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1. Introduction 
 

 Let ω  be the space of all sequences real or complex. Nung1 introduced 
Cesaro sequence spaces of non-absolute type, denoted by Xp and is defined 
as 
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 The following sequence spaces are well known: 
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When s = 0, ppk = for all k, then l( p, s ) is the same as p
l , of course l(p, s) 

= l(p) for s = 0. 
 

An infinite matrix A=(ank) is called a factorable matrix if the non-zero 
entries are of the form nkkn dca = , where {ck} and {dn} are arbitrary real 

or complex sequences. An infinite matrix A=(ank) is called a lower 
triangular if ank  = 0 for each k > n, and ann ≠ 0 for each n. 

 

 Let B = (bnk) be an infinite matrix of complex numbers bnk (n,k=1,2,…..) 
and X, Y be two subsets of the space of complex sequences. We say that the 
matrix B defines a matrix transformation from X into Y and denote it by B ϵ 
(X,Y), if for every x ϵ X, the sequence B x ={Bn(x)} ϵ Y,   

where  Bn(x) = ∑
∞

=0

,
k

knk xb  provided the series on the right converges. 

 

 In an attempt to generalize the space Xp and also the results of Nung3, 
mentioned at the outset, Khan and Rehman4 recently defined the following 
new sequence space, 
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where A is a lower triangular factorable infinite matrix. 
 

 We further extend this to the sequence space: 

( ) ( ){ },,:, splAxwxsplA ∈∈=  

for any lower triangular infinite matrix A=(ank) such that ank  ≠ 0 (k ≤ n). 

This reduces to p

Al  when s=0, ppk = for all k and A a factorable matrix. 
 

 For a space X of complex sequences, x={xk}, the generalized Köthe-
Toeplitz dual denoted by +X is defined by, 
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In this paper we determine the generalized Köthe-Toeplitz dual of the 
space ( )splA ,  where ( )knaA=  is any arbitrary lower triangular matrix with 
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non-zero entries and characterize the matrices of classes ( )( )∞lsplA ,,  and 

( )( ).,, csplA  These results yield the results of Khan and Rehman4 as a 

special case when the matrix A is factorable, s = 0 and ppk = for all k and 

hence also generalize and extend the results of Nung[4]. 
 

The following results are pertinent for the proof of our theorems: 
 

Lemma
2
 1: i)  Let ∞<=≤< Hpp kk sup1  for every k ϵ N, then B ϵ 

( )( )∞lspl ,,  if and only if there exists an integer D > 1 such that 
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ii)  If 1inf0 ≤≤=< kk
k

ppm for each k ϵ N, then B ϵ ( )( )∞lsplA ,,  if and 
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Lemma
2
 2 : i) Let ,sup1 ∞<=≤< Hpp k

k
k

 for every k ϵ N, then B ϵ 

( )( )cspl ,, if and only if together with (1.1) the condition  

  (1.3)              ( )fixedknb knk ,∞→→ β  holds.                         

 

ii)   Let 1inf0 ≤≤=< kk
k

ppm for each k ϵ N, then B ϵ ( )( )cspl ,,  if and 

only if the conditions (1.2) and (1.3) hold. 

 
2. Köthe-Toeplitz dual of ( )splA ,  

 

In the sequel we assume that A=( ank ) is a lower triangular with non-
zero entries. 
 

Suppose that x = ( xk ) ϵ ( )splA ,  and y = ( yk ) ϵ ( )splA ,+ , where kp > 0. 

By Abel’s transformation, we have 
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Let B = ( bnk ). Then for every x ϵ ( )splA ,  and ktt =  ϵ ( )spl , , we have 

Bt ϵ c. Then by using Lemma 2, B: ( ) cspl →,  if and only if conditions 

(1.1) together with (1.3) hold for ,sup1 ∞<=≤< Hpp k
k

k
 for every k ϵ N, 

or conditions (1.2) and (1.3) hold for 10 ≤< kp . 

Thus we have  
 

Theorem 1: (a) Let ,sup1 ∞<=≤< Hpp k
k

k
for every k ϵ N Then the 

Köthe- Toeplitz dual ( )[ ]+
splA , of ( )splA ,  is the space of all sequences y 

such that 
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(b)  Let 1inf0 ≤≤<< kk
k

ppm , for every k ϵ N. Then the Köthe -Toeplitz 

dual ( )[ ]+
splA , of ( )splA ,  is the space of all sequences y such that 

 

 

 

Remark 1: We may split the condition (1.4) into two as follows: 
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1. Characterization of the matrix classes  

( )( )∞lsplA ,,  and ( )( )csplA ,,  
 

Theorem 2: Let ∞<< kp1  and 1
11

=+
kk qp

. Then M = (mnk) ϵ 

( )( )∞lsplA ,, if and only if there exists an integer D >1 such that 
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Theorem 3: Let ∞<< kp1 and 1
11

=+
kk qp

. Then M = (mnk) ϵ 

( )( )csplA ,, if and only if there exists an integer D>1 such that (3.1), (3.2) 

and (3.3) holds. 

(3.3)    nk
n

mlim exists for each k. 
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Proof of Theorem 2: Since M = (mnk) ϵ ( )( )∞lsplA ,,  for each 

n=0,1,2,……,mnk  is in the Köthe-Toeplitz dual of 
( ) ( ) ( )1.1,,, ⇔∈⇔ ∞lsplBsplA  holds. Thus the proof follows immediately 

by substituting knk my ,=  in bnk  and observing that the condition can be split 

into two. 
 

Proof of Theorem 3: Conditions (3.1) and (3.2) follow from Theorem 2 
and (3.3) follows from (1.1). 
 

Remark 2: When the matrix A = (ank) is a triangular factorable matrix 
i.e. ank   = ck dn, then the matrix bnk takes the form 
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and the conditions (3.1) and (3.2) of Theorem 2 and 3 will become 
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then we obtain corresponding results for weighted means, which is the same 
as given in Remark1 of Khan and Rehman4. 
 

Remark 4: If ,....2,1,0,1 == kck  and ,.....1,0,
1

1
=

+
= n

n
dn  Then we 

get results more general than Theorems 1 and 2 of Khan and Rehman4. 
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