On Submanifolds of Almost r-Contact Structure Manifolds

Lovejoy S. Das
Department of Mathematics
Kent State University, New Philadelphia, OH 44663, U.S.A.
Email: ldas@kent.edu
Ram Nivas
Department of Mathematics and Astronomy Lucknow University, Lucknow, UP 226007
Email: rnivas@sify.com

(Received March 10, 2010)

Abstract

Almost r - contact structure was defined and studied by Vanzura ${ }^{1}$ and several other geometers including Mishra, Pandey ${ }^{2}$ and Imai ${ }^{3}$. Recently, Das, Ram Nivas, S. Ali and M. Ahmad ${ }^{4}$ have studied quarter symmetric connections and have obtained some interesting results. In this paper, authors have studied submanifolds of an almost r contact structure manifold. Quarter symmetric (F, G) - connection has also been defined and submanifolds of a manifolds with such connection have been studied. Study of (F, G) geodesic and (F, G) umbilical submanifolds is also the subject matter of this paper. Keywords and Phrases : Almost r - contact manifolds, connection, (F , G) geodesic, (F, G) umbilical submanifolds.

2000 AMS Subject Classification No. : 53D10, 53C05

1. Subamnifolds of Codimension $2 r$

Let M^{n+r} be on $(n+r)$ - dimensional differentiable manifold of class c^{∞}. Suppose there exists on M^{n+r} a tensor field ϕ of type (1, 1), $r\left(c^{\infty}\right)$ contravariant vector fields $\xi_{1}, \xi_{2}, \ldots, \xi_{r}$ and $r\left(c^{\infty}\right) 1$ - forms $\eta_{1}, \eta_{2}, \ldots, \eta_{r}$ such that

$$
\begin{equation*}
\phi^{2}=-I+\sum_{l=1}^{r} \eta_{1} \otimes \xi_{1}, \tag{1.1a}
\end{equation*}
$$

$$
\begin{equation*}
\phi \xi_{1}=0, \tag{1.1b}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{l} \circ \phi=0 \text { and } \eta_{1}\left(\xi_{m}\right)=\delta_{l m} \tag{1.1c}
\end{equation*}
$$

where $l, m=1,2, \ldots, r$ and $\delta_{l m}$ denotes the Kronecker delta. Then M^{n+r} satisfying above equations (1.1) will be called an almost r - contact structure manifold ${ }^{1}$. If M^{n+r} is endowed with a positive definite Riemannian metric g such that

$$
g(\phi X, \phi Y)=g(X, Y)-\sum_{l=1}^{r} \eta_{l}(X) \eta_{l}(Y),
$$

we say that M^{n+r} admits almost r-contact metric structure.
Let M^{n} be an n - dimensional submanifold of the almost r - contact structure manifold M^{n+r} such that the vector fields $\xi_{l} l=1,2, \ldots, \xi_{r}$ are always tangent to M^{n}. Throughout this paper we will assume that the vector fields $\xi_{1}, \xi_{2}, \ldots, \xi_{r}$ are always tangent to M^{n}. Thus there exist r mutually orthogonal unit normals $N_{1}, N_{2}, \ldots, N_{r}$ such that if X is in the tangent space of M^{n}, the transformations for ϕX and ϕN_{l} can be written as ${ }^{5}$

$$
\begin{equation*}
\phi X=f X+\sum_{l=1}^{r} \alpha_{l}(X) N_{l} \tag{1.2}
\end{equation*}
$$

where $\alpha_{l}, l=1,2, \ldots, r$ are $1-$ forms and f is a tensor field of type $(1,1)$ on the submanifold M^{n}. Also

$$
\begin{equation*}
\phi N_{l}=-A_{l}, \quad l=1,2, \ldots, r . \tag{1.3}
\end{equation*}
$$

Here $A_{l}, l=1,2, \ldots, r$ are c^{∞} vector fields on the submanifold M^{n} and tangential to M^{n}.

Operating (1.2) by ϕ and making use of (1.2) itself and also the equations (1.1a) and (1.3), we get

$$
-X+\sum_{l=1}^{r} \eta_{l}(X) \xi_{l}=f^{2} X+\sum_{l=1}^{r} \alpha_{l}(f X) N_{l}+\sum_{l=1}^{r} \alpha_{l}(X)\left(-A_{l}\right)
$$

Comparison of vector fields tangential and normal to M^{n} yields

$$
f^{2}=-I+\sum_{l=1}^{r}\left\{\eta_{l} \otimes \xi_{l}+\alpha_{l} \otimes A_{l}\right\}
$$

and

$$
\alpha_{l} \circ f=0
$$

In view of the equation (1.2), we have

$$
\left(\eta_{m} \circ \phi\right)(X)=\left(\eta_{m} \circ f\right)(X)+\sum_{l=1}^{r} \alpha_{l}(X) \eta_{m}\left(N_{l}\right)
$$

Taking $\eta_{m}\left(N_{l}\right)=0$ we get

$$
\eta_{m} \circ f=0
$$

Again, in view of the equation (1.2), we have

$$
\varphi\left(A_{m}\right)=f\left(A_{m}\right)+\sum_{l=1}^{r} \alpha_{l}\left(A_{m}\right) N_{l} .
$$

Taking $\phi A_{m}=N_{m}$ and $\alpha_{l}\left(A_{m}\right)=\delta_{l m}$, we get

$$
f\left(A_{m}\right)=0, m=1,2, \ldots, r .
$$

Again by virtue of the equation (1.2), we have

$$
\phi\left(\xi_{m}\right)=f\left(\xi_{m}\right)+\sum_{l=1}^{r} \alpha_{l}\left(\xi_{m}\right) N_{l}
$$

Taking $\alpha_{l}\left(\xi_{m}\right)=0$, we get

$$
f\left(\xi_{m}\right)=0 .
$$

Thus the submanifold M^{n} of almost r - contact structure manifold M^{n+r} admits a structure satisfying

$$
\begin{align*}
& f^{2}=-I+\sum_{l=1}^{r}\left\{\eta_{l} \otimes \xi_{l}+\alpha_{l} \otimes A_{l}\right\} \tag{1.4a}\\
& \alpha_{l} \circ f=\eta_{m} \circ f=0 \tag{1.4b}\\
& \phi \xi_{l}=f \xi_{l}=0 \tag{1.4c}\\
& \alpha_{l}\left(\xi_{m}\right)=\eta_{l}\left(A_{m}\right)=0 \tag{1.4d}\\
& f\left(A_{l}\right)=0 \tag{1.4e}\\
& \alpha_{l}\left(\xi_{m}\right)=\eta_{l}\left(\xi_{m}\right)=\delta_{l m} ; \quad l, m=1,2, \ldots, r . \tag{1.4f}
\end{align*}
$$

We have
Theorem 1.1. The submanifold M^{n} of codimension r of almost r contact structure manifold M^{n+r} such that the vector fields ξ_{l} and A_{l} are tangents to M^{n} admits a structure given by the equation (1.4).

Now let us define a $(1,1)$ tensor field \tilde{f} on M^{n} as

$$
\begin{equation*}
\tilde{f}=f+\sum_{l=1}^{r} \eta_{l} \otimes A_{l} \tag{1.5}
\end{equation*}
$$

Then in view of the equation (1.4), it is easy to show that

$$
\begin{equation*}
\tilde{f}^{2}=f^{2} \tag{1.6}
\end{equation*}
$$

Hence by virtue of (1.4), (1.5) and (1.6), it can be easily shown that

$$
\begin{align*}
& \tilde{f}^{2}=-I+\sum_{l=1}^{r}\left\{\eta_{l} \otimes \xi_{l}+\alpha_{l} \otimes A_{l}\right\} \tag{1.7a}\\
& \alpha_{l} \circ \tilde{f}=\eta_{l} \tag{1.7b}\\
& \eta_{l} \circ \tilde{f}=0 \tag{1.7c}
\end{align*}
$$

$$
\begin{align*}
& \tilde{f}\left(\xi_{l}\right)=A_{l} \tag{1.7d}\\
& \tilde{f}\left(A_{l}\right)=0 . \tag{1.7e}
\end{align*}
$$

Thus we have
Theorem 1.2. The $(1,1)$ tensor field \tilde{f} defined on the submanifold M^{n} of the almost r - contact structure manifold M^{n+r} defines a structure on M^{n} given by the equation (1.7).

2. Quarter Symmetric ($\boldsymbol{F}, \boldsymbol{G}$) Connection

As in the previous section, M^{n} is the submanifold of codimension r immersed differentiably in the r - contact structure manifold M^{n+r}. Let ζ be the immersion $M^{n} \rightarrow M^{n+r}$ and $B=d \zeta$. Hence the vector field X in the tangent space of M^{n} corresponds to a vector field $B X$ tangential to M^{n+r} If \tilde{g} be the Riemannian metric on M^{n+r} and g the induced metric on M^{n}, we have

$$
\begin{equation*}
\tilde{g}(B X, B Y)=g(X, Y) \text { for all } X, Y \text { tangents to } M^{n} . \tag{2.8}
\end{equation*}
$$

As $N_{x}, x=1,2, \ldots, r$ are mutually orthogonal unit normals to M^{n}

$$
\begin{equation*}
\tilde{g}\left(B X, N_{x}\right)=0 \tag{2.9a}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{g}\left(N_{x}, N_{y}\right)=\delta_{x y}, x, y=1,2, \ldots, r \tag{2.9b}
\end{equation*}
$$

where $\delta_{x y}$ is the Kronecker delta.
Suppose M^{n+r} admits a connection $\tilde{\nabla}$ given by
(2.10) $\quad \tilde{\nabla}_{B X} B Y=\stackrel{\tilde{\nabla}}{B X} B Y+\tilde{\pi}(B Y) \tilde{F}(B X)-\tilde{\pi}(B X) \tilde{G}(B Y)-\tilde{g}(B X, B Y) \tilde{P}$
where $\stackrel{\tilde{\nabla}}{\nabla}$ is the Levi-civita connection and \tilde{F}, \tilde{G} are tensor fields of type (1, 1) on M^{n+r}. We call the connection $\tilde{\nabla}$ as quarter symmetric (F, G) connection on M^{n+r}. Also \tilde{P} is a vector field and $\tilde{\pi} 1$ - form on the enveloping manifold M^{n+r}.

Theorem 2.1. The connection induced on the submanifold M^{n} from the quarter symmetric (F, G) connection $\tilde{\nabla}$ on M^{n+r} is also the quarter symmetric (F, G) connection.

Proof. Let us put

$$
\begin{equation*}
\tilde{P}=B P+\lambda^{x} N_{x} \tag{2.11a}
\end{equation*}
$$

$$
\begin{align*}
& \tilde{\nabla}_{B X} B Y=B \nabla_{X} Y+\sum_{x=1}^{r} h^{x}(X, Y) N_{x} \tag{2.11b}\\
& \tilde{\nabla}_{B X} B Y=B\left(\dot{\nabla}_{X} Y\right)+\sum_{x=1}^{r} m^{x}(X, Y) N_{x} \tag{2.11c}
\end{align*}
$$

where $h^{x}(X, Y)$ and $m^{x}(X, Y)$ are tensor fields of type $(1,2)$ and P the vector field tangential to M^{n}. We can also write

$$
\begin{align*}
& \tilde{F}(B X)=B F X+\sum_{x=1}^{r} \mu^{x} N_{x} \tag{2.11d}\\
& \tilde{G} B Y=B G Y+\sum_{x=1}^{r} \gamma^{x} N_{x} \tag{2.11e}
\end{align*}
$$

where $\lambda^{x}, \mu^{x}, \gamma^{x}$ are scalars. Hence (2.10) takes the form

$$
\begin{align*}
& B \nabla_{X} Y+\sum_{x=1}^{r} h^{x}(X, Y) N_{x}=B \dot{\circ}_{X} Y+\sum_{x=1}^{r} m^{x}(X, Y) N_{x}+\pi(Y)\left\{B F X+\sum_{x=1}^{r} \mu^{x} N_{x}\right\} \tag{2.12}\\
&-\pi(X)\left\{B G Y+\sum_{x=1}^{r} \nu^{x} N_{x}\right\}-g(X, Y)\left\{B P+\sum_{x=1}^{r} \lambda^{x} N_{x}\right\}
\end{align*}
$$

Comparison of vector fields tangential to M^{n+r} gives

$$
\nabla_{X} Y=\dot{\nabla}_{X} Y+\pi(Y) F X-\pi(X) G(Y)-g(X, Y) P
$$

which shows that ∇ is quarter symmetric (F, G) connection on M^{n}.

3. (F, G) Geodesic and (F, G) Umbilical Submanifolds

Let $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the set of orthonormal vector fields on M^{n}. We call

$$
\frac{1}{n r} \sum_{x=1}^{r} \sum_{i=1}^{n} h^{x}\left(X_{i}, X_{i}\right)
$$

the mean curvature of M^{n} with respect to connection ∇ and

$$
\frac{1}{n r} \sum_{x=1}^{r} \sum_{i=1}^{n} m^{x}\left(X_{i}, X_{i}\right)
$$

the mean curvature of M^{n} with respect to connection $\stackrel{\circ}{\nabla}$.
Definition 3.1. We say that the submanifold M^{n} is (F, G) geodesic with respect to quarter symmetric (F, G) connection ∇ if $h^{x}(X, Y)=0, x=1,2$, ..., r.

Definition 3.2. We say that the submanifold M^{n} is (F, G) umbilical with respect to connection ∇ if $h^{x}(X, Y)$ are proportional to the metric tensor g.

Definition 3.3. The submanifold M^{n} will be (F, G) geodesic or (F, G) umbilical with respect to Riemannian connection $\stackrel{\circ}{\nabla}$ according as $m^{x}(X, Y)$ vanish or proportional to the metric tensor g.

We now prove the following theorem.
Theorem 3.1. In order that the mean curvature of M^{n} with respect to quarter-symmetric (F, G) connection ∇ may coincide with that of M^{n} with respect to Riemannian connection $\stackrel{\circ}{\nabla}$, it is necessary and sufficient that the vector fields $\widetilde{F} B X_{i}, \tilde{G} B X_{i}$ and \tilde{P} are tangential to M^{n}.

Proof. In view of the equation (2.12), comparison of vector fields normal to M^{n} yields

$$
h^{x}\left(X_{i}, X_{i}\right)=m^{x}\left(X_{i}, X_{i}\right)+\pi\left(X_{i}\right) \mu^{x}-\pi\left(X_{i}\right) \nu^{x}-\lambda^{x} g\left(X_{i}, X_{i}\right) .
$$

Hence

$$
\frac{1}{n r} \sum_{x=1}^{r} \sum_{i=1}^{n} h^{x}\left(X_{i}, X_{i}\right)=\frac{1}{n r} \sum_{x=1}^{r} \sum_{i=1}^{n} m^{x}\left(X_{i}, X_{i}\right)
$$

if and only if $\mu^{x}=v^{x}=\lambda^{x}=0$ for $x=1,2, \ldots, r$. Hence the vector fields $\tilde{F} B X_{i}, \widetilde{G} B X_{i}$ and \widetilde{P} are tangential to M^{n}.

References

1. Jiri Vanzura, Almost r - contact structure manifolds, Annali Della Scuola, Normale Superiore Di Pisa, 20 (1972) 97-115.
2. R. S. Mishra and S. N. Pandey, On quarter-symmetric F - connections, Tensor, N.S., 30 (1980) 1-7.
3. T. Imai, On semi-symmetric metric connection, Tensor, N.S., 24 (1972) 293-296.
4. Lovejoy S. Das, Ram Nivas, Sahadat Ali and Mobin Ahmad, Study of submanifolds immersed in a manifold with quarter symmetric semi metric connection, Tensor, N. S., 65 (2001) 250-260.
5. H. W. Proppe, Some propertiesof almost contact hypersurfaces of certain almost contact manifolds, Prog.Maths, 9(1) (1975)7-21 .
6. Lovejoy S. Das, Invariant submanifold of the manifold with $\phi\left(K,-(-)^{K+1}\right)-$ structure, Tensor, N.S., 64 (2003) 189-196.
7. Ram Nivas and Nazrul Islam Khan, On manifolds admitting Hsu-metric structure, Acta Ciencia Indica, XXX M, No. 3, 645(2004)285-290.
