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Abstract: Levy' has proved that a second order symmetric parallel non-
singular tensor on a space of constant curvature is a constant multiple of the
metric tensor. Sharma® has proved that a second order symmetric parallel
tensor in a Kaehlar space of constant holomorphic sectional curvature is a
linear combination (with constant coefficients) of Kaehlarian metric and the
fundamental 2-form. In this paper, we show that on an LP-Sasakian
manifold, a second order symmetric parallel tensor is a constant multiple of
the associated metric tensor and there is no non-zero parallel 2-form.
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1. Introduction

The study of Lorentzian almost paracontact manifolds was initiated by
Matsumoto® (1989). Later on several authors studied Lorentzian almost
paracontact manifolds and their different classes, viz. LP- Sasakian and
LSP- Sasakian manifolds (cf. Matsumoto & Mihai* (1988), Mihai & Rosca®
(1992), Matsumoto, Mihai & Rosca® (1995), Pokhariyal (1996), Mihai,
Saikh & De’ (1999), Mishra & Ojha® (2000), Saikh & De (2000)). In 1923,
Eisenhart’ proved that if a positive definite Riemannian manifold admits a
second order parallel symmetric tensor other than a constant multiple of
metric tensor, then it is reducible. In 1926, Levy' proved that a second order
parallel symmetric non-singular (with non-vanishing determinant) tensor in
a space of constant curvature is proportional to the metric tensor. Recently
Sharma® has generalized Levy’s result by showing that a second order
parallel (not necessarily symmetric and non singular) tensor on an n-
dimensional (n >2) space of constant curvature is a constant multiple of
metric tensor. Sharma'® has also proved that there is no non-zero parallel 2-
form on a Sasakian manifold. In this paper we prove that a second order
symmetric parallel tensor on an LP- Sasakian manifold is a constant
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multiple of the associated metric tensor. Further, it is shown that on an LP-
Sasakian manifold there is no non-zero parallel 2-form.

2. Preliminaries

A differentiable manifold M of dimension n is called Lorentzian Para-
Sasakian™ if it admits a (1-1) tensor field ¢, a contravariant vector field 1,

a covariant vector field & and a Lorentzian metric g which satisfy

2.1) M) =-1,
(22) P’X=X+1(X) &,

(2.3) 24X, $Y)=g(X,Y) n(X) n(Y),

(2.4) gX, & =n(X), Vx&=¢X,

(2.5) (Vx ¢)(Y)=n(Y) X+ g(X, Y)& + 2n(X) n(Y)E,

where V denotes the operator of covariant differentiation with respect to
Lorentzian metric g.

It can easily be seen that in an LP-Sasakian manifold M the following
relations hold:

(2.6) pE=0,1m(¢X)=0,rank (@) =n-1.

Further, on an LP-Sasakian manifold with (®, &, 1, g) structure, the
following relations hold:

2.7) gRX, Y)Z, ) =nR(X, Y) Z) =g(Y, Z) n(X) - g(X, Z) n(Y),
(2.8) R(E X)Y =g(X,Y)S-n (V)X

2.9) R(E X)& =X +n(X)S ,

(2.10) RX,Y)E=n(Y) X-n(X) Y,

(2.11) S(X, ©) = (n-1) n(X),

(2.12) S(¢X, ¢Y)=S(X,Y) +Hn-1) n(X) n(Y),

for any vector fields X, Y, Z, where R(X, Y)Z is the Riemannian curvature
tensor and S is the Ricci tensor.

Definition: A tensor T of second order is said to be a second order
parallel tensor if VT = 0, where V denotes the operator of covariant
differentiation with respect to metric g.

Theorem 2.1: On an LP-Sasakian manifold M, a second order
symmetric parallel tensor is a constant multiple of associated metric
tensor.
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Proof: Let o denotes a (0, 2)-symmetric tensor field on an LP-Sasakian
manifold M such that V a = 0.Then it follows that
(2.13) a (R(W,X)Y,Z) + a (Y, R(W,X)Z)=0,
for arbitrary vector fields W,X ,Y , Z on M.
Substituting W =Y =7 = §in (2.13), we get
a (§,R(E, X) §) =0, Since a is symmetric.

As the manifold is an LP-Sasakian manifold, using equation (2.9) in above
equation, we have

a (g, X+nX) =0,
which gives

(2.14) g(X, 9a(&, &) + a(&, X) =0.
Differentiating (2.14) covariantly along Y, we get

2.15)  gVyX, 9 a(S, ) +gX, ¢Y)a (s, ) +2g(X, Ha(&, 4Y)
+a(@ Y, X)ta(VyX, &) =0.
Putting X = VyX in (2.14), we get

(2.16) g(VyX, 9 a(g 9 +alEVyX)=0.
From (2.15) and (2.16), it follows that
(2.17) gX, YY) (G, &) +2g(X,8) a (S, ¢Y )t a(gY, X) =0.

Replacing X by ¢Y in (2.14) and using n(¢ Y) = 0, we get
g(@Y, 9 a ) ta ¢Y)=0,

which reduces to

(2.18) aé, pY)=0.
From equations (2.17) and (2.18), it follows that
(2.19) gX, pY)a(E, ) +a(gY, X)=0.

Replacing Y by 4Y in (2.19), we get

(2.20)  gX,Y) a(S, &) +n(Y) n(X)a(s, &) + a(X, Y) ¥ n(Y) a(E, X) =0.
Now from equations (2.14) and (2.4), we have

(2.21) &, X) =-nX) a(g, ) .
Thus from (2.20) and (2.21), we have
(2.22) a(X, Y)=-gX, YY), &).

Differentiating (2.22) covariantly along any vector field on M, it can be
easily seen that a(, &) is constant. This completes the proof.
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Corollaryl: A Ricci symmetric LP-Sasakian manifold is an Einstein
manifold.

Theorem 2.2: On an LP-Sasakian manifold, there is no non-zero
parallel 2-form.

Proof: Again putting W =Y =& in equation (2.13), we get
a(R(E, X)E, Z) + a (& R(E, X)Z) =0
Using equations (2.8) and (2.9) in above equation, we get
223)  o(X,Z)=n(Z)a (& X)-nX)a(E 2)-gX,Z)a( 0.
Now a being 2-form, is a (0, 2) skew-symmetric tensor and therefore a (&,
€) = 0. Hence equation (2.23) reduces to

224)  oX,D)=1(2)a(& X)-nX)a(, 2).
Now suppose A be a (1, 1) tensor field which is metrically equivalent to a
ie., a(X,Y)=g(AX,Y). Then from (2.24), it follows that

g(AX, Z) =n (2) g(A&, X) - n(X) g(AS, Z),
from which we have
(2.25) AX = g(Ag, X)E - n(X)AS.
Since a is parallel, so A is parallel and hence, using Vx & = ¢ X, it follows
that

Vx(Ag) = (VXA + A(VxE) = A(¢X),

from which we obtain
(2.26) V4x(AE) = AX+ n(X)AE.
Therefore, from equations (2.25) and (2.26), we have
(2.27) Vyx(AZ) = g(AE, X)&
From equation (2.27), we have

g(Vyx(AQ), AS) = g(AS, X)g(AS, ©).
Since g(AE, &) = a(, &) = 0, therefore, the above equation reduces to

(2.28) g(Vyx(AQ), AS) =0.
Replacing X by ®X in above equation and using V :£ = 0, we get
(2.29) g8(Vx(Af), Ag) =0,

for any tangent vector X and consequently [|A&ll = constant on M.
From the above equation (2.29), we have

g(A(Vx9), AS) =0,
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which reduces to
—(Ag, VxE)=0,

because a is metrically equivalent to A. The above equation can be written
as

g(VxEA’E)=0.
Replacing X by ®X, we get
8(Vyx&A’E) = 0.
Using equations (2.2) and (2.4) in above equation, we have
g(X, A% = -g(n(X)E, A%),
which gives
(2.30) A%E = lIAEIIPE,
Differentiating above equation covariantly along X, we get
Vx(A%) = A(VxE) = A (¢ X)
= AEIIPV «&
= HAEIP (¢ X).
Hence A (¢ X) = lIAEIX (¢ X).
Replacing X by ®X in above equation, we get
A’($7X) = NAEIP(47X),
which gives
AZX + N(X)AE = NAE 11X + n(X)IAEIIZE.
Using equation (2.30) in above equation, we get
A’X = lIAEIPX.
Now, if Il A& Il # 0, then from above equation, we have

[iJz X =X
4] |

Let F =L , then we have
| 4¢
(2.31) F?X =X.

Therefore F is an almost product structure on M. The fundamental 2-form

is given by
AX 1

YY) =
| 4¢ | 4¢ ]

g(AX)Y)

Created with

i nit

PDF’

r

joad the free trial online

ofessiona



388 R. N. Singh, S. K. Pandey and Giteshwari Pandey
=g (AX,Y)
=X, Y),
1 .
where A = ——— = constant. But from equation (2.25) we have

| 4¢ ]

WX, Z) = n(Z) a (G X) -nX) a (S, 2),

which shows that a is degenerate, hence a contradiction. Therefore Il A Il
=0 and so a = 0. This completes the proof.
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