A Note on Certain Sequence Space of a Non-Absolute Type*

Tanweer Jalal

Department of Mathematics
National Institute of Technology, Srinagar-190006
E-mail : tjalal@rediffmail.com
Z. U. Ahmad

Sidrah, 4-389, Noor Bagh, Dodhpur, Civil Lines, Aligarh-202001
Email: zafaruddinahmad@yahoo.com
(Received February 20, 2010)

Abstract

The main purpose of this note is to define the sequence space $l_{\mathrm{A}}(\mathrm{p}, \mathrm{s})$ and characterize the classes of matrices $\left(l_{\mathrm{A}}(\mathrm{p}, \mathrm{s}), l_{\infty}\right)$ and $\left(l_{\mathrm{A}}(\mathrm{p}, \mathrm{s}), \mathrm{c}\right)$, where A is any arbitrary lower triangular matrix. Keywords: Cesaro sequence spaces of non-absolute type, matrix transformations. AMS Subject Classification (2000): 40C05, 46A45.

1. Introduction

Let ω be the space of all sequences real or complex. Nung ${ }^{1}$ introduced Cesaro sequence spaces of non-absolute type, denoted by X_{p} and is defined as

$$
X_{p}=\left\{x \in w:\left(\sum_{n=0}^{\infty}\left|\frac{1}{n+1} \sum_{k=0}^{n} x_{k}\right|^{p}\right)^{\frac{1}{p}}<\infty\right\},(1 \leq p<\infty)
$$

The following sequence spaces are well known:

$$
\begin{array}{ll}
l_{\infty}=\left\{\underset{k}{\left.x: \sup _{k}\left|x_{k}\right|<\infty\right\},}\right. & c=\left\{x: \lim _{k} x_{k} \text { exists }\right\}, \\
c_{0}=\left\{x: \lim _{k} x_{k}=0\right\}, & l^{p}=\left\{x: \sum_{k}\left|x_{k}\right|^{p}<\infty\right\},
\end{array}
$$

*Presented at CONIAPS XI, University of Allahabad, Feb. 20-22, 2010.

$$
\begin{gathered}
l(p)=\left\{x: \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}, p=\left\{p_{k}\right\} \text { is such that } p_{k}>0 \\
l(p, s)=\left\{x: \sum_{k} k^{-s}\left|x_{k}\right|^{p_{k}}<\infty, s>0, p_{k}>0\right\} s e e^{2} .
\end{gathered}
$$

When $\mathrm{s}=0, p_{k}=p$ for all k , then $l(p, s)$ is the same as l^{p}, of course $l(p, s)$ $=l(p)$ for $\mathrm{s}=0$.

An infinite matrix $A=\left(a_{n k}\right)$ is called a factorable matrix if the non-zero entries are of the form $a_{n k}=c_{k} d_{n}$, where $\left\{\mathrm{c}_{\mathrm{k}}\right\}$ and $\left\{\mathrm{d}_{\mathrm{n}}\right\}$ are arbitrary real or complex sequences. An infinite matrix $A=\left(a_{n k}\right)$ is called a lower triangular if $a_{n k}=0$ for each $k>n$, and $\mathrm{a}_{\mathrm{nn}} \neq 0$ for each n .

Let $B=\left(b_{n k}\right)$ be an infinite matrix of complex numbers $b_{n k}(n, k=1,2, \ldots .$. and X, Y be two subsets of the space of complex sequences. We say that the matrix B defines a matrix transformation from X into Y and denote it by $B \epsilon$ (X, Y), if for every $x \in X$, the sequence $B x=\left\{B_{n}(x)\right\} \in Y$,
where $B_{n}(x)=\sum_{k=0}^{\infty} b_{n k} x_{k}$, provided the series on the right converges.
In an attempt to generalize the space X_{p} and also the results of Nung ${ }^{3}$, mentioned at the outset, Khan and Rehman ${ }^{4}$ recently defined the following new sequence space,

$$
l_{A}^{p}=\left\{x \in w: A x=\left\{A_{n}(x)\right\} \in l^{p} ; 1<p<\infty\right\},
$$

where A is a lower triangular factorable infinite matrix.
We further extend this to the sequence space:

$$
l_{A}(p, s)=\{x \in w: A x \in l(p, s)\},
$$

for any lower triangular infinite matrix $A=\left(a_{n k}\right)$ such that $a_{n k} \neq 0(k \leq n)$. This reduces to l_{A}^{p} when $s=0, p_{k}=p$ for all k and A a factorable matrix.

For a space X of complex sequences, $x=\left\{x_{k}\right\}$, the generalized KötheToeplitz dual denoted by X^{+}is defined by,

$$
X^{+}=\left\{\left\{\alpha_{k}\right\}: \sum_{k=0}^{\infty} \alpha_{k} x_{k} \text { converges for every } x \in X\right\}
$$

In this paper we determine the generalized Köthe-Toeplitz dual of the space $l_{A}(p, s)$ where $A=\left(a_{n k}\right)$ is any arbitrary lower triangular matrix with
non-zero entries and characterize the matrices of classes $\left(l_{A}(p, s), l_{\infty}\right)$ and $\left(l_{A}(p, s), c\right)$. These results yield the results of Khan and Rehman ${ }^{4}$ as a special case when the matrix A is factorable, $s=0$ and $p_{k}=p$ for all k and hence also generalize and extend the results of Nung[4].
The following results are pertinent for the proof of our theorems:
Lemma ${ }^{2}$ 1: i) Let $1<p_{k} \leq \sup p_{k}=H<\infty$ for every $k \in N$, then $B \epsilon$ $\left(l(p, s), l_{\infty}\right)$ if and only if there exists an integer $D>1$ such that

$$
\begin{equation*}
\sup _{n} \sum_{k=1}^{\infty}\left|b_{n k}\right|^{q_{k}} D^{-q_{k}} k^{s\left(q_{k}-1\right)}<\infty \tag{1.1}
\end{equation*}
$$

where $\frac{1}{p_{k}}+\frac{1}{q_{k}}=1$
ii) If $0<m=\inf _{k} p_{k} \leq p_{k} \leq 1$ for each $k \in N$, then $B \in\left(l_{A}(p, s), l_{\infty}\right)$ if and only if

$$
\begin{equation*}
K=\sup _{n, k}\left\{\left|b_{n k}\right|^{p_{k}} k^{s}\right\}<\infty \tag{1.2}
\end{equation*}
$$

Lemma $^{2} 2$: i) Let $1<p_{k} \leq \sup _{k} p_{k}=H<\infty$, for every $k \in N$, then $B \epsilon$ $(l(p, s), c)$ if and only if together with (1.1) the condition

$$
\begin{equation*}
b_{n k} \rightarrow \beta_{k}(n \rightarrow \infty, k \text { fixed }) \text { holds. } \tag{1.3}
\end{equation*}
$$

ii) Let $0<m=\inf _{k} p_{k} \leq p_{k} \leq 1$ for each $k \in N$, then $B \in(l(p, s), c)$ if and only if the conditions (1.2) and (1.3) hold.

2. Köthe-Toeplitz dual of $l_{A}(p, s)$

In the sequel we assume that $A=\left(a_{n k}\right)$ is a lower triangular with nonzero entries.

Suppose that $x=\left(x_{k}\right) \in l_{A}(p, s)$ and $y=\left(y_{k}\right) \in l_{A}^{+}(p, s)$, where $p_{k}>0$. By Abel's transformation, we have

$$
\sum_{k=0}^{\infty} x_{k} y_{k}=\sum_{k=0}^{n-1}\left(\sum_{i=0}^{k} a_{n i} x_{i}\right)\left(\frac{y_{k}}{a_{n k}}-\frac{y_{k+1}}{a_{n, k+1}}\right)+\left(\sum_{i=0}^{n} a_{n i} x_{i}\right) \frac{y_{n}}{a_{n n}}=\sum_{k=0}^{n} b_{n k} t_{k} \text {, say }
$$

where,

$$
b_{n k}= \begin{cases}\frac{y_{k}}{a_{n k}}-\frac{y_{k+1}}{a_{n, k+1}}, & \text { when } 0 \leq k \leq(n-1) \\ \frac{y_{n}}{a_{n n}}, & \text { when } k=n \\ 0, & \text { when } k>n\end{cases}
$$

and

$$
t_{k}=\sum_{i=1}^{k} a_{n i} x_{i}
$$

Let $B=\left(b_{n k}\right)$. Then for every $x \in l_{A}(p, s)$ and $t=t_{k} \in l(p, s)$, we have Bt $\in c$. Then by using Lemma 2, B: $l(p, s) \rightarrow c$ if and only if conditions (1.1) together with (1.3) hold for $1<p_{k} \leq \sup _{k} p_{k}=H<\infty$, for every $k \in N$, or conditions (1.2) and (1.3) hold for $0<p_{k} \leq 1$.

Thus we have
Theorem 1: (a) Let $1<p_{k} \leq \sup _{k} p_{k}=H<\infty$,for every $k \in N$ Then the Köthe- Toeplitz dual $\left[l_{A}(p, s)\right]^{+}$of $l_{A}(p, s)$ is the space of all sequences y such that

$$
\begin{align*}
& \sup _{n}\left\{\sum_{k=0}^{n-1}\left|\left(\frac{y_{k}}{a_{n k}}-\frac{y_{k+1}}{a_{n, k+1}}\right)\right|^{q_{k}} D^{-q_{k}} k^{s\left(q_{k}-1\right)}\right. \tag{1.4}\\
&\left.+\left|\frac{y_{n}}{a_{n n}}\right|^{q_{n}} D^{-q_{n}} s\left(q_{n}-1\right) ; n \geq 1\right\} \leq \infty,
\end{align*}
$$

where $\frac{1}{p_{k}}+\frac{1}{q_{k}}=1$.
(b) Let $0<m<\inf _{k} p_{k} \leq p_{k} \leq 1$, for every $k \in N$. Then the Köthe -Toeplitz dual $\left[l_{A}(p, s)\right]^{+}$of $l_{A}(p, s)$ is the space of all sequences y such that

$$
\begin{equation*}
\sup _{n, k}\left\{\left|\left(\frac{y_{k}}{a_{n k}}-\frac{y_{k+1}}{a_{n, k+1}}\right)\right|^{p_{k}} k^{-s}\right\}<\infty \tag{1.5}
\end{equation*}
$$

Remark 1: We may split the condition (1.4) into two as follows:

$$
\begin{equation*}
\sup _{n}\left\{\left|\frac{y_{n}}{a_{n n}}\right|^{q_{n}} D^{-q_{n}} n^{s\left(q_{n}-1\right)} ; n \geq 0\right\}<\infty, \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n}\left\{\sum_{k=0}^{n-1}\left|\left(\frac{y_{k}}{a_{n k}}-\frac{y_{k+1}}{a_{n, k+1}}\right)\right|^{q_{k}} D^{-q_{k}} k^{s\left(q_{k}-1\right)} ; n \geq 1\right\}<\infty . \tag{1.7}
\end{equation*}
$$

1. Characterization of the matrix classes

$$
\left(l_{A}(p, s), l_{\infty}\right) \text { and }\left(l_{A}(p, s), c\right)
$$

Theorem 2: Let $1<p_{k}<\infty$ and $\frac{1}{p_{k}}+\frac{1}{q_{k}}=1$. Then $M=\left(m_{n k}\right) \epsilon$ $\left(l_{A}(p, s), l_{\infty}\right)$ if and only if there exists an integer $D>1$ such that

$$
\begin{equation*}
\sup _{n}\left\{\sum_{k=0}^{\infty}\left|\left(\frac{m_{n k}}{a_{n, k}}-\frac{m_{n, k+1}}{a_{n, k+1}}\right)\right|^{q_{k}} D^{-q_{k}} k^{s\left(q_{k}-1\right)}\right\}<\infty \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n, k}\left\{\left|\left(\frac{m_{n k}}{a_{k k}}\right)\right|^{q_{k}} D^{-q_{k}} k^{s\left(q_{k}-1\right)}\right\}<\infty \tag{3.2}
\end{equation*}
$$

Theorem 3: Let $1<p_{k}<\infty$ and $\frac{1}{p_{k}}+\frac{1}{q_{k}}=1$. Then $M=\left(m_{n k}\right) \epsilon$ $\left(l_{A}(p, s), c\right)$ if and only if there exists an integer $D>1$ such that (3.1), (3.2) and (3.3) holds.
$\lim _{n} m_{n k}$ exists for each k.

Proof of Theorem 2: Since $M=\left(m_{n k}\right) \in\left(l_{A}(p, s), l_{\infty}\right)$ for each $n=0,1,2, \ldots \ldots, m_{n k}$ is in the Köthe-Toeplitz dual of $l_{A}(p, s) \Leftrightarrow B \in l(p, s), l_{\infty} \Leftrightarrow(1.1)$ holds. Thus the proof follows immediately by substituting $y_{k}=m_{n, k}$ in $b_{n k}$ and observing that the condition can be split into two.

Proof of Theorem 3: Conditions (3.1) and (3.2) follow from Theorem 2 and (3.3) follows from (1.1).

Remark 2: When the matrix $A=\left(a_{n k}\right)$ is a triangular factorable matrix i.e. $a_{n k}=c_{k} d_{n}$, then the matrix $b_{n k}$ takes the form

$$
b_{n k}= \begin{cases}\frac{1}{d_{k}}\left(\frac{y_{k}}{c_{k}}-\frac{y_{k+1}}{c_{k+1}}\right), & \text { when } 0 \leq k \leq(n-1) \\ \frac{y_{n}}{d_{n} c_{n}}, & \text { when } k=n \\ 0, & \text { when } k>n\end{cases}
$$

and the conditions (3.1) and (3.2) of Theorem 2 and 3 will become

$$
\begin{equation*}
\sup _{n}\left\{\sum_{k=0}^{\infty}\left|\frac{1}{d_{k}}\left(\frac{m_{n k}}{c_{k}}-\frac{m_{n, k+1}}{c_{k+1}}\right)\right|^{q_{k}} D^{-q_{k}} k^{s\left(q_{k}-1\right)}\right\}<\infty, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n, k}\left|\frac{m_{n k}}{d_{k} c_{k}}\right| D^{-q_{k}} k^{s\left(q_{k}-1\right)}<\infty . \tag{3.5}
\end{equation*}
$$

Remark 3: If $\mathrm{s}=0, p_{k}=p$ for all $p, c_{k}=t_{k}$ and $d_{n}=\frac{1}{Q_{n}}, Q_{n}=\sum_{k=0}^{n} t_{k}$, then we obtain corresponding results for weighted means, which is the same as given in Remark1 of Khan and Rehman ${ }^{4}$.

Remark 4: If $c_{k}=1, k=0,1,2, \ldots$. and $d_{n}=\frac{1}{n+1}, n=0,1, \ldots \ldots$ Then we get results more general than Theorems 1 and 2 of Khan and Rehman ${ }^{4}$.

References

1. Ng Peng - Nung : On modular space of a non - absolute type, Nanta Math., 2 (1978) $84-98$.
2. E. Bulut and Ö. Çakar, The sequence space $l(p, s)$ and related matrix transformations, communications de la Faculte des Sciences de l'universite', Ankara, 28 (1979) 33 - 44.
3. Ng Peng - Nung : Matrix Transformations on Cesaro sequence spaces of a non absolute type, Tamkang J. Math., 10 (2) (1979) 214 - 221.
4. F. M. Khan and M. F. Rahman : Matrix Transformations on Cesaro sequence spaces of a non - absolute type, J. Analysis, 4 (1996) 97 - 101.
