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Abstract: Almost r – contact structure was defined and studied by 

Vanzura
1
 and several other geometers including Mishra, Pandey

2
 and 

Imai
3
. Recently, Das, Ram Nivas, S. Ali and M. Ahmad

4
 have studied 

quarter symmetric connections and have obtained some interesting 

results. In this paper, authors have studied submanifolds of an almost r – 

contact structure manifold. Quarter symmetric (F, G) – connection has 

also been defined and submanifolds of a manifolds with such connection 

have been studied. Study of (F, G) geodesic and (F, G) umbilical 

submanifolds is also the subject matter of this paper. 
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1. Subamnifolds of Codimension 2r 
 

Let n rM + be on (n + r) – dimensional differentiable manifold of class c
∞
. 

Suppose there exists on n rM + a tensor field φ of type (1, 1), r(c
∞
) 

contravariant vector fields ξ1, ξ2, …, ξr and r(c
∞
) 1 – forms η1, η2, …, ηr such 

that 

(1.1a)   ∑
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⊗+−=
r

l

I
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(1.1b)   ,01 =φξ   

(1.1c)   0=φη �l   
and  1 ( )m lmη ξ δ=  
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where l, m = 1, 2, …, r and δlm denotes the Kronecker delta. Then 
n rM + satisfying above equations (1.1) will be called an almost r – contact 

structure manifold
1
. If n rM + is endowed with a positive definite Riemannian 

metric g such that 

),()(),(),(
1

YXYXgYXg
r

l

ll∑
=

−= ηηφφ  

we say that n rM + admits almost r – contact metric structure. 

 Let nM  be an n – dimensional submanifold of the almost r – contact 

structure manifold n rM +  such that the vector fields ξ l l = 1, 2, …, ξr are 

always tangent to nM . Throughout this paper we will assume that the vector 

fields ξ1, ξ2, …, ξr are always tangent to nM . Thus there exist r mutually 

orthogonal unit normals N1, N2, …, Nr such that if X is in the tangent space 

of M 
n
, the transformations for φX and φNl can be written as

5
 

(1.2)   ∑
=

+=
r
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ll NXfXX
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)(αφ   

where αl, l = 1, 2, …, r are 1 – forms and f is a tensor field of type (1, 1) on 

the submanifold nM . Also 

(1.3)   ,ll AN −=φ       l = 1, 2, …, r.  

Here Al, l = 1, 2, …, r are c
∞
 vector fields on the submanifold nM  and 

tangential to nM . 

 Operating (1.2) by φ and making use of (1.2) itself and also the 

equations (1.1a) and (1.3), we get 
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Comparison of vector fields tangential and normal to nM yields 

                    
∑
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and 

                   
0=fl �α  

In view of the equation (1.2), we have 

               
∑
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Taking ηm(Nl) = 0 we get 

                         
0=fm �η  

Again, in view of the equation (1.2), we have 
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Taking φAm = Nm and αl(Am) = δlm, we get 

                        f(Am) = 0, m = 1, 2, …, r. 

Again by virtue of the equation (1.2), we have 

                            
∑

=
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Taking αl(ξm) = 0, we get 

                         f(ξm) = 0. 

Thus the submanifold nM of almost r – contact structure manifold 
n rM + admits a structure satisfying 

(1.4a)   ∑
=

⊗+⊗+−=
r
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(1.4b)   ,0== ff ml �� ηα   

(1.4c)   ,0== ll fξφξ   

(1.4d)   ,0)()( == mlml Aηξα   

(1.4e)   0)( =lAf   

(1.4f)   ;)()( lmmlml δξηξα ==   l, m = 1, 2, …, r.  

We have 

Theorem 1.1.  The submanifold M 
n
 of codimension r of almost r – 

contact structure manifold n rM + such that the vector fields ξl and Al are 

tangents to nM  admits a structure given by the equation (1.4). 

 Now let us define a (1, 1) tensor field f
~

 on M 
n
 as 

(1.5)   
1

.
r

l l

l

f f Aη
=

= + ⊗∑ɶ   

Then in view of the equation (1.4), it is easy to show that 

(1.6)   2 2 .f f=ɶ   

Hence by virtue of (1.4), (1.5) and (1.6), it can be easily shown that 
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(1.7d)   
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Thus we have 

Theorem 1.2.  The (1, 1) tensor field f
~

 defined on the submanifold nM  

of the almost r – contact structure manifold n rM + defines a structure on nM  

given by the equation (1.7). 
 

2. Quarter Symmetric (F, G) Connection 
 

As in the previous section, nM  is the submanifold of codimension r 

immersed differentiably in the r – contact structure manifold M 
n+r

. Let ζ be 

the immersion nM  → n rM + and B = dζ. Hence the vector field X in the 

tangent space of nM corresponds to a vector field BX tangential to n rM + If 

g~  be the Riemannian metric on n rM + and g the induced metric on nM , we 

have 

(2.8)   g~  (BX, BY) = g(X, Y) for all X, Y tangents to nM .  

As Nx, x = 1, 2, …, r are mutually orthogonal unit normals to nM   

(2.9a)   g~ (BX, Nx) = 0   

and 

(2.9b)   g~ (Nx, Ny) = δxy,  x, y = 1, 2, …, r  

where δxy is the Kronecker delta. 

Suppose M 
n+r

 admits a connection ∇
~

 given by 

(2.10) PBYBXgBYGBXBXFBYBYBY BXBX

~
),(~)(

~
)(~)(

~
)(~~

~

−−+∇=∇ ππ
�

  

where 
�
~

∇  is the Levi-civita connection and GF
~

,
~

 are tensor fields of type (1, 

1) on n rM + . We call the connection ∇
~

 as quarter symmetric (F, G) 

connection on n rM + . Also P
~

 is a vector field and π~  1 – form on the 

enveloping manifold n rM + . 
 

Theorem 2.1.  The connection induced on the submanifold nM  from the 

quarter symmetric (F, G) connection ∇
~

 on n rM +  is also the quarter 

symmetric (F, G) connection. 

Proof.  Let us put 

(2.11a)   P
~

 = B P + λ
x
Nx  
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where h
x
 (X, Y) and m

x
 (X, Y) are tensor fields of type (1, 2) and P the vector 

field tangential to M 
n
. We can also write 
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where λ
x
, µ

x
, γ

x
 are scalars. Hence (2.10) takes the form 
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Comparison of vector fields tangential to n rM + gives 

PYXgYGXFXYYY XX ),()()()( −−+∇=∇ ππ
�

 

which shows that ∇ is quarter symmetric (F, G) connection on nM . 

 
 

3. (F, G) Geodesic and (F, G) Umbilical Submanifolds 
 

Let {X1, X2, …, Xn} be the set of orthonormal vector fields on nM . We 

call 

∑∑
= =

r
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n
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x XXh
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),(
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the mean curvature of nM with respect to connection ∇ and 

∑∑
= =

r
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i

ii

x XXm
nr 1 1

),(
1

 

the mean curvature of nM with respect to connection 
�

∇ . 

Definition 3.1.  We say that the submanifold nM  is (F, G) geodesic with 

respect to quarter symmetric (F, G) connection ∇ if h
x
 (X, Y) = 0, x = 1, 2, 

…, r. 
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Definition 3.2.  We say that the submanifold nM  is (F, G) umbilical 

with respect to connection ∇ if h
x
 (X, Y) are proportional to the metric 

tensor g. 

Definition 3.3.  The submanifold nM  will be (F, G) geodesic or (F, G) 

umbilical with respect to Riemannian connection 
�

∇  according as m
x
 (X, Y) 

vanish or proportional to the metric tensor g. 

 We now prove the following theorem. 
 

Theorem 3.1.  In order that the mean curvature of nM  with respect to 

quarter-symmetric (F,G) connection ∇ may coincide with that of M 
n
 with 

respect to Riemannian connection 
�

∇ , it is necessary and sufficient that the 

vector fields ,
~

iBXF  
iBXG

~
  and P

~
 are tangential to M 

n
. 

Proof.  In view of the equation (2.12), comparison of vector fields 

normal to nM  yields 
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Hence 
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if and only if µ
x
 = v

x
 = λ

x
 = 0 for x = 1, 2, …, r. Hence the vector fields 

,
~

iBXF  
iBXG

~
  and P

~
 are tangential to M 

n
. 
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