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1. Introduction

Applying the geometrical theory of the generalized Lagrange spaces
Miron and Kawaguchi1, Miron and Anastasiei2,3 have studied the
gravitational and electromagnetic fields in an optic medium endowed the
Synge metric4

(1.1) ji2ijij yy
V(x))(x,η

11(x)γV(x))(x,g 







 ,

where ij(x) is a Lorentz metric on the base manifold M, x = (xi) is a generic
particle, Vi(x) it’s velocity and (x, V(x))  1 is the refractive index.
Using the geometrical theory of the relativistic optics (Miron and
Kawaguchi)1 and the interesting properties for the Lie derivatives of the
metric of the Generalized Lagrange spaces (Miron and Anastasiei2,3 and
Miron5) established by Yawata6, the following results are proved by R.
Miron, M. C. Chaki and B. Barua7

(a) Any symmetry of the Lorentz metric ij(x) and the refractive index (x,
V(x)) is symmetry of the Synge metric ))x(V,x(g ij .

(b) If the optic medium is non dispersive then the result (a) and it’s converse
are true.
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In this paper we replace the Lorentz metric ij(x) with the Finsler metric
aij(x, y) and prove the same result as in (a) and (b) for the generalized
Lagrange metric given by

ji2ijij yy
y)(x,η

11(x)ay)(x,g 







 .

2. Preliminaries

Let M be an n-dimensional manifold, F(x, y) be a Finsler metric function
on M then Fn = (M, F) is called a Finsler space of dimension n. The metric
tensor    aij(x, y) of the Finsler space Fn is given by

(2.1) aij(x, y) = ji

2

yy
F

2
1


 .

Since F is positively homogeneous of degree one in yi therefore aij(x, y) is
positively homgeneousof degree zero. Thus we have
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(2.3) F2(x, y) = aij(x, y) yiyj.
We consider the generalized Lagrange metric given by

(2.4) ji2ijij yy
y)(x,η

11(x)ay)(x,g 









wher yi is the covariant vector field given by
(2.5) yi = aij(x, y) yj and (x, y) 1.
If aij(x, y) in (2.4) become a pseudo Riemannian metric ij(x) and the
dimension of the base manifold M is 4, the restriction of the metric (2.4) to
the local section
(2.6) Sv: M  TM defined by

Sv: xi = xi, yi = Vi(x)
gives the Synge metric. Therefore in this case the d-tensor field gij(x, y)
given in (2.4) reduces to the metric (1.1) which has been called the Synge
metric7 on TM.
Some important properties related to the space GLn = (M, gij(x, y)) where
gij(x, y) is given by (2.4) is given below:
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(1) The space GLn is not reducible to a Lagrange, a Finsler or a Riemannian
space.
(2) The metric tensor gij is regular i.e.
(2.7) rank ||gij(x, y)|| = n = dimM
(3) The contravariant tensor gij(x, y) corresponding to gij(x, y)  is given by

(2.8) ji
2

ijij yy
y)(x,η

11
y)σ(x,

1(x)ay)(x,g 







 ,

where

(2.9) 2
2 F

y)(x,η
111y)σ(x, 








 .

Let vi(x) be a local vector field in M. Then it defines an infinitesimal
transformation Tv on the tangent bundle TM given by
(2.10) Tv: dt)x(vx ii  and Tv: dtvyy i

j
ji 

where jj x


 and dt is an infinitesimal constant.

Definition (2.1): The Lie derivative of the tensor field i
jK of type (1, 1)

in the manifold M is defined by (Yawata6, H.Rund8)

(2.11) Lv
r

j
i
r

i
r

r
j

rh
r
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jh

ri
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i
j vKvKyvKvKK  

where jj y


 .

Regarding the transformation (2.10) the following properties has been
established by Yawata6

The transformation Tv which preserve a d-tensor field gij(x, y) are given by
the equation
(2.12)  ,    0v ijL g x y  and

(2.13)    ,   ,
h h

v ij v ij hj ihi j

v vL g x y g x y g g
x x

  
  

 
The operator v is defined by

(2.14) h
v  v

i
h

h h i

vy
x y

  
  

 
.
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It is to be noted that Lv possesses the following well known properties of
Lie derivative:
(i) It is a R-linear operator;
(ii) It satisfies the Libnitz rule with respect to a tensor product;
(iii) It commutes the operation of contraction;
(iv) It commutes the operation of partial derivatives with respect to yk i.e.
(2.15) vL ( )i

k jK = v(L )i
k jK ,

(v) for a scalar field (x, y) it satisfies;
(2.16) Lv (x, y) = v (x, y)
(vi) and lastly
(2.16) Lvyi = 0.

3. Remarkable Symmetries of the space GLn

In this section the symmetries of the generalized Lagrange space GLn

endowed with the metric (2.4) has been studied.
Difinition(3.1): An infinitesimal transformation Tv on TM is called a

symmetry of a geometric object (x, y) if Tv is an automorphism of this
object.
Applying the result of Yawata6 we can therefore say that Tv preserve a
geometric object (x, y) if and only if Lv(x, y) vanishes. Hence we have:

Theorem (3.1): The infinitesimal transformation Tv on TM is a
symmetry of the generalized Lagrange metric gij(x, y) if and only if

(3.1) Lv gij(x, y) = v gij(x, y) + j

h

ihi

h

hj x
vg

x
vg






 = 0.

Some remarkable symmetries are given in the following:
Corollary 1: Any symmetric of the generalized Lagrange metric gij(x, y)

is symmetry of the contravariant tensor gij(x, y).
Corollary 2: Any infinitesimal transformation Tv is a symmetry of the

vector field yi.
Corollary 3: If an infinitesimal transformation Tv is a symmetry of the

metric gij(x, y)
Then it is asymmetry of the absolute energy E(x, y) defined by
(3.2) E(x, y) = gij(x, y) yiyj.
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From (2.5) and (2.17) we have
(3.3) Lv yi = (Lvaij) yj

hence from (2.4) we have

(3.3) Lv gij(x, y) = Lv aij(x, y)  i j2

1Lv y y
η (x,y)

 
 
 

i j2

11 Lv(y y )
η (x,y)

 
  
 

.

Putting

(3.5) u2(x, y) =
y)(x,η

1
2

and taking account of (3.3), (3.4) and (3.5) we have the following:
Theorem (3.2): The Lie derivative of the generalized Lagrange metric

can be expressed as
(3.6) Lv gij(x, y) = Lv aij(x, y)  (Lvu2(x, y))yiyj + (1- u2(x, y))

{(Lv aih)yj + (Lv ajh) yi}yh.
In virtue of (3.5) and (3.6) we have the following:

Theorem (3.3): Any symmetry Tv of the Finsler metric aij(x, y) and of the
refractive index (x, y) is also a symmetry of the generalized Lagrange
metric gij(x, y).
The converse of the above theorem is not in general true. For converse, let
us assume that the medium be non dispersive (Miron and Kawaguchi)1 i.e.
the refractive index (x, y) does not depend on the directional variable yi so
that j (x, y) = 0.

We shall state and prove the main result:
Theorem (3.4): Any infinitesimal transformation Tv on TM is a

symmetry of the generalized Lagrange metric gij(x, y) of a nondispersive
medium M if and only if Tv is a symmetry of the Finsler metric aij(x, y) and
of the refractive index (x).

Proof: First suppose that Lv aij(x, y) = 0 and Lv ((x)) = 0. Then from
theorem (3.3) it follows that Lv gij(x, y) = 0.
To prove the converse, put
(3.7) Lv aij(x, y) = ij(x, y), ij(x, y) yiyj = 2(x, y), Lvu2(x)= b(x).
Equation (2.2), the commutation formula (2.15) and equation (3.7) give the
following:
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(3.7) k
k
ij y

y
α



= i

k
ij y

y
α



= j

k
ij y

y
α



= 0.

Then by virtue of the Killing equation Lv gij(x, y) = 0 the equation (3.6)
takes the form
(3.8) ij(x, y)  b(x) yi yj + (1u2) [yjih(x, y) + yijh(x, y)] yh = 0.
Contracting (3.8) by yiyj, we get
(3.9) 2 bF4 + 2(1u2) 2F2 = 0.
Again contracting (3.8) with aij(x, y) we get
(3.10) c2(x, y)  bF2 + 2(1u2) 2 = 0, c2 = aij ij.

On differentiation of (2.5) with respect to yk and use of (2.2) give k
i

y
y



= aik.

Hence differentiating (3.8) with respect to yk we get

(3.11) k
ij

y
α



 b (aik yj + ajk yi) + (1 u2) [ajkih + aikjh] yh + (1 u2)

[ yjik + yijk ] + (1 u2) [yj k
ih

y
α



+ yi k
jk

y
α



] yh = 0.

Contracting above with yiyjyk and using (2.3), (3.7) and (3.7) we get
(3.11) bF2  2(1u2) 2 = 0.
From (3.9), (3.10) and (3.12) it follows:
(3.12) (x, y) = 0, b(x) = 0 and c2 = 0.
Hence using above in (3.11) we get

(3.14) k
ij

y
α



+ (1 u2) [ajkih + aikjh] yh + (1 u2) [ yjik + yijk ]

+ (1 u2) [yj k
ih

y
α



+ yi k
jk

y
α



] yh = 0.

Contracting (3.14) by yk and using (3.7) we have
(3.15) [yjih + yijh ] yh = 0.
Again contracting (3.15) by yj and using (3.13) we have

ih yh = 0.
Differentiating this equation with respect to yk and using (3.7) we get

ik = 0.
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Hence Lv gij = 0, gives Lv aij = 0 and Lvu2(x) =
(x)η
1

2

hence the theorem.
We can conclude that for non dispersive media the symmetries of the
generalized Lagrange space GLn endowed with the generalized Lagrange
metric can be studied only by symmetries of the Finsler metric aij(x, y) and
of the refractive index.
Similarly we can prove:

Theorem 3.5: For a non dispersive medium any symmetry of the
absolute energy E(x, y) if a symmetry of the Finsler metric function F2 =
aij(x, y) yiyj and for the refractive index and conversely.
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