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Abstract: This paper deals with an SIR  epidemic model that 

incorporates constant recruitment rate and disease caused death. We 

consider the saturating contact rate of individuals contact given by 

Heesterbeek and Metz
1
. The model for carrier-dependent infectious 

diseases, like cholera, diarrhea etc. caused by direct contact of 

susceptibles with infectives as well as by carriers is proposed and 

analyzed assuming the logistic growth of carrier population. Stability 

analysis of this model is carried out using usual theory of nonlinear 

differential equation. The criteria for asymptotic and global stability of an 

interior equilibrium are obtained. By computer simulation it is shown that 

if the growth rate of recovery and intrinsic growth rate of carrier 

population increase, the infective human population decreases and 

increases respectively. It is concluded from the analysis that if the death 

rate of carrier population increases, both of the infective and carrier 

population decreases.  
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1.  Introduction 

There are many carrier dependent infectious diseases which afflict 

human population around the world. However, the third world countries are 

most affected by such diseases due to lack of sanitation wide occurrence of 

carriers such as flies, ticks, mites, etc. generally present in the environment
2
. 

For example, air-borne carriers spread diseases such as tuberculosis and 

measles, while water-borne carriers are responsible for the spread of 

dysentery, gastroenteritis, diarrhea, etc
3,4

. These carriers transport infectious 

agents of diseases from infectives to susceptibles and thus spread such 

diseases in human population. In this paper, we have used the term carriers 

*Presented at CONIAPS XI, University of Allahabad, Feb. 20-22, 2010. 
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as a mode of transmission only, which transmit infectious agents of diseases 

from infectives to susceptibles, without having clinical symptoms. 

Thieme and Castillo-Chavez
5
 suggest that the general from of a 

population size dependent incidence as .)( 2
1 X

N

X
NCβ  Here 21  and XX are 

the numbers of susceptibles and infectives at time t respectively, β  is the 

probability per unit time of transmitting the infection between two 

individuals to take part in a contact, and )(NC is the ‘unknown’ probability 

for an individual to take part in contact. )(NC is usually called the contact 

rate, and )( NCβ which the average number of adequate contacts of an 

individual per unit time is  adequate contact rate. It is a contact which is 

sufficient for transmission of the infection from an infective to a susceptible. 

In most of the research study, the adequate contact rate )( NCβ  frequently 

takes two forms. One is linearly proportional forms 

,X   212
1 XX

N

X
N ββ = and the other a constantϕ , the corresponding 

incidence 2
1 X

N

X
ϕ  is called standard form. When the total population size 

N is not too large, since the number of contacts made by an individual per 

unit time should increase as the total population size N increases, the linear 

adequate contact rate N β  would be suitable. But when the total size is 

large, since the number of contacts made by an infective per unit time 

should be limited, or should grow less rapidly as the total population size 

N increases, the linear adequate contact rate N β  is not suitable and the 

constant adequate contact rate ϕ  may be more realistic. Hence the two 

adequate contact rates discussed above are actually two extreme cases for 

the total population size N being very small and very large respectively. 

More generally, it may be assumed that the adequate contact rate is a 

function )(NC of the total population size N and some demands 

on )(NC are that it should be a non-decreasing function of N and that 

N

NC )(
should be a non-increasing function of .N Furthermore, )(NC should 

behave linearly in N for small ,N and it should be independent of ,N for 

large .N Heesterbeek and Metz
1 

derived the expression for the saturating 

contact rate of individual contacts in a population that mixes randomly 

(1.1)                     ,
21 1

 
)(

bNNb

bN
NC

+++
=  
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then we see that, for N small, ,~)( bNNC whereas for N large, 1~)(NC . 

Furthermore, )(NC is non decreasing and 
N

NC )(
is non-increasing. 

In this paper, we consider an SIR  model with saturating contact rate 

)(NC defined by (1.1). Let A  be constant recruitment rate into the 

population. Let natural deaths occurs at a rate proportional to the population 

size, so the death rate term is Nµ where µ is the death rate constant. Thus in 

the absence of disease, the differential equation for the population size N  is 

.NA
dt

dN
µ−=  For this structure the total population size )(tN  approaches 

µ

A
 for any non-zero initial population size. Then the constant 

µ

A
 is the 

carrying capacity. Although N varies in the finite interval ),,0(
µ

A
it can still 

be for greater (for example, A is very large and µ is very small) than the 

value at which )(NC  reaches its saturating state. Thus the saturation effect 

of the saturating contact rate )(NC can still take place that is it is reasonable 

that the saturating contact rate )(NC is used in the SIR  model with 

recruitment. 

In previous research studies, it is assumed that the disease incubation 

period is negligible so that once infected, each susceptible individual (in the 

class S ) instantaneously become infectious (in the class I ) and later recovers 

(in the class R ) with a permanent or temporary acquired immunity. A 

compartmental model based on these assumptions is customarily called an 

SIR  model. The SIR  type models are widely studied
 6-11

. In particular, 

Greenhalgh
12

 has studied an infectious disease model with population – 

dependent death rate. Zhou and Hethcote
13

 have studied a few models for 

infectious disease using various kinds of demographics. Hethcote
14

 has 

discussed an epidemic model in which the carrier population is assumed to 

be constant. But in general the size of carrier population varies and depends 

on the natural conditions of the environment as well as on various 

discharges in to it by the human population. In particular, Shukla et al
[16]

 

studied the spread of carrier-dependent infectious diseases with 

environmental effect using variable carrier population. We have modified 

this model by considering saturating contact rate and environmental 

discharge dependent carrying capacity of carrier population with an extra 

recovered class of human population. 
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2. The Mathematical Model 
 

In this paper we consider an SIR  model governing by the set of the 

following system of non linear ordinary differential equations; 

 (2.1)           

,)(                  

,
)(

1                 

,                 

),(
)(

                

,
)(

                

0

1

20

021
212

1
21

1
1

ENQ
dt

dE

Ks
EL

K
sK

dt

dK

RX
dt

dR

XKX
N

XXNC

dt

dX

KX
N

XXNC
XA

dt

dX

δ

µγ

γαµλ
β

λ
β

µ

−=

−







−=

−=

++−+=

−−−=

                                   

with initial condition: .0)0( ,0)0( ,0)0( ,0)0( ,0)0( 21 ≥≥≥≥≥ EKRXX  

Where RXXN ++= 21 , .ss and ,)( 10 >+= lNQNQ Also,   

(2.2)                            ELLEL 10)( += .                                                                         

Since 
)(211

)(
Nh

bN

bNbN

bN
NC =

+++
= . So we can write, 

)()(

)( 2102121

Nh

XXa

Nh

XbX

N

XXNC
==

ββ
.  Where ba β=0  and 

(2.3)                  bNbNNh 211)( +++= .  

We obtain the following system analogous to (2.1) 

(2.4)

 E.)(                

,
)(

1               

,               

),(
)(

           

,
)(
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1

20

021
2102

1
210

1
1

δ

µγ

γµαλ
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−=
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++−+=
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NQ
dt

dE

Ks
EL

K
sK

dt

dK

RX
dt

dR

XKX
Nh

XXa

dt

dX

KX
Nh

XXa
XA

dt

dX

                                                     

By eliminating )( 21 RXNX −−=  from (2.4) it is further reduced to the 

following     subsystem (2.5),   
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(2.5)

.)(               

,
)(
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,              

,              

),()(
)(

)(
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2202

ENQ
dt

dE

Ks
EL

K
sK

dt

dK

XNA
dt

dN
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dt

dR

XKRXN
Nh
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dt
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δ
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−=

−−=

−=

++−−−+
−−
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In above model (2.5), )(tN is the total human population at time t with 

immigration of susceptibles at constant rate A . Here the total population is 

divided into three subclasses: the susceptible ),(1 tX  the infectives ),(2 tX  

and the recovered individuals ).(tR  We assume that recovered population at 

time 0=t  is zero. In the modeling process, it is assumed that the 

susceptibles become infective by the direct interaction with infectives )(2 tX  

and also by carrier population of density ),(tK  which is governed by a 

generalized logistic model. )(tE  is the cumulative density of environmental 

discharges conducive to the growth of carrier population. µ  is the natural 

death rate;   β and λ  are the probabilities per unit time of infection 

transmission coefficients due to the infectives and the carrier population 

respectively; α is the disease related death rate constant and 0γ is the 

recovery rate constant. s is intrinsic growth rate of carrier population and the 

constant 1s  is the death rate coefficient of carriers due to natural factors as 

well as by control measures. )(NQ  is the cumulative rate of environmental 

discharges and it is  taken as  to be increasing function of human population 

density and 0δ  is the natural depletion rate coefficient of the environmental 

discharges. )(EL  is the carrying capacity of the carrier population and it is  

taken to be increasing function of cumulative density of environmental 

discharges. It is assumed that carrier population attains value 







−

s

s
EL 11)(  

as compared to usual logistic model. We also assume that the modified 

carrying capacity increases with cumulative density of environmental 

discharges, so that 0)0( 0 >= LL  and .0)( ≥′ EL where 0L  is the value of 

)(EL  when .0=E  We see that even if cumulative density of environmental 
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discharges related factors are absent, carrier population density increases in 

its natural environment and it tends to 







−

s

s
L 1

0 1 which may become zero if 

1ss → . In the model (2.5), all the dependent variables and parameter are 

assumed to be non negative. 
)(211

)(
Nh

bN

bNbN

bN
NC ≅

+++
=  ),0( >b  

derived in 
[5]

, is the saturating contact rate of individual contacts in a 

population that mixes randomly. 

 

3. Region of attraction 
 

Theorem1: The region of attraction for the system (2.5) is given by, 

                  

2 2

0

2

0

( , , , , ) :  0  , 

( / )
0  , 0 , 0m

A
X R N K E X N

A Q A
R K K E

µ

γ µ

δµ


Ω = ≤ ≤ ≤




≤ ≤ ≤ ≤ ≤ ≤ 



 

which attracts all solutions initiating in the positive orthant, where 

.1)( 1 







−=

s

s
ELK m  

Proof: From third equation of model (2.5) we get, 

                                            .NA
dt

dN
µ−≤  

 This implies that, 
µ

A
N ≤≤0   or  .0 21

µ

A
RXX ≤++≤  

  From second equation of model (2.5) we get, 

                                            
µ

γ
µ

A
R

dt

dR 0≤+ . 

  On solving above differential equation we get, 

                                           







−








≤

  t2

0 1
1 

µµ

γ

e

A
R . 

   When ∞→t we have, 

                                           
2

00
µ

γ A
R ≤≤ . 

    From fifth equation of model (2.5) we get, 
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                                          )./(0 µδ AQE
dt

dE
≤+  

     On solving above differential equation we get, 

                                           







−≤
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AQ
E

00

1
1
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δδ

µ
. 

    When ∞→t we have, 

                                            
0

)/(
0

δ

µAQ
E ≤≤ . 

     From fourth equation of model (2.5) we get, 

                                           .
)(

1 1Ks
EL

K
sK

dt

dK
−







−≤  

      This implies that, 







−≤≤

s

s
ELK 11)(0  or mKK ≤≤0 . 

 

4. Equilibrium Analysis 
 

The system (2.5) has non-negative equilibria ),0,,0,0(1 ENE  and 

).ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE  

Existence of :),0,,0,0(1 ENE  Here N and E are given by the solution of 

the following equations;  

                 .0)( and 0 0 =−=− ENQNA δµ  

 Clearly,   .0
)/()(

 and 0
00

>==>=
δ

µ

δµ

AQNQ
E

A
N  

 So the equilibrium point ),0,,0,0(1 ENE exists. 

Existence of :)ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE  The non trivial interior 

equilibrium )ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE    is the positive solution of the following 

algebraic equation;  
 

                                                        .0)(                                   (4.5)

                                                       .0
)(

1                       (4.4)

                                                        .0                               (4.3)

                                                       .0                                     (4.2)

    .0)()()()()(      (4.1)

0

1

2

20

022220

=−

=−







−

=−−

=−

=++−−−+−−

ENQ

Ks
EL

K
sK

XNA

RX

NhXNhRXNKXRXNa

δ

αµ

µγ

γµαλ

 

Now from equation (4.3) and (4.2) we get,  
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                             .
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−
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−
=  

Also from equation (4.4) and (4.5) we get, 

                              .E  1)(
0

01

δ

lNQ
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s

s
ELK

+
=








−=   

Now putting value of K and  ,2 RX in equation (4.1) then whole equation 

reduces to N. So we can write, 

              .
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 It is clear from equation (4.6) that, 

            .0)(22 1)0( 0

00 <
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γ

α
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F  
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=

µµ
λµ

A
hK

A
AF m This implies that there exists a root 

N of 0)( =NF in )./(0 µAN << Also, 
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 provided )()(),( 00

0 γµγµαµ
α

+>++′> ANNh
a

and .)( 0

α

µ
λ

a
KNh m >′  

Hence, there exists a unique root N̂  give by 0)( =NF in µ/0 AN << .So 

the equilibrium point  )ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE  exist. 

 

5. Stability Analysis 
 
 

Now we present the stability analysis of these equilibria. The local 

stability results are stated in the following theorem 

  Theorem1: The equilibria ),0,,0,0(1 ENE is unstable and 

)ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE is locally asymptotically stable provided                           
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(5.1) ,
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  Proof: The variational matrix 1M at ),0,,0,0(1 ENE  corresponding to 

the system of equation (2.5) is given by 
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Since one eigen value )( 1ss − of matrix 1M is positive because 1ss >  . So 

1E  is unstable. The variational matrix 2M  at 

)ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE corresponding to the system of equation (2.5) is given by 

0 2
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By using Gerschgorin’s theorem
15

 all eigen values of 2M  have negative real 

parts if the following inequalities holds; 
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Hence equilibrium point )ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE is locally asymptotically stable. 

 

6. Global stability 
 

Theorem 2: In addition to the assumption (2.2) and (2.3), let )(EL and 

)(Nh satisfy in the region Ω , (6.1) 0)( LELLm ≤≤  and ,)(0 pEL ≤′−≤  

also                                                      

(6.2)                         0)( hNhhm ≤≤ and ,)(0 qNh ≤′−≤                                                

 for some positive constants mm hL , and ., qp Let the following inequalities 

are satisfied 
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then )ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE  is globally asymptotically stable with respect to the 

all solution initiating in the positive orthant. 

Proof: Let us consider the following positive definite function 

about )ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE . 
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Now differentiating above equation with respect to t we get, 
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After some algebraic manipulations and considering functions; 
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 Then by using the assumptions of the theorem and the mean value theorem, 

we have, 
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 derivative of V i.e. Vɺ can be written as the sum of the quadratics, 
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Then sufficient condition for 
dt

dV
 to be negative definite are, 
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So the interior equilibrium point )ˆ,ˆ,ˆ,ˆ,ˆ( 22 EKNRXE  is globally 

asymptotically stable with respect to all the solution initiating in the region 

Ω . 

 

7. Numerical simulation 
 

In this section, we present numerical simulation to explain the 

applicability of the result discussed above. We choose the following values 

of the parameters in model (2.5) 5,A =  ,04.0=α  ,1000 =L  ,028.00 =a  

,7.00 =γ ,05.01 =L ,2=µ ,1=s ,02.01 =s ,5=δ ,018.0=λ ,02.0=l

,200 =Q   .1=b  
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With these values of parameters, it can be checked that the interior 

equilibrium 2E exists and is given by 

,76554.0ˆ
2 =X    ,26793.0ˆ =R   ,48468.2ˆ =N   ,09938.80ˆ =K  

.00993.4ˆ =E   

Again with the set of parameters given above it can be verified that the 

conditions (5.1-5.5) in Theorem1 are satisfied. This shows that 2E is locally 

asymptotically stable. 

By choosing 2.0 ,80 == mm hL  and 01.0== qp  in Theorem 2 it can be 

checked that the conditions given in (6.3) are satisfied which shows that 

2E is globally asymptotically stable. 

The results of numerical simulation are displayed graphically in figures 

1-3. The effects of various parameters, i.e. sandL     ,0 λ on the infective 

population have been shown. It is noted from these figures that the infective 

population increases as these parameter value increase. 

Figures 4-5 show that if the death rate of carrier population i.e. 1s  and 

recovery rate constant 0γ  increase, the infective population decreases. Also 

figure 6 shows that if the death rate of carrier population i.e. 1s  increases, the 

carrier population decreases. To display global stability of the system 

simulation is performed for different initial positions in figure 7. From this 

figure, it is clear that this equilibrium is globally stable provided that we 

start away from the other equilibria. 

 

8. Conclusion 
 

In this paper, a non linear SIR  model with saturating contact rate is 

proposed and analyzed to study the spread of carrier-dependent infectious 

diseases, like cholera, diarrhea, gastroenteritis, etc. caused by direct contact 

of susceptibles with infectives and by carrier population density present in 

the environment. It is assumed that the density of carrier population is 

growing logistically. By stability analysis of ordinary differential equation, 

the criteria for asymptotic stability and global stability of an interior 

equilibrium is obtained. It is concluded from the analysis that if the intrinsic 

growth rate and carrying capacity of carrier population increases, the 

endemic level of infected human population increases. Also, when the 

growth rate of recovery and transmission coefficients of carrier population 

increases, then the infective human population decreases and increases 

respectively. It is also noted that as the death rate of carrier population 



318                Manju Agar wal  and Vinay Verma 

 

increases, the endemic level of infective human population and carrier 

population decreases. 

 

Fig.1. Variation of infective population with time for different carrying capacities of carrier 

population. 

 

      Fig.2. Variation of infective population with time for different transmitting coefficient 

of carrier population.         
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      Fig.3. Variation of infective population with time for different intrinsic growth rates of 

carrier population 

        
      Fig.4.Variation of infective population with time for different death rate coefficients of 

carrier population due to the cumulative environmental discharges 
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      Fig.5. Variation of infective population with time for different recovery rate constant 

 

 
     Fig.6. Variation of carrier population with time for different death rate coefficients of 

carrier population due to the cumulative environmental discharges 
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                        Fig.7. Variation of Total population with Infective population 
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