Vol. 14 No.3 (2010) Journal of International Academy of Physical Sciences pp. 323-329

A Note on Certain Sequence Space of a Non-Absolute Type*

Tanweer Jalal

Department of Mathematics National Institute of Technology, Srinagar-190006 E-mail : <u>tjalal@rediffmail.com</u>

Z. U. Ahmad

Sidrah, 4-389, Noor Bagh, Dodhpur, Civil Lines, Aligarh-202001 Email: <u>zafaruddinahmad@yahoo.com</u>

(Received February 20, 2010)

Abstract: The main purpose of this note is to define the sequence space $l_A(p,s)$ and characterize the classes of matrices $(l_A(p,s), l_{\infty})$ and $(l_A(p,s), c)$, where A is any arbitrary lower triangular matrix. Keywords: Cesaro sequence spaces of non-absolute type, matrix transformations. AMS Subject Classification (2000): 40C05, 46A45.

1. Introduction

Let ω be the space of all sequences real or complex. Nung¹ introduced Cesaro sequence spaces of non-absolute type, denoted by X_p and is defined as

$$X_{p} = \left\{ x \in w : \left(\sum_{n=0}^{\infty} \left| \frac{1}{n+1} \sum_{k=0}^{n} x_{k} \right|^{p} \right)^{\frac{1}{p}} < \infty \right\}, (1 \le p < \infty)$$

The following sequence spaces are well known:

$$l_{\infty} = \left\{ x : \sup_{k} |x_{k}| < \infty \right\}, \qquad c = \left\{ x : \lim_{k} x_{k} \ exists \right\},$$
$$c_{0} = \left\{ x : \lim_{k} x_{k} = 0 \right\}, \qquad l^{p} = \left\{ x : \sum_{k} |x_{k}|^{p} < \infty \right\},$$

*Presented at CONIAPS XI, University of Allahabad, Feb. 20-22, 2010.

$$l(p) = \left\{ x : \sum_{k} |x_{k}|^{p_{k}} < \infty \right\}, \ p = \left\{ p_{k} \right\} \text{ is such that } p_{k} > 0$$
$$l(p,s) = \left\{ x : \sum_{k} k^{-s} |x_{k}|^{p_{k}} < \infty, \ s > 0, \ p_{k} > 0 \right\} \ see^{2}.$$

When s = 0, $p_k = p$ for all k, then l(p, s) is the same as l^p , of course l(p, s) = l(p) for s = 0.

An infinite matrix $A=(a_{nk})$ is called a factorable matrix if the non-zero entries are of the form $a_{nk} = c_k d_n$, where $\{c_k\}$ and $\{d_n\}$ are arbitrary real or complex sequences. An infinite matrix $A=(a_{nk})$ is called a lower triangular if $a_{nk} = 0$ for each k > n, and $a_{nn} \neq 0$ for each n.

Let $B = (b_{nk})$ be an infinite matrix of complex numbers b_{nk} (n,k=1,2,...)and X, Y be two subsets of the space of complex sequences. We say that the matrix B defines a matrix transformation from X into Y and denote it by $B \in$ (X,Y), if for every $x \in X$, the sequence $B x = \{B_n(x)\} \in Y$,

where $B_n(x) = \sum_{k=0}^{\infty} b_{nk} x_k$, provided the series on the right converges.

In an attempt to generalize the space X_p and also the results of Nung³, mentioned at the outset, Khan and Rehman⁴ recently defined the following new sequence space,

$$l_A^p = \left\{ x \in w : Ax = \{A_n(x)\} \in l^p; 1$$

where A is a lower triangular factorable infinite matrix.

We further extend this to the sequence space:

 $l_{A}(p,s) = \{x \in w : Ax \in l(p,s)\},\$

for any lower triangular infinite matrix $A=(a_{nk})$ such that $a_{nk} \neq 0$ $(k \leq n)$. This reduces to l_A^p when s=0, $p_k = p$ for all k and A a factorable matrix.

For a space X of complex sequences, $x = \{x_k\}$, the generalized Köthe-Toeplitz dual denoted by X^+ is defined by,

$$X^{+} = \left\{ \{ \alpha_{k} \} : \sum_{k=0}^{\infty} \alpha_{k} x_{k} \text{ converges for every } x \in X \right\}.$$

In this paper we determine the generalized Köthe-Toeplitz dual of the space $l_A(p,s)$ where $A = (a_{nk})$ is any arbitrary lower triangular matrix with

non-zero entries and characterize the matrices of classes $(l_A(p,s), l_{\infty})$ and $(l_A(p,s), c)$. These results yield the results of Khan and Rehman⁴ as a special case when the matrix A is factorable, s = 0 and $p_k = p$ for all k and hence also generalize and extend the results of Nung[4].

The following results are pertinent for the proof of our theorems:

Lemma² 1: *i*) Let $1 < p_k \le \sup p_k = H < \infty$ for every $k \in N$, then $B \in (l(p,s), l_{\infty})$ if and only if there exists an integer D > l such that

(1.1)
$$\sup_{n} \sum_{k=1}^{\infty} \left| b_{nk} \right|^{q_{k}} D^{-q_{k}} k^{s(q_{k}-1)} < \infty$$

where $\frac{1}{p_k} + \frac{1}{q_k} = 1$

ii) If $0 < m = \inf_{k} p_{k} \le p_{k} \le 1$ for each $k \in N$, then $B \in (l_{A}(p,s), l_{\infty})$ if and only if

(1.2)
$$K = \sup_{n,k} \left\{ \left| b_{nk} \right|^{p_k} k^s \right\} < \infty$$

Lemma² 2: *i*) Let $1 < p_k \le \sup_k p_k = H < \infty$, for every $k \in N$, then $B \in (l(p, s), c)$ if and only if together with (1.1) the condition

(1.3)
$$b_{nk} \to \beta_k \ (n \to \infty, k \ fixed) \ holds.$$

ii) Let $0 < m = \inf_{k} p_{k} \le p_{k} \le 1$ for each $k \in N$, then $B \in (l(p, s), c)$ if and only if the conditions (1.2) and (1.3) hold.

2. Köthe-Toeplitz dual of $l_A(p, s)$

In the sequel we assume that $A = (a_{nk})$ is a lower triangular with non-zero entries.

Suppose that $x = (x_k) \in l_A(p, s)$ and $y = (y_k) \in l_A^+(p, s)$, where $p_k > 0$. By Abel's transformation, we have

$$\sum_{k=0}^{\infty} x_k y_k = \sum_{k=0}^{n-1} \left(\sum_{i=0}^k a_{ni} x_i \right) \left(\frac{y_k}{a_{nk}} - \frac{y_{k+1}}{a_{n,k+1}} \right) + \left(\sum_{i=0}^n a_{ni} x_i \right) \frac{y_n}{a_{nn}} = \sum_{k=0}^n b_{nk} t_k, \text{ say}$$

where,

$$b_{nk} = \begin{cases} \frac{y_k}{a_{nk}} - \frac{y_{k+1}}{a_{n,k+1}}, & \text{when } 0 \le k \le (n-1) \\ \frac{y_n}{a_{nn}}, & \text{when } k = n \\ 0, & \text{when } k > n \end{cases}$$

and

$$t_k = \sum_{i=1}^k a_{ni} x_i$$

Let $B = (b_{nk})$. Then for every $x \in l_A(p,s)$ and $t = t_k \in l(p,s)$, we have Bt $\in c$. Then by using Lemma 2, B: $l(p,s) \rightarrow c$ if and only if conditions (1.1) together with (1.3) hold for $1 < p_k \leq \sup_k p_k = H < \infty$, for every $k \in N$, or conditions (1.2) and (1.3) hold for $0 < p_k \leq 1$.

Thus we have

Theorem 1: (a) Let $1 < p_k \le \sup_k p_k = H < \infty$, for every $k \in N$ Then the Köthe-Toeplitz dual $[l_A(p,s)]^+$ of $l_A(p,s)$ is the space of all sequences y such that

(1.4)
$$\sup_{n} \begin{cases} \sum_{k=0}^{n-1} \left| \left(\frac{y_{k}}{a_{nk}} - \frac{y_{k+1}}{a_{n,k+1}} \right) \right|^{q_{k}} D^{-q_{k}} k^{s(q_{k}-1)} + \left| \frac{y_{n}}{a_{nn}} \right|^{q_{n}} D^{-q_{n}} n^{s(q_{n}-1)}; n \ge 1 \end{cases} \le \infty,$$

where $\frac{1}{p_k} + \frac{1}{q_k} = 1$.

(b) Let $0 < m < \inf_{k} p_{k} \le p_{k} \le 1$, for every $k \in N$. Then the Köthe -Toeplitz dual $[l_{A}(p,s)]^{+}$ of $l_{A}(p,s)$ is the space of all sequences y such that

(1.5)
$$\sup_{n,k}\left\{\left|\left(\frac{y_k}{a_{nk}}-\frac{y_{k+1}}{a_{n,k+1}}\right)\right|^{p_k}k^{-s}\right\}<\infty.$$

Remark 1: We may split the condition (1.4) into two as follows:

(1.6)
$$\sup_{n}\left\{\left|\frac{y_{n}}{a_{nn}}\right|^{q_{n}}D^{-q_{n}}n^{s(q_{n}-1)}; n\geq 0\right\}<\infty,$$

and

(1.7)
$$\sup_{n} \left\{ \sum_{k=0}^{n-1} \left| \left(\frac{y_{k}}{a_{nk}} - \frac{y_{k+1}}{a_{n,k+1}} \right) \right|^{q_{k}} D^{-q_{k}} k^{s(q_{k}-1)}; n \ge 1 \right\} < \infty.$$

1. Characterization of the matrix classes $(l_A(p,s), l_{\infty})$ and $(l_A(p,s), c)$

Theorem 2: Let $1 < p_k < \infty$ and $\frac{1}{p_k} + \frac{1}{q_k} = 1$. Then $M = (m_{nk}) \epsilon$

 $(l_A(p,s), l_{\infty})$ if and only if there exists an integer D > 1 such that

(3.1)
$$\sup_{n} \left\{ \sum_{k=0}^{\infty} \left| \left(\frac{m_{nk}}{a_{n,k}} - \frac{m_{n,k+1}}{a_{n,k+1}} \right) \right|^{q_{k}} D^{-q_{k}} k^{s(q_{k}-1)} \right\} < \infty$$

and

(3.2)
$$\sup_{n,k} \left\{ \left| \left(\frac{m_{nk}}{a_{kk}} \right) \right|^{q_k} D^{-q_k} k^{s(q_k-1)} \right\} < \infty.$$

Theorem 3: Let $1 < p_k < \infty$ and $\frac{1}{p_k} + \frac{1}{q_k} = 1$. Then $M = (m_{nk}) \epsilon$ $(l_A(p,s),c)$ if and only if there exists an integer D > 1 such that (3.1), (3.2)

and (3.3) holds.

(3.3)
$$\lim_{n} m_{nk} \text{ exists for each } k.$$

Proof of Theorem 2: Since $M = (m_{nk}) \in (l_A(p,s), l_\infty)$ for each $n=0,1,2,\ldots,m_{nk}$ is in the Köthe-Toeplitz dual of $l_A(p,s) \Leftrightarrow B \in l(p,s), l_\infty \Leftrightarrow (1.1)$ holds. Thus the proof follows immediately by substituting $y_k = m_{n,k}$ in b_{nk} and observing that the condition can be split into two.

Proof of Theorem 3: Conditions (3.1) and (3.2) follow from Theorem 2 and (3.3) follows from (1.1).

Remark 2: When the matrix $A = (a_{nk})$ is a triangular factorable matrix i.e. $a_{nk} = c_k d_n$, then the matrix b_{nk} takes the form

$$b_{nk} = \begin{cases} \frac{1}{d_k} \left(\frac{y_k}{c_k} - \frac{y_{k+1}}{c_{k+1}} \right), \text{ when } 0 \le k \le (n-1) \\ \frac{y_n}{d_n c_n}, \text{ when } k = n \\ 0, \text{ when } k > n \end{cases}$$

and the conditions (3.1) and (3.2) of Theorem 2 and 3 will become

(3.4)
$$\sup_{n} \left\{ \sum_{k=0}^{\infty} \left| \frac{1}{d_{k}} \left(\frac{m_{nk}}{c_{k}} - \frac{m_{n,k+1}}{c_{k+1}} \right) \right|^{q_{k}} D^{-q_{k}} k^{s(q_{k}-1)} \right\} < \infty,$$

and

(3.5)
$$\sup_{n,k} \left| \frac{m_{nk}}{d_k c_k} \right| D^{-q_k} k^{s(q_k-1)} < \infty.$$

Remark 3: If s = 0, $p_k = p$ for all $p, c_k = t_k$ and $d_n = \frac{1}{Q_n}, Q_n = \sum_{k=0}^n t_k$,

then we obtain corresponding results for weighted means, which is the same as given in Remark1 of Khan and Rehman⁴.

Remark 4: If $c_k = 1, k = 0, 1, 2, ...$ and $d_n = \frac{1}{n+1}, n = 0, 1, ...$ Then we get results more general than Theorems 1 and 2 of Khan and Rehman⁴.

References

- 1. Ng Peng Nung : On modular space of a non absolute type, *Nanta Math.*, 2 (1978) 84 98.
- 2. E. Bulut and Ö. Çakar, The sequence space l(p,s) and related matrix transformations, communications de la Faculte des Sciences de l'universite', *Ankara*, **28** (1979) 33 44.
- 3. Ng Peng Nung : Matrix Transformations on Cesaro sequence spaces of a non absolute type, *Tamkang J. Math.*, **10** (2) (1979) 214 221.
- 4. F. M. Khan and M. F. Rahman : Matrix Transformations on Cesaro sequence spaces of a non absolute type, J. Analysis, 4 (1996) 97 101.