Vol.3 1 N (2009) Journal of International Academy of pPp $\#$ \emptyset $\#$ \emptyset \emptyset i \emptyset sinces

Symmetofithse Generalized Lagrange Met and Corresponding Finsler Metric

T. N. Pandey Department of Mathematics D. D. U. Gorakhpur University, Gorakhpur

B. N. Prasad C-10, Surajkund Colony, Gorakhpur

K. K. Dubey Invertis Institute offnEdning encontentionagy B arei $214/3$ 123 E-mai[kamlesh778@g](mailto:kamlesh778@gmail.com)mail.com

 $(Recei\$ $edtem5b e2009)$

1.Introduction

Applying the geometrical theory of the general Miron and Ka¹waMhui**co**h and ta \mathcal{E} methave studied the gravitational and electromagnetic fields in an o_{\perp} Synge metric

$$
(1.1) \t g_{ij}(xV(x\varphi)^3)_{ij}(x\varphi)^3_{ij}\frac{d\varphi}{d\varphi} \frac{1}{(xV(x\varphi)^3)}\Big|_{j=0}^{N-1} y_{ij},
$$

where ϕ is a Lorentz metric on the base amogeneric metric ϕ particl(ex,) Vit ∞ oviety δ b(xd \vee δ x \uparrow) is the refractive index. Using the geometrical theory of the relativist K awagu^d cahnid the interesting properties for the Li metric of the Generalized Lagrange s \vec{p} a and (Mir M ir δ) established $\mathfrak h$ y th δ awfollowing results are proved by δ Miron, CMC haki anBoanBu.a

(a)Any symmetry of the ologo(x) and the refrometric of reformation index i , $v e$ index δ $V(x)$) is symmetry of t $\log_2(x,\mathbb{S})$ (x) $\log_2\sigma$ metric

(b) f the coptedium is non dispersive then the result are true.

In this paper we replace the Lorentz metric $\gamma_{ii}(x)$ with the Finsler metric $a_{ii}(x, y)$ and prove the same result as in (a) and (b) for the generalized Lagrange metric given by

$$
g_{ij}(x, y) = a_{ij}(x) + \left(1 - \frac{1}{\eta^2(x, y)}\right) y_i y_j.
$$

2. Preliminaries

Let M be an n-dimensional manifold, $F(x, y)$ be a Finsler metric function on M then $Fⁿ = (M, F)$ is called a Finsler space of dimension n. The metric tensor $a_{ij}(x, y)$ of the Finsler space F^n is given by

(2.1)
$$
a_{ij}(x, y) = \frac{1}{2} \frac{\partial^2 F}{\partial y^i \partial y^j}.
$$

Since F is positively homogeneous of degree one in y^i therefore $a_{ij}(x, y)$ is positively homgeneousof degree zero. Thus we have

(2.2)
$$
\frac{\partial a_{ij}}{\partial y^k} y^k = \frac{\partial a_{ij}}{\partial y^k} y^i = \frac{\partial a_{ij}}{\partial y^k} y^j = 0 \quad \text{and}
$$

(2.3)
$$
F^{2}(x, y) = a_{ij}(x, y) y^{i}y^{j}.
$$

We consider the generalized Lagrange metric given by

(2.4)
$$
g_{ij}(x, y) = a_{ij}(x) + \left(1 - \frac{1}{\eta^{2}(x, y)}\right) y_{i} y_{j}
$$

wher y_i is the covariant vector field given by

$$
(2.5) \t y_i = a_{ij}(x, y) y^j \t and \t \eta(x, y) \ge 1.
$$

If $a_{ii}(x, y)$ in (2.4) become a pseudo Riemannian metric $\gamma_{ii}(x)$ and the dimension of the base manifold M is 4, the restriction of the metric (2.4) to the local section

(2.6)
$$
S_v: M \to TM
$$
 defined by
 $S_v: x^i = x^i$, $y^i = V^i(x)$

gives the Synge metric. Therefore in this case the d-tensor field $g_{ii}(x, y)$ given in (2.4) reduces to the metric (1.1) which has been called the Synge metric**⁷** on TM.

Some important properties related to the space $GL^n = (M, g_{ii}(x, y))$ where $g_{ii}(x, y)$ is given by (2.4) is given below:

(1) The space $GLⁿ$ is not reducible to a Lagrange, a Finsler or a Riemannian space.

(2) The metric tensor g_{ij} is regular i.e.

(2.7) rank $||g_{ii}(x, y)|| = n = \text{dim}M$

(3) The contravariant tensor $g^{ij}(x, y)$ corresponding to $g_{ii}(x, y)$ is given by

(2.8)
$$
g^{ij}(x, y) = a^{ij}(x) - \frac{1}{\sigma(x, y)} \left(1 - \frac{1}{\eta^2(x, y)} \right) y^i y^j,
$$

where

(2.9)
$$
\sigma(x, y) = 1 + \left(1 - \frac{1}{\eta^2(x, y)}\right) F^2.
$$

Let $v^{i}(x)$ be a local vector field in M. Then it defines an infinitesimal transformation T_v on the tangent bundle TM given by

(2.10)
$$
T_v: \overline{x}^i + v^i(x)dt
$$
 and $T_v: \overline{y}^i + y^j\partial_j v^i dt$

where $\partial_j = \frac{\partial}{\partial x^j}$ $\hat{\theta}_i = \frac{\partial}{\partial \theta_i}$ and *dt* is an infinitesimal constant.

Definition (2.1): The Lie derivative of the tensor field K_j^i of type (1, 1) in the manifold M is defined by (Yawata**⁶** , H.Rund**8)**

(2.11)
$$
L_{v}K_{j}^{i} = \partial_{r}K_{j}^{i}v^{r} + \partial_{h}K_{j}^{i}\partial_{r}v^{h}y^{r} - K_{j}^{r}\partial_{r}v^{i} + K_{r}^{i}\partial_{j}v^{r}
$$

where
$$
\dot{\partial}_j = \frac{\partial}{\partial y^j}
$$

Regarding the transformation (2.10) the following properties has been established by Yawata**⁶**

The transformation T_v which preserve a d-tensor field $g_{ii}(x, y)$ are given by the equation

$$
(2.12) \tL_y g_{ij}(x, y) = 0 \t and
$$

 $\dot{\partial}_{i} = \frac{\partial}{\partial \dot{\phi}}$.

(2.13)
$$
L_{\nu}g_{ij}(x, y) = \theta_{\nu}g_{ij}(x, y) + g_{ij}\frac{\partial v^h}{\partial x^i} + g_{ih}\frac{\partial v^h}{\partial x^j}
$$

The operator θ_v is defined by

(2.14)
$$
\theta_{\rm v} = {\bf v}^{\rm h} \partial_h + y^{\rm h} \frac{\partial v^{\rm i}}{\partial x^{\rm h}} \frac{\partial}{\partial y^{\rm i}}.
$$

It is to be noted that Lv possesses the following well known properties of Lie derivative:

(i) It is a R-linear operator;

(ii) It satisfies the Libnitz rule with respect to a tensor product;

(iii) It commutes the operation of contraction;

(iv) It commutes the operation of partial derivatives with respect to y^k i.e.

$$
(2.15) \t\t\t L_v(\dot{\partial}_k K_j^i) = \dot{\partial}_k (L_v K_j^i) ,
$$

(v) for a scalar field $\eta(x, y)$ it satisfies;

$$
(2.16) \t\t\t L_v \eta(x, y) = \theta_v \eta(x, y)
$$

(vi) and lastly

$$
(2.16) \tL_v y^i = 0.
$$

3. Remarkable Symmetries of the space GLⁿ

In this section the symmetries of the generalized Lagrange space $GLⁿ$ endowed with the metric (2.4) has been studied.

Difinition(3.1): An infinitesimal transformation T_v on TM is called a symmetry of a geometric object $\Omega(x, y)$ if T_y is an automorphism of this object.

Applying the result of Yawata⁶ we can therefore say that T_v preserve a geometric object $\Omega(x, y)$ if and only if $Lv\Omega(x, y)$ vanishes. Hence we have:

Theorem (3.1): *The infinitesimal transformation T^v on TM is a symmetry of the generalized Lagrange metric gij(x, y) if and only if*

(3.1)
$$
L_{\nu} g_{ij}(x, y) = \theta \nu g_{ij}(x, y) + g_{hj} \frac{\partial v^{h}}{\partial x^{i}} + g_{ih} \frac{\partial v^{h}}{\partial x^{j}} = 0.
$$

Some remarkable symmetries are given in the following:

Corollary 1: *Any symmetric of the generalized Lagrange metric* $g_{ii}(x, y)$ *is symmetry of the contravariant tensor* $g^{ij}(x, y)$ *.*

Corollary 2: Any infinitesimal transformation T_y is a symmetry of the *vector field yⁱ .*

Corollary 3: *If an infinitesimal transformation T^v is a symmetry of the metric* $g_{ii}(x, y)$

Then it is asymmetry of the absolute energy E(x, y) defined by

(3.2)
$$
E(x, y) = g_{ij}(x, y) y^{i} y^{j}.
$$

From (2.5) and (2.17) we have (3.3) $L_v y_i = (L_v a_{ij}) y^j$

hence from (2.4) we have

(3.3)
$$
L_{\nu} g_{ij}(x, y) = L_{\nu} a_{ij}(x, y) - \left(Lv \frac{1}{\eta^2(x, y)} \right) y_i y_j + \left(1 - \frac{1}{\eta^2(x, y)} \right) Lv(y_i y_j).
$$

Putting

(3.5)
$$
u^{2}(x, y) = \frac{1}{\eta^{2}(x, y)}
$$

and taking account of (3.3), (3.4) and (3.5) we have the following:

Theorem (3.2): The Lie derivative of the generalized Lagrange metric can be expressed as

$$
(3.6) \quad L_v \quad g_{ij}(x, y) = L_v \quad a_{ij}(x, y) - (L_v u^2(x, y)) y_{ij} + (1 - u^2(x, y))
$$

$$
\{(L_v a_{ih}) y_j + (L_v a_{jh}) y_{ij} y_h.
$$

In virtue of (3.5) and (3.6) we have the following:

Theorem (3.3): Any symmetry T_v *of the Finsler metric* $a_{ii}(x, y)$ *and of the refractive index* $\eta(x, y)$ *is also a symmetry of the generalized Lagrange metric* $g_{ii}(x, y)$.

The converse of the above theorem is not in general true. For converse, let us assume that the medium be non dispersive (Miron and Kawaguchi)**¹** i.e. the refractive index $\eta(x, y)$ does not depend on the directional variable yⁱ so that $\dot{\partial}_{j} \eta(x, y) = 0$.

We shall state and prove the main result:

Theorem (3.4): *Any infinitesimal transformation T^v on TM is a symmetry of the generalized Lagrange metric gij(x, y) of a nondispersive medium M if and only if* T_v *is a symmetry of the Finsler metric* $a_{ii}(x, y)$ *and of the refractive index* $\eta(x)$ *.*

Proof: First suppose that L_v $a_{ii}(x, y) = 0$ and L_v $(\eta(x)) = 0$. Then from theorem (3.3) it follows that $L_v g_{ij}(x, y) = 0$.

To prove the converse, put

(3.7) L_v a_{ij}(x, y) = $\alpha_{ij}(x, y)$, $\alpha_{ij}(x, y)$ yiyj = $\alpha^2(x, y)$, L_vu²(x)= b(x). Equation (2.2), the commutation formula (2.15) and equation (3.7) give the following:

T. N. Pandey, B. N. Prasad and K. K. Dubey 406

(3.7)'
$$
\frac{\partial \alpha_{ij}}{\partial y^k} y^k = \frac{\partial \alpha_{ij}}{\partial y^k} y^i = \frac{\partial \alpha_{ij}}{\partial y^k} y^j = 0.
$$

Then by virtue of the Killing equation L_v $g_{ij}(x, y) = 0$ the equation (3.6) takes the form

(3.8) $\alpha_{ij}(x, y) - b(x) y_i y_j + (1 - u^2) [y_j \alpha_{ih}(x, y) + y_i \alpha_{jh}(x, y)] y^h = 0.$ Contracting (3.8) by $y^i y^j$, we get

(3.9)
$$
\alpha^2-bF^4+2(1-u^2)\alpha^2F^2=0.
$$

Again contracting (3.8) with $a^{ij}(x, y)$ we get

(3.10)
$$
c^2(x, y) - bF^2 + 2(1 - u^2) \alpha^2 = 0, \quad c^2 = a^{ij} \alpha_{ij}.
$$

On differentiation of (2.5) with respect to y^k and use of (2.2) give $\frac{dy_i}{dx^k}$ y y \tilde{c} \tilde{c} $= a_{ik}$. Hence differentiating (3.8) with respect to y^k we get

(3.11)
$$
\frac{\partial \alpha_{ij}}{\partial y^k} - b (a_{ik} y_j + a_{jk} y_i) + (1 - u^2) [a_{jk} \alpha_{ih} + a_{ik} \alpha_{jh}] y^h + (1 - u^2)
$$

$$
[y_j \alpha_{ik} + y_i \alpha_{jk}] + (1 - u^2) [y_j \frac{\partial \alpha_{ih}}{\partial y^k} + y_i \frac{\partial \alpha_{jk}}{\partial y^k}] y^h = 0.
$$

Contracting above with $y^i y^j y^k$ and using (2.3), (3.7) and (3.7)' we get (3.11) $-2(1-u^2)\alpha^2=0.$

From (3.9), (3.10) and (3.12) it follows:

(3.12)
$$
\alpha(x, y) = 0
$$
, $b(x) = 0$ and $c^2 = 0$.

Hence using above in (3.11) we get

(3.14)
$$
\frac{\partial \alpha_{ij}}{\partial y^k} + (1 - u^2) \left[a_{jk} \alpha_{ih} + a_{ik} \alpha_{jh} \right] y^h + (1 - u^2) \left[y_j \alpha_{ik} + y_i \alpha_{jk} \right]
$$

+
$$
(1-u^2)
$$
 [y_j $\frac{\partial \alpha_{ih}}{\partial y^k}$ + y_i $\frac{\partial \alpha_{jk}}{\partial y^k}$] y^h = 0.

Contracting (3.14) by y^k and using (3.7)' we have

(3.15)
$$
[y_j \alpha_{ih} + y_i \alpha_{jh}] y^h = 0.
$$

Again contracting (3.15) by y^j and using (3.13) we have

$$
\alpha_{ih} y^h = 0.
$$

Differentiating this equation with respect to y^k and using (3.7)' we get

$$
\alpha_{ik}\equiv 0.
$$

Hence $L_v g_{ij} = 0$, gives $L_v a_{ij} = 0$ and $L_v u^2(x) =$ $\eta^2(x)$ 1 2

hence the theorem.

We can conclude that for non dispersive media the symmetries of the generalized Lagrange space $GLⁿ$ endowed with the generalized Lagrange metric can be studied only by symmetries of the Finsler metric $a_{ii}(x, y)$ and of the refractive index.

Similarly we can prove:

Theorem 3.5: *For a non dispersive medium any symmetry of the absolute energy E(x, y) if a symmetry of the Finsler metric function* $F^2 =$ $a_{ij}(x, y)$ $y^i y^j$ and for the refractive index and conversely.

References

- 1. R. Miron, and T. Kawaguchi, Relativistic Geometrical Optics, *Int. Journ. Theo. Phys.,* **30(11)**(1991)1521.
- 2. R. Miron, and Anastesiei, Vecror bundles, Lagrange spaces with Application to Relativity, *Geometry Balkanpress.* **1**(1997).
- 3. R. Miron, and Anastesiei, The geometry of Lagrange spaces: *Theory and Application. Kluwar Acad., Publ.,* 59, FTPH (1994).
- 4. J. L. Synge, Relativity. The General Theory. *North Holland Publ. Com., Amsterdam.*
- 5. R. Miron, The geometry of higher order Lagrange spaces. *App. to mechanics and Physics, Kluwar Acad., Publ.,* 82, FTPH (1997).
- 6. M. Yawata, Killing equations in tangent bundle in the Volume Lagrange and Finsler Geometry. *Kluwar Acad., Publ.,* **76,189**, FTPH (1997).
- 7. R. Miron, M. C. Chaki, and B. Barua, Symmetries of the Synge metric in the relativistic optics, *Bull. Cal. Math. Soc.* **92 (3**)(2000) 219-224.
- 8. H. Rund, The Differential Geometry Of Finsler spaces. *Springer Verlag* (1959)*.*
- 9. M. C. Chaki, Tensor Calculus, *2 nd Ed. Calcutta Publishers, Calcutta*.

