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Abstract: Two dimensional axisymmetric viscous incompressible 

electrically conducting fluid flows through a circular cylinder filled 

with porous medium in the presence of a static transverse magnetic 

field and a cosinusoidal suction in radial direction is studied. A domain 

Decomposition Method (ADM) is used to solve the non-linear coupled 

differential equation to obtain the velocity profiles in radial and axial 

direction. The effects of involved physical parameters are computed 

and discussed graphically. The skin-friction coefficient is also 

computed and effect of Reynolds number, Hartmann number and Darcy 

number are analyzed. 

Keywords: MHD flow, porous walled cylinder, cosinusoidal suction,  

             ADM. 

 

1. Introduction 

 

       There are many frontier problems which exist in physics, engineering, 

medical and many other disciplines which dealt with the mathematical 

modeling. The formulation of these problems by means of Navier-Stokes 

equations gives rise to nonlinear ordinary or partial differential equations 

subject to the certain boundary conditions. The exact solutions of these 

problems are not always possible due to their nonlinear character. So, to find 

the solution of problems, we take advantage of numerical techniques, up to 

desired accuracy. Adomian1 discussed the application of decomposition 
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method to Navier-Stokes equations. Adomian2-6 developed a powerful 

method known as decomposition method which provides analytic 

approximations to a wide class of nonlinear ordinary and partial differential 

equations. Halder7  investigated two dimensional steady blood flow through 

a constructed artery in the presence of transverse magnetic field using 

Adomian decomposition method. Salas8  obtained an exact solution of MHD 

boundary layer flow over a moving vertical cylinder. Boricic  et al.9  

analyzed the unsteady two dimensional dynamic, unsteady, thermal and 

diffusion magneto hydrodynamic laminar boundary layer flow over a 

horizontal circular cylinder of incompressible and elecrically conducting 

fluid in a porous medium in the presence of a heat source or sink and 

chemical reaction.  Bhattacharya et al.10 studied axisymmetric boundary 

layer flow and heat transfer past a permeable shrinking cylinder subject to 

mass suction. Mukhopadhyay et al.11. studied axisymmetric laminar 

boundary layer flow of a viscous incompressible fluid and heat transfer 

towards a stretching cylinder under the influence of a magnetic field. 

       In the present study, a two dimensional steady fully developed flow 

through a horizontal porous walled circular cylinder in the influence of 

cosinusoidal suction and a transverse magnetic field is considered. The 

mathematical model of the problem is derived from Navier-Stokes equation 

and is non-linear partial differential equations. The solution of the problem 

is obtained by Adomian decomposition method. 

 

2. Formulation of the Problem 

 

       In the present study a viscous incompressible electrically conducting 

fluid is flowing in a circular cylinder. The circular cylinder is of permeable 

wall filled with fluid saturated isotrpic porous medium. The z-axis is taken 

along the axis of the cylinder. The flow is considered as axisymmetric, 

therefore in the cylindrical coordinate system  , ,r z  the velocity field can 

be defined by  ,0,q u v . A static magnetic field  0 ,0,0B  is acting transvers- 

ely to the flow and cosinusoidal suction is applied on the surface of the 

cylinder. In view of magneto hydrodynamics when an electrically 

conducting fluid flows in a magnetic field, an electromagnetic force 

generated due to the interaction of the current with magnetic field. The 

Maxwell equations for MHD flow are 
 

 (2.1)             0div B  
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(2.2) mCurl B J , 

 

(2.3) 
B

Curl E
t


 


, 

 

(2.4)  J E V B   , 

 

where E  is the electric field, B is the magnetic field, m  is the electric 

permeability,  J  is the current density and σ is the electrical conductivity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The governing equations of motion describing the flow and the prescribed 

boundary conditions are defined as 

The equation of continuity 
 

(2.5)              0
u u v

r r z

 
  

 
.                                                                                                                               

 

The equations of motion are in radial direction 
 

(2.6)              
2 2

2 2 2

1 1u u p u u u u
u v u

r z r r r Kr r z






      
        

     
. 

 

In axial direction 
 

(2.7)              
22 2

0

2 2

1 1 vv v p v v v
u v v

r z z r r Kr z

 


 

      
        

     
. 

               Figure 1. Physical model of the problem 

Suction zV  cos0  

r 

z 
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The corresponding boundary conditions are 
 

 (2.8)             0r   :      0
v

r





, 

 

(2.9)              r a   :     0v  ,  0 cosu V z                                                          

 

3. Method of Solution 

 

     Introducing following dimensionless quantities 
 

                     *

0

u
u

V
 , *

0

v
v

V
 , * r

r
a

 ,  * z
z

a
 , *

2
0

p
p

V
 , 

 

where p    pressure,   suction\injection parameter,   density,   viscosity 

K  permeability, 0V  maximum suction\ injection, a   radius of cylinder. 

The non-dimensional form of equations of motion when the asterisk is 

dropped for the sake of simplicity, are given by 
 

(3.1)              
2 2

2 2 2

1 1 1

Re Re

u u p u u u u
u v u

r z r r r Dar r z

      
        

     
, 

 

(3.2)              
2 2 2

2 2

1 1 1

Re Re Re

v v p v v v M
u v v v

r z z r r Dar z

      
        

     
, 

 

where  0Re aV    the Reynolds number, 2 2
0M a     the Hartmann 

number, Da K  the Darcy number. 

Differentiate (3.1) with respect to z and (3.2) with respect to r and then 

taking their difference to eliminate the pressure term, we obtained 
 

(3.3)              
2 2 2 2

2 2

u u v v v v u u u u v u
u v u v

r r r r z r z r z z r z z z

           
      

             
 

 

                     
3 2 3 3 2 3

3 2 2 2 2 2 3

1 1 1 1 1

Re

v v v v u u u u

r r r r r r z r z r r z r z z

        
        

           
 

 

                     
2 1 1

Re Re Re

M v v u

r Da r Da z

  
  

  
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Taking the stream function  ,r z  that related with u and v as 

 

(3.4)              
1

u
r z





, 

1
v

r r


 


                                                                                                            

 

In view of (3.4), The equation (3.3) reduces to 
 

 (3.5)      
2 2

2 4 2

2 3 2 2

2 1 1 1
Re

J
M

r r z Da r r r Da z

   
 

       
                 

, 

 

where, the Jacobian J  is defined by 
 

 (3.6)             
 
 

 

 

2
2

2

,

,

r r
J

r z

z z


 




 
   

 
 


 

 

 

and 
  

(3.7)              
2 2

2

2 2

1

r r r z

  
   

  
. 

 

The corresponding boundary conditions reduces to 
 

 (3.8)             0r   :    
1

0
r r r

  
  

  
, 

 

 (3.9)             1r   :     
1

0
r r


 


 , 

1
cos z

r z


 


 


. 

 

The solution of the non-linear partial differential equation (3.5) is obtained 

with the Adomian decomposition method (ADM). On applying ADM 

Taking 
2

2

1
L

r r r

 
 
 

    a linear operator and  2

2 3

2J
N

r r z






  


 then the 

equation (3.5) can be written as 
 

 (3.10)     
4 3 4 2

2 2

2 2 2 4 2

2 1 1
Re 2L N M L

r z r r z z Da Da z


   
 

    
        

      
.  

 

Applying inverse operator 2L on the equation (3.10) it reduces into 
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 (3.11)        
4 3 4

2 2

0 2 2 2 4

2 1
Re 2L N M L

r z r r z z Da


  
        
         

       
, 

 

where  0  is the solution of the equation 

 

 (3.12)           2

0 0L   

 

Now decomposing   and N in the following form 

 

(3.13)              
0

n

n

n

  




 , 

 

(3.14)              
0

n

n

n

N P 




 ,                                                                            

 

where nP are Adomian’ special polynomials. The parameter   is used only 

for grouping  the terms of different order. The regular decomposition of   

in the recurrence form is given by 

 (3.15)           
2 4

2 2

1 0 2 4

1
Re 2 n n

n n n

L
L P M L

z z Da

 
  



    
        

    
 

 

                           
2

2

1 n

Da z





, 

where,  n=0, 1, 2 . . . Once the component 0  is determined, the other comp- 

onents of    such as 1 ,  2  etc. can be determined from (3.14). 

Again substitution of (3.13) and (3.14) into the boundary conditions  

mentioned in (3.8) and (3.9) gives the boundary conditions for the 

respective components 0 , 1  etc. as follows 

 

 (3.16)           0r  :   01
0

r r r

  
  

  
 ,  

1
0n

r r r

  
  

  
,  

  

 (3.17)           1r  : 01
0

r r


 


, 01

cos z
r z


 


 


,

1
0n

r r


 


,
1

0n

r z





. 

 

Invoking double decomposition of  0  defined by 
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 (3.18)           0 0,

0

n

n

n

  




 . 

 

In the equation  (3.15), the double decomposition components of   are 

given by 
 

(3.19)            
2 4

2 2

1 0, 1 2 4

1
Re 2 n n

n n n n

L
L P M L

z z Da

 
  

 

    
        

   
 

 

                           
2

2

1 n

Da z

 
 

 
, 

 

where n  being any non-negative integer. 

In view of the definition of linear operator L , the inverse operator 2L is 

defined by 
 

(3.20)            2 1 1 1 1 1 1

1 1 1 1L L r L r L r L r       ,                                                                                          

 

therefore, the solution of the equation (3.12) is given by 
 

3.21)             
4 2 2 2

0

log

16 2 4 2

r r r r r
A B C D

 
     

 
.  

 

Since the expression for 0  contains the constants A , B , C  and D , 

therefore, the parameterized decomposition forms of all these constants will 

be of the form 
 

(3.22)            
0

n

n

n

A A 




 , 
0

n

n

n

B B 




 ,
0

n

n

n

C C 




 , 
0

n

n

n

D D 




 ,                                              

 

Substituting these in the equation (3.21) and comparing the like power terms 

of   on the both sides of the resulting expression we get 

 

(3.23)            
4 2 2 2

0, 1 1 1 1 1

log

16 2 4 2
n n n n n

r r r r r
A B C D     

 
     

 
. 

 

The constants involved in each n   will be determined by their respective 

boundary conditions. 
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The Adomian polynomials 0P , 1P , … nP  are defined in such a way that 

 0 0oP P  ,  1 1 0 1,P P   ,  2 2 0 1 2, ,P P     ……..…  0 1, ,...n n nP P    , 

here 
 

                     
 

 

2

0 0 20
0 02

,1 2

,
P

r r z r z

  


  
  

 
, 

 

                     
 
 

 
 

2 2

1 0 0 1

1

, ,1

, ,
P

r r x r z

       
  

  
 

 

                         2 20 1
1 02

2
.

r z z

 
 

  
      

. 

 

Under the prescribed boundary conditions, the solution of the equation 

(3.21) will be 
 

(3.24)             4 2

0

sin
2

z
r r


 



 
  
 

.                                                                                                             

Using  0  , the value of Adomian polynomial 0P  is obtained and given by 

 

(3.25)               
2

2 6 2 4 2

0

32
2 8 sin( )cosP r r r z z


     



  
      

  
.                                             

 

Now,  for 1n  , the equation (3.19) gives 
 

(3.26)            
2 4

2 20 0
1 0,1 0 02 4

1
Re 2

L
L P M L

z z Da

 
       

       
   

 

 

                        
2

0

2

1

Da z

 
 

 
 ,                  

where , 0,1  is the solution of the equation 

 

                     2

0,1 0L  . 

 

Letting 
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2 4 2

20 0 0
0 02 4 2

1 1
Re 2

L
P M L

z z Da Da z

  


   
     

   
 

 

                     
6 4 2

1 2 3r r r     . 

 

On using values of 0  and  0P the values of   , 1,2,3i z i   are defined as 

follows. 

where     2

1 Re sin 2z z    ,  

             
2

2 3

2

16
Re 4 sin 2 sin sinz z z z


       



 
    

 
 

              

3

2
2

3 2

16 2
16

Re 4 sin 2 sin1
8 2

z z z
M

Da

 


    
 



  
   

           
  

 

 

Then 1  can be expressed as 

 

(3.27)               
     4 2

1 2 310 8 6

1 1 1
16 2 3840 1152 192

z z zr r
A z C z r r r

  
      ,                                                  

 

Substitute values of 0 and 1 in the equation (3.13) and using  in the 

equation (3.4) , we have The radial velocity profile 
 

(3.28)                 
3

3

1 1cos 2
16 2

r r
u z r r A z C z          

 

                            
9 7 5

1 2 3
3840 1152 192

r r r
z z z        

 

and the axial velocity profile 
 

(3.29)            

     

     

2
2

1 1

8 6 4

1 2 3

sin
4 4

4

384 144 32

z r
r A z C z

v
r r r

z z z

 



  

 
   

  
 
   
 

, 

 

where 
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       
     1 2 3

1
60 24 6

z z z
A z

  
        

     1 2 3

1
60 24 6

z z z
A z

    
      

       
     1 2 3

1
640 288 96

z z z
C z

  
         

     1 2 3

1
640 288 96

z z z
C z

    
     

 

         2 2

1 2Re cos2z z     ,    2 2 2

2 Re 32 8 cos2z z        

                                                      4 2cos cosz z      

 

          

2 4

' 2 2 2

3 2 2

16 2

Re 32 4 cos 2 cos1
8 2

z z z
M

Da

 

     
 

  
 

        
  

 

The simulation of velocities for various physical parameters the 

computation has been carried out with MATLAB programming for λ=2. 

 

4. Skin Friction Coefficients 

 

      The non-dimensional shearing stress on the wall and the interface in 

terms of the local skin-friction coefficient is derived as follows and 

computed values are given in table 1. 
 

                     
1

2

Re
f

r

u v
C

z r 

  
  

  
 

 

Table 1. Skin friction coefficient at the wall of cylinder 

 

Re M Da Cf 

10 3 0.1 1.76968 

20 3 0.1 2.43382 

30 3 0.1 2.6552 

40 3 0.1 2.76588 

10 1 0.1 1.96925 

10 5 0.1 1.37054 

10 8 0.1 0.39763 

10 3 1 1.9942 

10 3 0.01 -0.4755 

10 3 1E-3 -22.92724 
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5. Results and Discussion 

 

      The radial velocity of the fluid in the porous media filled circular 

cylinder is significantly increases in magnitude with the increase of 

Reynolds number as observed in figure 2.The radial velocity of the fluid is 

comparatively very high in magnitude for the small value of Darcy number. 

With the increase of Darcy number the magnitude of radial velocity 

decreases significantly as shown in the figures 3 and 4. The flow field is 

also affected by the magnetic field as shown in Figure 5. The radial velocity 

decreases in magnitude with the increase of Hartmann number. When 

Hartmann number is small there is no back flow while for large value of 

Hartmann number e.g.  10M  , the backflow near the centerline is 

observed.In figure 6, it is observed that the axial velocity of the fluid flow in 

the central region of the cylinder is in forward direction and increases with 

the increase of Reynolds number. There is back flow in the axial velocity 

profile in the vicinity of the cylinder’s surface which is caused by suction at 

the surface. The effects of permeability on the flow profile are shown in 

terms of the Darcy number in figure 7 and 8. Due to suction there is back 

flow in the vicinity of the surface of the cylinder for comparatively large 

value of the Darcy number. With the decrease of the Darcy number the 

magnitude of the back flow reduces and diminished for 0.1aD   as in figure 

8. Also with the decrease in Darcy number the axial velocity reduces in the 

central region of the cylinder. The axial velocity can be controlled with the 

external magnetic field is plausible in figure 9. The magnitude of axial flow 

velocity decreases with the increase of Hartmann number which is in 

agreement that the Lorengian force produced by magnetic field retarded the 

flow. An interesting result is observed that the back flow in the vicinity of 

the cylinder can be diminished by increasing the strength of magnetic field. 

In table1,it is observed that the skin friction at the wall of the cylinder 

increases with the increase in the value of Reynolds number. The skin 

friction reduces with the increasing value of Hartmann number. The 

magnitude of skin friction decreases with the increase of Darcy number. 

 

6. Conclusion 

 

(1) Radial velocity increases with increase in values of Darcy number and 

Reynolds number but decreases with the increase in Hartmann number 

(2) Back flow is observed in the vicinity of the circumference of the 

cylinder . 
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(3) The magnetic field can be used as controlling device for the skin friction 

on the surface of the cylinder. 
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