On Submanifolds of Almost r – Contact Structure Manifolds

Lovejoy S. Das

Department of Mathematics Kent State University, New Philadelphia, OH 44663, U.S.A. Email: <u>ldas@kent.edu</u>

Ram Nivas

Department of Mathematics and Astronomy Lucknow University, Lucknow, UP 226007 Email: <u>rnivas@sify.com</u>

(Received March 10, 2010)

Abstract: Almost r - contact structure was defined and studied by Vanzura¹ and several other geometers including Mishra, Pandey² and Imai³. Recently, Das, Ram Nivas, S. Ali and M. Ahmad⁴ have studied quarter symmetric connections and have obtained some interesting results. In this paper, authors have studied submanifolds of an almost r - contact structure manifold. Quarter symmetric (*F*, *G*) – connection has also been defined and submanifolds of a manifolds with such connection have been studied. Study of (*F*, *G*) geodesic and (*F*, *G*) umbilical submanifolds is also the subject matter of this paper. **Keywords and Phrases :** Almost r - contact manifolds, connection, (F, G) geodesic, (F, G) umbilical submanifolds.

2000 AMS Subject Classification No.: 53D10, 53C05

1. Subamnifolds of Codimension 2r

Let M^{n+r} be on (n + r) – dimensional differentiable manifold of class c^{∞} . Suppose there exists on M^{n+r} a tensor field ϕ of type (1, 1), $r(c^{\infty})$ contravariant vector fields $\xi_1, \xi_2, ..., \xi_r$ and $r(c^{\infty})$ 1 – forms $\eta_1, \eta_2, ..., \eta_r$ such that

(1.1a)
$$\phi^2 = -I + \sum_{l=1}^r \eta_l \otimes \xi_l,$$

- (1.1b) $\phi \xi_1 = 0,$
- (1.1c) $\eta_l \circ \phi = 0 \text{ and } \eta_1(\xi_m) = \delta_{lm}$

where l, m = 1, 2, ..., r and δ_{lm} denotes the Kronecker delta. Then M^{n+r} satisfying above equations (1.1) will be called an almost r – contact structure manifold¹. If M^{n+r} is endowed with a positive definite Riemannian metric g such that

$$g(\phi X, \phi Y) = g(X, Y) - \sum_{l=1}^{r} \eta_l(X) \eta_l(Y),$$

we say that M^{n+r} admits almost r – contact metric structure.

Let M^n be an n – dimensional submanifold of the almost r – contact structure manifold M^{n+r} such that the vector fields $\xi_l \ l = 1, 2, ..., \xi_r$ are always tangent to M^n . Throughout this paper we will assume that the vector fields $\xi_1, \xi_2, ..., \xi_r$ are always tangent to M^n . Thus there exist r mutually orthogonal unit normals $N_1, N_2, ..., N_r$ such that if X is in the tangent space of M^n , the transformations for ϕX and ϕN_l can be written as⁵

(1.2)
$$\phi X = f X + \sum_{l=1}^{r} \alpha_l(X) N_l$$

where α_l , l = 1, 2, ..., r are 1 – forms and *f* is a tensor field of type (1, 1) on the submanifold M^n . Also

(1.3)
$$\phi N_l = -A_l, \quad l = 1, 2, ..., r.$$

Here A_l , l = 1, 2, ..., r are c^{∞} vector fields on the submanifold M^n and tangential to M^n .

Operating (1.2) by ϕ and making use of (1.2) itself and also the equations (1.1a) and (1.3), we get

$$-X + \sum_{l=1}^{r} \eta_{l}(X)\xi_{l} = f^{2}X + \sum_{l=1}^{r} \alpha_{l}(fX)N_{l} + \sum_{l=1}^{r} \alpha_{l}(X)(-A_{l})$$

Comparison of vector fields tangential and normal to M^n yields

$$f^{2} = -I + \sum_{l=1}^{r} \{ \eta_{l} \otimes \xi_{l} + \alpha_{l} \otimes A_{l} \}$$

and

$$\alpha_l \circ f = 0$$

In view of the equation (1.2), we have

$$(\boldsymbol{\eta}_m \circ \boldsymbol{\phi})(X) = (\boldsymbol{\eta}_m \circ f)(X) + \sum_{l=1}^r \alpha_l(X) \boldsymbol{\eta}_m(N_l)$$

Taking $\eta_m(N_l) = 0$ we get

$$\eta_m \circ f = 0$$

Again, in view of the equation (1.2), we have

$$\varphi(A_m) = f(A_m) + \sum_{l=1}^r \alpha_l(A_m) N_l.$$

Taking $\phi A_m = N_m$ and $\alpha_l(A_m) = \delta_{lm}$, we get

$$f(A_m) = 0, m = 1, 2, ..., r.$$

Again by virtue of the equation (1.2), we have

$$\phi(\xi_m) = f(\xi_m) + \sum_{l=1}^r \alpha_l(\xi_m) N_l$$

Taking $\alpha_l(\xi_m) = 0$, we get

$$f(\xi_m)=0.$$

Thus the submanifold M^n of almost r – contact structure manifold M^{n+r} admits a structure satisfying

(1.4a)
$$f^{2} = -I + \sum_{l=1}^{r} \{ \eta_{l} \otimes \xi_{l} + \alpha_{l} \otimes A_{l} \}$$

 $\alpha_{l} \circ f = \eta_{m} \circ f = 0,$ (1.4b)

(1.4c)
$$\phi \xi_l = f \xi_l = 0,$$

- $\alpha_l(\xi_m) = \eta_l(A_m) = 0,$ (1.4d)
- $f(A_i) = 0$ (1.4e)
- $\alpha_{l}(\xi_{m}) = \eta_{l}(\xi_{m}) = \delta_{lm}; \ l, m = 1, 2, ..., r.$ (1.4f)

We have

Theorem 1.1. The submanifold M^n of codimension r of almost r – contact structure manifold M^{n+r} such that the vector fields ξ_l and A_l are tangents to M^n admits a structure given by the equation (1.4).

Now let us define a (1, 1) tensor field \tilde{f} on M^n as

(1.5)
$$\tilde{f} = f + \sum_{l=1}^{r} \eta_l \otimes A_l.$$

Then in view of the equation (1.4), it is easy to show that

Hence by virtue of (1.4), (1.5) and (1.6), it can be easily shown that

(1.7a)
$$\widetilde{f}^{2} = -I + \sum_{l=1}^{r} \{ \eta_{l} \otimes \xi_{l} + \alpha_{l} \otimes A_{l} \}$$

(1.7b)
$$\alpha_l \circ \tilde{f} = \eta_l$$

 $\begin{aligned}
\alpha_l \circ f &= \eta_l, \\
\eta_l \circ \tilde{f} &= 0,
\end{aligned}$ (1.7c)

(1.7d)
$$\widetilde{f}(\xi_l) = A_l$$

(1.7e)
$$\widetilde{f}(A_t) = 0.$$

Thus we have

Theorem 1.2. The (1, 1) tensor field \tilde{f} defined on the submanifold M^n of the almost r – contact structure manifold M^{n+r} defines a structure on M^n given by the equation (1.7).

2. Quarter Symmetric (F, G) Connection

As in the previous section, M^n is the submanifold of codimension r immersed differentiably in the r – contact structure manifold M^{n+r} . Let ζ be the immersion $M^n \to M^{n+r}$ and $B = d\zeta$. Hence the vector field X in the tangent space of M^n corresponds to a vector field BX tangential to M^{n+r} If \tilde{g} be the Riemannian metric on M^{n+r} and g the induced metric on M^n , we have

(2.8)
$$\tilde{g}(BX, BY) = g(X, Y)$$
 for all X, Y tangents to M^n

As N_x , x = 1, 2, ..., r are mutually orthogonal unit normals to M^n (2.9a) $\tilde{g}(BX, N_x) = 0$ and

(2.9b)
$$\tilde{g}(N_x, N_y) = \delta_{xy}, x, y = 1, 2, ..., r$$

where δ_{xy} is the Kronecker delta.

Suppose M^{n+r} admits a connection $\tilde{\nabla}$ given by

(2.10)
$$\widetilde{\nabla}_{BX}BY = \overset{\circ}{\nabla}_{BX}BY + \widetilde{\pi}(BY)\widetilde{F}(BX) - \widetilde{\pi}(BX)\widetilde{G}(BY) - \widetilde{g}(BX,BY)\widetilde{P}$$

where ∇ is the Levi-civita connection and \tilde{F}, \tilde{G} are tensor fields of type (1, 1) on M^{n+r} . We call the connection ∇ as quarter symmetric (*F*, *G*) connection on M^{n+r} . Also \tilde{P} is a vector field and $\tilde{\pi}$ 1 – form on the enveloping manifold M^{n+r} .

Theorem 2.1. The connection induced on the submanifold M^n from the quarter symmetric (F, G) connection $\tilde{\nabla}$ on M^{n+r} is also the quarter symmetric (F, G) connection.

Proof. Let us put

(2.11a) $\widetilde{P} = B P + \lambda^x N_x$

334

(2.11b)
$$\widetilde{\nabla}_{BX}BY = B\nabla_X Y + \sum_{x=1}^r h^x(X,Y)N_x$$

(2.11c)
$$\tilde{\nabla}_{BX} BY = B(\tilde{\nabla}_X Y) + \sum_{x=1}^r m^x (X, Y) N_x$$

where $h^x(X, Y)$ and $m^x(X, Y)$ are tensor fields of type (1, 2) and P the vector field tangential to M^n . We can also write

(2.11d)
$$\widetilde{F}(BX) = BFX + \sum_{x=1}^{r} \mu^{x} N_{x}$$

(2.11e)
$$\widetilde{G}BY = BGY + \sum_{x=1}^{r} \gamma^{x} N_{x}$$

where λ^{x} , μ^{x} , γ^{x} are scalars. Hence (2.10) takes the form

$$(2.12) \quad B\nabla_{X}Y + \sum_{x=1}^{r} h^{x}(X,Y)N_{x} = B\overset{\circ}{\nabla}_{X}Y + \sum_{x=1}^{r} m^{x}(X,Y)N_{x} + \pi(Y)\{BFX + \sum_{x=1}^{r} \mu^{x}N_{x}\} - \pi(X)\{BGY + \sum_{x=1}^{r} \nu^{x}N_{x}\} - g(X,Y)\{BP + \sum_{x=1}^{r} \lambda^{x}N_{x}\}.$$

Comparison of vector fields tangential to M^{n+r} gives

$$\nabla_X Y = \nabla_X Y + \pi(Y)FX - \pi(X)G(Y) - g(X,Y)P$$

which shows that ∇ is quarter symmetric (*F*, *G*) connection on M^n .

3. (F, G) Geodesic and (F, G) Umbilical Submanifolds

Let $\{X_1, X_2, ..., X_n\}$ be the set of orthonormal vector fields on M^n . We call

$$\frac{1}{nr}\sum_{x=1}^{r}\sum_{i=1}^{n}h^{x}(X_{i},X_{i})$$

the mean curvature of M^n with respect to connection ∇ and

$$\frac{1}{nr}\sum_{x=1}^{r}\sum_{i=1}^{n}m^{x}(X_{i},X_{i})$$

the mean curvature of M^n with respect to connection ∇ .

Definition 3.1. We say that the submanifold M^n is (F, G) geodesic with respect to quarter symmetric (F, G) connection ∇ if $h^x(X, Y) = 0$, x = 1, 2, ..., r.

Definition 3.2. We say that the submanifold M^n is (F, G) umbilical with respect to connection ∇ if $h^x(X, Y)$ are proportional to the metric tensor g.

Definition 3.3. The submanifold M^n will be (F, G) geodesic or (F, G)umbilical with respect to Riemannian connection $\stackrel{\circ}{\nabla}$ according as $m^x(X, Y)$ vanish or proportional to the metric tensor g.

We now prove the following theorem.

Theorem 3.1. In order that the mean curvature of M^n with respect to quarter-symmetric (F,G) connection ∇ may coincide with that of M^n with respect to Riemannian connection $\stackrel{\circ}{\nabla}$, it is necessary and sufficient that the vector fields $\tilde{F}BX_i$, $\tilde{G}BX_i$ and \tilde{P} are tangential to M^n .

Proof. In view of the equation (2.12), comparison of vector fields normal to M^n yields

$$h^{x}(X_{i}, X_{i}) = m^{x}(X_{i}, X_{i}) + \pi(X_{i})\mu^{x} - \pi(X_{i})\nu^{x} - \lambda^{x}g(X_{i}, X_{i})$$

Hence

$$\frac{1}{nr}\sum_{x=1}^{r}\sum_{i=1}^{n}h^{x}(X_{i},X_{i}) = \frac{1}{nr}\sum_{x=1}^{r}\sum_{i=1}^{n}m^{x}(X_{i},X_{i})$$

if and only if $\mu^x = v^x = \lambda^x = 0$ for x = 1, 2, ..., r. Hence the vector fields \widetilde{FBX}_i , \widetilde{GBX}_i and \widetilde{P} are tangential to M^n .

References

- 1. Jiri Vanzura, Almost r contact structure manifolds, *Annali Della Scuola, Normale Superiore Di Pisa*, **20** (1972) 97-115.
- R. S. Mishra and S. N. Pandey, On quarter-symmetric F connections, *Tensor, N.S.*, 30 (1980) 1-7.
- 3. T. Imai, On semi-symmetric metric connection, *Tensor, N.S.*, 24 (1972) 293-296.
- 4. Lovejoy S. Das, Ram Nivas, Sahadat Ali and Mobin Ahmad, Study of submanifolds immersed in a manifold with quarter symmetric semi metric connection, *Tensor*, *N*. *S.*, **65** (2001) 250-260.
- 5. H. W. Proppe ,Some properties of almost contact hypersurfaces of certain almost contact manifolds, *Prog.Maths*, **9(1)** (1975)7-21.
- 6. Lovejoy S. Das, Invariant submanifold of the manifold with ϕ (K, () ^{K+1}) structure, *Tensor*, *N.S.*, **64** (2003) 189-196.
- Ram Nivas and Nazrul Islam Khan, On manifolds admitting Hsu-metric structure, Acta Ciencia Indica, XXX M, No. 3, 645(2004)285- 290.