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Abstract: Levy1 has proved that a second order symmetric parallel non-
singular tensor on a space of constant curvature is a constant multiple of the
metric tensor. Sharma2 has proved that a second order symmetric parallel
tensor in a Kaehlar space of constant holomorphic sectional curvature is a
linear combination (with constant coefficients) of Kaehlarian metric and the
fundamental 2-form. In this paper, we show that on an LP-Sasakian
manifold, a second order symmetric parallel tensor is a constant multiple of
the associated metric tensor and there is no non-zero parallel 2-form.
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1. Introduction

The study of Lorentzian almost paracontact manifolds was initiated by
Matsumoto3 (1989). Later on several authors studied Lorentzian almost
paracontact manifolds and their different classes, viz. LP- Sasakian and
LSP- Sasakian manifolds (cf. Matsumoto & Mihai4 (1988), Mihai & Rosca5

(1992), Matsumoto, Mihai & Rosca6 (1995), Pokhariyal (1996), Mihai,
Saikh & De7 (1999), Mishra & Ojha8 (2000), Saikh & De (2000)). In 1923,
Eisenhart9 proved that if a positive definite Riemannian manifold admits a
second order parallel symmetric tensor other than a constant multiple of
metric tensor, then it is reducible. In 1926, Levy1 proved that a second order
parallel symmetric non-singular (with non-vanishing determinant) tensor in
a space of constant curvature is proportional to the metric tensor. Recently
Sharma2 has generalized Levy’s result by showing that a second order
parallel (not necessarily symmetric and non singular) tensor on an n-
dimensional (n >2) space of constant curvature is a constant multiple of
metric tensor. Sharma10 has also proved that there is no non-zero parallel 2-
form on a Sasakian manifold. In this paper we prove that a second order
symmetric parallel tensor on an LP- Sasakian manifold is a constant
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multiple of the associated metric tensor. Further, it is shown that on an LP-
Sasakian manifold there is no non-zero parallel 2-form.

2. Preliminaries

A differentiable manifold M of dimension n is called Lorentzian Para-
Sasakian3,4 if it admits a (1-1) tensor field  , a contravariant vector field η,
a covariant vector field ξ and a Lorentzian metric g which satisfy

(2.1) η (ξ) = -1,

(2.2)  2X = X + η(X) ξ,

(2.3) g( X,  Y) = g( X,Y) +η(X) η(Y),

(2.4)               g(X, ξ) = η(X), X ξ =  X,

(2.5)               (X  )(Y) = η(Y) X + g(X, Y)ξ + 2η(X) η(Y)ξ,

where  denotes the operator of covariant differentiation with respect to
Lorentzian metric g.
It can easily be seen that in an LP-Sasakian manifold M the following
relations hold:
(2.6)  ξ = 0, η ( X) = 0, rank ( ) = n-1.
Further, on an LP-Sasakian manifold with (Φ, ξ, η, g) structure, the
following relations hold:
(2.7)             g(R(X, Y) Z, ξ) = η(R(X, Y) Z) = g(Y, Z) η(X) - g(X, Z) η(Y),
(2.8)             R(ξ, X)Y = g(X,Y)ξ - η (Y)X ,
(2.9) R(ξ, X)ξ = X + η(X)ξ  ,
(2.10)           R(X, Y) ξ = η(Y) X - η(X) Y,
(2.11)           S(X, ξ) = (n-1) η(X),
(2.12)           S( X,  Y) = S( X, Y) +(n-1) η(X) η(Y),
for any vector fields X, Y, Z, where R(X, Y)Z is the Riemannian curvature
tensor and S is the Ricci tensor.

Definition: A tensor T of second order is said to be a second order
parallel tensor if T = 0, where  denotes the operator of covariant
differentiation with respect to metric g.

Theorem 2.1: On an LP-Sasakian manifold M, a second order
symmetric parallel tensor is a constant multiple of associated metric
tensor.
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Proof: Let α denotes a (0, 2)-symmetric tensor field on an LP-Sasakian
manifold M such that α = 0.Then it follows that
(2.13)                α (R(W,X)Y,Z) + α (Y,R(W,X)Z) = 0,
for arbitrary vector fields W,X ,Y , Z on M.
Substituting W = Y = Z = ξ in (2.13), we get

α (ξ ,R(ξ, X) ξ) = 0,  Since α is symmetric.
As the manifold is an LP-Sasakian manifold, using equation (2.9) in above
equation, we have

α (ξ , X + η(X) ξ) = 0,
which gives
(2.14)                 g(X, ξ)α(ξ, ξ) + α(ξ, X)  = 0.
Differentiating (2.14) covariantly along Y, we get
(2.15) g(Y X, ξ) α (ξ , ξ) + g(X,  Y)α (ξ, ξ) +2g(X, ξ)α(ξ,  Y)

+α( Y,X)+α(YX, ξ) = 0.
Putting X =  Y X in (2.14), we get
(2.16)                 g(Y X, ξ) α (ξ, ξ) + α(ξ,YX) = 0.
From (2.15) and (2.16), it follows that
(2.17)                g(X,  Y)α (ξ, ξ) + 2g(X, ξ ) α (ξ,  Y )+ α( Y, X) = 0.
Replacing X by  Y in (2.14) and using η( Y) = 0, we get

g( Y, ξ) α(ξ, ξ) + α(ξ,  Y) = 0,
which reduces to
(2.18)                  α(ξ,  Y) = 0.
From equations (2.17) and (2.18), it follows that
(2.19)                 g(X,  Y)α (ξ, ξ) + α( Y, X) = 0.
Replacing Y by  Y in (2.19), we get
(2.20) g(X, Y) α(ξ, ξ) + η(Y) η(X)α(ξ, ξ) + α(X, Y) + η(Y) α(ξ, X) = 0.
Now from equations (2.14) and (2.4), we have
(2.21)                    α(ξ, X) = - η(X) α(ξ, ξ) .
Thus from (2.20) and (2.21), we have
(2.22)                    α(X, Y) = - g(X, Y)α(ξ, ξ).
Differentiating (2.22) covariantly along any vector field on M, it can be
easily seen that α(ξ, ξ)  is constant. This completes the proof.
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Corollary1: A Ricci symmetric LP-Sasakian manifold is an Einstein
manifold.

Theorem 2.2: On an LP-Sasakian manifold, there is no non-zero
parallel 2-form.

Proof: Again putting W = Y = ξ in equation (2.13), we get
α(R(ξ, X)ξ, Z) + α (ξ, R(ξ, X)Z) = 0

Using equations (2.8) and (2.9) in above equation, we get
(2.23) α (X, Z) = η (Z) α (ξ, X) - η(X) α (ξ, Z) - g(X, Z) α (ξ, ξ).
Now α being 2-form, is a (0, 2) skew-symmetric tensor and therefore α (ξ,
ξ) = 0. Hence equation (2.23) reduces to
(2.24) α (X, Z) = η (Z) α (ξ, X) - η(X) α (ξ, Z).
Now suppose A be a (1, 1) tensor field which is metrically equivalent to α
i.e., α (X, Y) = g(AX,Y). Then from (2.24), it follows that

g(AX, Z) = η (Z) g(Aξ, X) - η(X) g(Aξ, Z),
from which we have
(2.25) AX = g(Aξ, X)ξ - η(X)Aξ.
Since α is parallel, so A is parallel and hence, using X ξ =  X, it follows
that

X (Aξ) = (XA)ξ + A(Xξ) = A( X),
from which we obtain
(2.26)  X(Aξ) = AX+ η(X)Aξ.

Therefore, from equations (2.25) and (2.26), we have
(2.27)  X(Aξ) = g(Aξ, X)ξ

From equation (2.27), we have
g(  X(Aξ), Aξ) = g(Aξ , X)g(Aξ , ξ).

Since g(Aξ, ξ) = α(ξ, ξ) = 0, therefore, the above equation reduces to
(2.28) g(  X(Aξ), Aξ) = 0.

Replacing X by ΦX in above equation and using  ξξ = 0, we get
(2.29)                 g(X(Aξ), Aξ) = 0,
for any tangent vector X and consequently ΙΙAξΙΙ = constant on M.
From the above equation (2.29), we have

g(A(Xξ), Aξ) = 0,
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which reduces to
– α(Aξ, Xξ ) = 0,

because α is metrically equivalent to A. The above equation can be written
as

g(Xξ,A2 ξ) = 0.
Replacing X by ΦX, we get

g(  Xξ,A2ξ) = 0.

Using equations (2.2) and (2.4) in above equation, we have
g(X, A2ξ) = -g(η(X)ξ, A2ξ),

which gives
(2.30) A2ξ = ΙΙAξΙΙ2ξ.
Differentiating above equation covariantly along X, we get

X(A2ξ) = A2(Xξ) = A2( X)
= ΙΙAξΙΙ2Xξ
= ΙΙAξΙΙ2 ( X).

Hence A2( X) = ΙΙAξΙΙ2( X).
Replacing X by ΦX in above equation, we get

A2( 2X) = ΙΙAξΙΙ2( 2X),
which gives

A2X + η(X)Aξ = ΙΙAξ ΙΙ2X + η(X)ΙΙAξΙΙ2ξ.
Using equation (2.30) in above equation, we get

A2X = ΙΙAξΙΙ2X.
Now, if ΙΙ Aξ ΙΙ ≠ 0, then from above equation, we have

2
A

A
 
  
 

X   = X.

Let F =
A

A , then we have

(2.31) F2 X = X.
Therefore F is an almost product structure on M. The fundamental 2-form
is given by

g (FX, Y)  = g(
A

AX , Y) =
A

1 g(AX,Y)
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= λg (AX, Y)
= λα(X, Y),

where λ =
A

1 = constant. But from equation (2.25) we have

α(X, Z)  =  η(Z) α (ξ, X) - η(X) α (ξ, Z),
which shows that α is degenerate, hence a contradiction. Therefore ΙΙ Aξ ΙΙ
= 0 and so α = 0. This completes the proof.
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