xi}\varphi)(Y) = 0$$

$$(L_{\xi}g) = 0 \Rightarrow \xi \text{ is Killing} \Leftrightarrow (L_{\xi}\varphi)(Y) = 0 \Leftrightarrow N^{(3)} = 0.$$

Remark (1.4). On contact metric manifold the interval curve of ξ geodesic i.e. $\nabla_{\xi}\xi = 0$ and $\nabla_{\xi}\phi = 0$.

Remark (1.5). On contact metric manifold we have, (see¹)

$$(\nabla_{\xi}h)(X) = \phi X - h^2\phi X - \phi R(X, \xi, \xi) - - - - (1)$$

and
$$\frac{1}{2}(R((\xi, X, \xi) - \phi R(\xi, \phi X, \xi)) = h^2 X + \phi^2 X - - - - (2)$$

from (1) we have $R(\xi, X, \xi) = h^2 X + \phi^2 X - \phi(\nabla_{\xi} h) X$

and
$$\phi R(\xi, \phi X, \xi) = -h^2 X - \phi^2 X - \phi(\nabla_{\xi} h) X ,$$

where $h = \frac{1}{2} L_{\xi} \varphi$.

Definition (1.5)K-Contact Structure: A K-contact structure is a contact metric structure for which the vector field ξ is killing i.e. the symmetric operator $h = \frac{1}{2} L_{\xi} \varphi = 0$.

Definition (1.6)(Sasakian manifold): Almost contact metric manifold (φ, ξ, η, g) is a Sasakian if and only if $(\nabla_X \varphi)(Y) = g(X, Y) \xi - \eta(Y) X$.

In the following $R(X,Y,Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ is curvature tensor, where ∇ is covariant differentiation.

R(X,Y) will stand for Ricci tensor and R(X,Y) = g(R(X),Y) where R(X) in a tensor of type (1.1). Contraction on X in R(X) gives 'r', V(X,Y,Z) stands for conformal curvature tensor given by:

$$V(X,Y,Z) = R(X,Y,Z) - \frac{1}{2n-1} \{ R(Y,Z)X - R(X,Z)Y \}$$
$$-g(X,Z)R(Y) + g(X,Z)R(X) \}$$
$$+ \frac{r}{2n(2n-1)} \{ g(Y,Z)X - g(X,Z)Y \}.$$

2. Some Propositions on Contact Manifold

In the following M²ⁿ⁺¹ stands for contact metric manifold.

Let $h = \frac{1}{2} L_{\xi} \varphi$. It is known that

(2.1)
$$\nabla_{X} \xi = -\varphi X - \varphi h X$$

where ∇ is Levicivita connection.

Proposition (2.1). On contact metric manifold we have

(2.2)
$$2hX = \left[\xi, \varphi X\right] - \varphi\left[\xi, X\right],$$

where [,], stands for Lie bracket.

Proof.
$$L_{\xi} \varphi X = (L_{\xi} \varphi) X + \varphi (L_{\xi} X)$$

or
$$[\xi, \varphi X] = 2hX + \varphi[\xi, X]$$

which gives (2.2).

Proposition (2.2). Let N_{ω} be Nijenhuis tensor in M^{2n+1} , then

(2.3)
$$N_{\varphi}(\xi, \varphi X) = -\varphi h \varphi X.$$

$$\begin{aligned} \mathbf{Proof.} \ \ N_{\varphi}\left(X,Y\right) &= \left[\varphi X,\varphi Y\right] - \varphi \left[\varphi X,Y\right] - \varphi \left[X,\varphi Y\right] + \varphi^{2} \left[X,Y\right] \\ N_{\varphi}\left(\xi,\varphi X\right) &= -\varphi \left[\xi,\varphi^{2}X\right] + \varphi^{2} \left[\xi,\varphi X\right] \\ &= -\varphi \left\{ \left[\xi,\varphi^{2}X\right] - \varphi \left[\xi,\varphi X\right] \right\} \\ &= -\varphi \ h \ \varphi X \ . \end{aligned}$$

Hence proved.

Proposition(2.3). On M^{2n+1} , we have

(2.4)
$$\left(\nabla_{\xi}N\right)\left(\xi,\,\overline{X}\right) = \varphi^{2}\left(\nabla_{\xi}h\right)X - \phi h\,\nabla_{\xi}\overline{X}.$$

Proof. We have

$$N(\xi, \overline{X}) = -\varphi h \, \overline{X}$$

$$\therefore (\nabla_{\xi} N)(\xi, \overline{X}) + N(\nabla_{\xi} \xi, \overline{X}) + N(\xi, \nabla_{X} \overline{X})$$

$$= -(\nabla_{\xi} \varphi) h \, \overline{X} - \varphi(\nabla_{\xi} h)(\overline{X}) - \varphi h \, \nabla_{\xi} \overline{X}$$

or
$$(\nabla_{\xi}N)(\xi, \overline{X}) + N(\xi, \nabla_{\xi}\overline{X}) = -(\nabla_{\xi}\varphi)h\overline{X}$$

 $-\varphi\{\varphi\overline{X} - h^2\varphi\overline{X} - \varphi R(\overline{X}, \xi, \xi)\} - \varphi h\nabla_{\xi}\overline{X}.$

or
$$(\nabla_{\xi}N)(\xi, \overline{X}) + N(\nabla_{\xi}\xi, \overline{X}) = -(\nabla_{\xi}\varphi)h\overline{X}$$

$$-\{-\varphi X + h^{2}\varphi X - \varphi^{2}R(\overline{X}, \xi, \xi)\} - \varphi h\nabla_{\xi}\overline{X}$$

$$= -(\nabla_{\xi}\varphi)h\overline{X} - \{-\varphi X + h^{2}\varphi X + \varphi^{2}R(\xi, \overline{X}, \xi)\} - \varphi h\nabla_{\xi}\overline{X}.$$

Recalling $\nabla_{\varepsilon} \varphi = 0$ and $h \varphi + \varphi h = 0$, we have

$$\begin{split} \left(\nabla_{\xi}N\right)\left(\xi,\overline{X}\right) + N\left(\xi,\nabla_{X}\overline{X}\right) &= \varphi X - h^{2}\varphi X - \varphi\left(-h^{2}X - \varphi^{2}X\right) \\ &- \varphi\left(\left(\nabla_{\xi}h\right)X\right) - \varphi h \nabla_{\xi}\overline{X} \\ &= -\varphi^{2}\left(\nabla_{\xi}h\right)\left(X\right) - \varphi h \nabla_{\xi}\overline{X} \; . \end{split}$$

Proposition (2.4). On contact metric manifold M^{2n+1} , we have (2.4) (A) $\varphi N(X, \xi) = 2\varphi^2 hX$.

Proof. We have

$$\begin{split} N\left(X,\xi\right) &= -\varphi\left[\varphi X,\xi\right] + \varphi^{2}\left[X,\xi\right] \\ \varphi N\left(X,\xi\right) &= \varphi^{2}\left[\varphi X,\xi\right] - \varphi\left[X,\xi\right] \\ &= -\varphi^{2}\left(\nabla_{\varphi X}\xi - \nabla_{\xi}\varphi X\right) - \varphi\left(\nabla_{X}\xi - \nabla_{\xi}X\right) \\ &= -\varphi^{2}\left(-\varphi^{2}X - \varphi h\varphi X - \left(\nabla_{\xi}\varphi\right)(X) - \varphi\nabla_{\xi}X\right) \\ &- \varphi\left(-\varphi X - \varphi hX - \nabla_{\xi}X\right) \\ &= -\varphi^{2}X + \varphi^{3}h\varphi X + \varphi^{3}\nabla_{\xi}X + \varphi^{2}X + \varphi^{2}hX + \varphi\nabla_{\xi}X \\ &= 2\varphi^{2}hX \;, \end{split}$$

which is (2.4) (A).

Propostion (2.5). On contact metric manifold M^{2n+1} , we have

$$(2.5) \qquad -\varphi N\left(X,\xi\right) + 2R\left(\xi,hX,\xi\right) = 2h^{3}X - 2\varphi\left(\nabla_{\xi}h\right)hX.$$

Proof. Recall that¹

$$R\left(\xi,X,\xi\right) = h^2X + \varphi^2X - \varphi\left(\nabla_{\xi}h\right)X \; .$$

$$(2.6) 2R\left(\xi, hX, \xi\right) = +2h^3X + 2\varphi^2hX - 2\varphi\left(\nabla_{\xi}h\right)hX.$$

From (2.4) (A) and (2.6), we have

$$2R(\xi, hX, \xi) = +2h^{3}X + \varphi N(X, \xi) - 2\varphi(\nabla_{\xi}h)hX.$$

which is (2.5).

Theorem (2.6). On contact metric manifold we have

(2.7)
$$\varphi N(X,\xi) + 2\varphi R(\xi,\varphi hX,\xi) = -2h^3 X - 2\varphi(\nabla_{\xi}h) hX.$$

Proof. Recall that

$$\varphi R\left(\xi, \varphi X, \xi\right) = -h^2 X - \varphi^2 X - \varphi\left(\nabla_{\xi} h\right) X$$

which gives

(2.8)
$$2\varphi R\left(\xi,\varphi hX,\xi\right) = -2h^3X - 2\varphi^2hX - 2\varphi\left(\nabla_{\xi}h\right)hX.$$

Adding (2.4) (A) and (2.8) we get (2.7).

Corollary (2.1). On contact metric manifold M^{2n+1} , we have

(2.9)
$$R\left(\xi, hX, \xi\right) + \varphi R\left(\xi, \varphi hX, \xi\right) = -2\varphi\left(\nabla_{\xi} h\right) hX$$

or

(2.10)
$${}^{\backprime}R\left(\xi, hX, \xi, Z\right) + {}^{\backprime}\varphi\left(R\left(\xi, \varphi hX, \xi\right), Z\right) = -2{}^{\backprime}\varphi\left(\left(\nabla_{\xi} h\right) hX, Z\right)$$
 where
$${}^{\backprime}R\left(X, Y, Z, W\right) = g\left(R\left(X, Y, Z\right) W\right) \quad \text{and} \quad {}^{\backprime}\varphi\left(X, Y\right) = g\left(\varphi X, Y\right).$$

Proof. Adding (2.5)(a) and (2.7), we get (2.9), equation (2.10) immediate from (2.9).

3. Propositions on K-Contact Manifold

Let us define on M²ⁿ⁺¹, the conformal curvature tensor

$$V(X,Y,Z) = K(X,Y,Z) - \frac{1}{2n-1} \{ R(Y,Z)X - R(X,Z)Y - g(X,Z)R(Y) + g(Y,Z)R(X) \}$$

+
$$\frac{r}{2n(2n-1)} \{ g(Y,Z)X - g(X,Z)Y \}.$$

Let X be orthogonal to ξ , then on K-contact manifold $Ric(\xi,\xi) = 2n, R(\xi,X,\xi) = \varphi^2 X, g(X,\xi) = 0,$ or $\eta(X) = 0, R(\xi) = 2n\xi$, then

$$V(\xi, X, \xi) = \varphi^{2} X - \frac{1}{2n-1} \left\{ Ric(X, \xi) \xi - 2nX - R(X) \right\}$$

$$+ \frac{r}{2n(2n-1)} \left\{ -X \right\}$$

$$= -X + \eta(X) \xi - \frac{1}{2n-1} \left\{ Ric(X, \xi) \xi - 2nX - R(X) \right\} - \frac{rX}{2n(2n-1)}.$$

$$V(\xi, X, \xi) = \frac{X - Ric(X, \xi) \xi + R(X)}{2n-1} - \frac{rX}{2n(2n-1)}.$$
(3.1)

Thus, we have

Theorem(3.1). On a K-contact metric manifold M^{2n+1} , with a vector field 'X' orthogonal to ξ , we have

$$V\left(\xi,X,\xi\right) = \frac{\left(2n-r\right)X + 2nR\left(X\right) - 2n\,Ric\left(X,\xi\right)\xi}{2n(2n-1)}$$

and

$$V(\xi, X, \xi, \xi) = 0$$

where
$$V(\xi, X, \xi, \xi) = g(V(\xi, X, \xi)\xi)$$
.

Corollary(3.1). On K-contact manifold M^{2n+1} , with a vector field X, orthogonal to ξ conformal curvature $V(\xi, X, \xi)$ vanishes if and only if

$$Ric(X,\xi)\xi = R(X) + \frac{2n-r}{2n}X$$
.

Corollary (3.2). On K-contact metric manifold we have

$$\phi N(X,\xi)$$
 or $N(X,\xi,\varphi Z) = 0$

where

$$N(X,Y,Z) = g(N(X,Y),Z).$$

Proof. Since in K-contact metric manifold h=0, we get from (2.7) that $\varphi N(X,\xi)=0$.

Theorem (3.2). On Sasakian manifold we have $V(Y,\xi) = 0$.

Proof. Recall that an almost contact metric manifold becomes Sasakian iff $(\nabla_X \varphi)(Y) = g(X,Y) \xi - \eta(Y) X$.

In a Sasakian manifold, we have

$$K(X,Y,\xi) = \eta(Y)X - \eta(X)Y,$$

$$Ric(Y,\xi) = 2n\eta(Y),$$

$$R(Y) = 2nY,$$

$$R(\xi) = Ric(\xi,\xi) = 2n\xi,$$

$$V(Y,Z) = C_X V(X,Y,Z).$$

Then by easy calculations, we get

$$V(Y,\xi)=0.$$

References

- 1. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifold, *Progress in Mathematics*, **203**, 2001.
- 2. R. S. Mishra, *Structures on Differntiable Manifold and Application*. Chandrama Prakashan, Allahabad, 1984.