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1. Introduction 
 

Let (x, y) = (x
i
, y

i
) be a local coordinate system of the total space of the 

tangent bundle TM of a three dimensional differentiable manifold M.  

Let us consider a Finsler space (M, L) which is equipped with the 

fundamental function L(x, y). Let gij be the fundamental tensor and Cijk be 

the Cartan’s C-tensor of the Finsler space (M, L) and the matrix (g
ij
) be the 

inverse of the matrix (gij). Then 
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If in a Finsler space there exists a local coordinate system (x
i
, y

i
) in which 

the fundamental tensor gij can be written as a function of the variable y
i
 

alone, we call the space, a locally Minkowski space and such a coordinate 

system  (x
i
, y

i
) a rectilinear coordinate system. If a Finsler space (M, L) is 

conformal to a locally Minkowski space (M,L), then (M, L) is called a 

conformally flat Finsler space. 
 

[[ 
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2. Scalar Components and Conformal Changes in Moor’s Frame  
 

A. Moor
1
 introduced a special orthonormal frame field (l

i
, m

i
, n

i
) in 

the three dimensional Finsler space. The first vector of the frame is the 

normalized supporting element l
i
, the second is the normalized torsion 

vector m
i
 = C

i
/C, and third n

i
 is the unit vector orthogonal to them. Here 

 

i ij kh

jkh C  g C g and 2 i j

ijC  g C C . 

 

In a Moor’s frame an arbitrary tensor field can be represented by scalar 

components along the unit vector l
i
, m

i
 and n

i
. For instance, let i

jk
T  be a 

tensor of type (1, 2), then the scalar components T    are defined by 
 

                   ) ) )

i j k

j k iT T e e e      ,             ,  ,  = 1, 2, 3. 
 

and the tensor i
jk

T may be expressed as  

                     ) ) )

i i

j k j kT T e e e               , ,  = 1, 2, 3. 
 

where ii
)1

le  , ii
)2

me  , ii
)3

ne  , j
)iji) ege

  ,  = 1, 2, 3, and 




j
)

i
)ij eeg , ,  = 1, 2, 3. Therefore   ij i j i j i jg  l l  m m  n n   .  

The C-tensor i j kC satisfies 
 

                     i j k

i j k i j k i j k C l  C l  C l  0   ,  
 

So the expression of i j kC in three dimensional Finsler space is written as
2 

 

 

(2.1)              
 

 

i jk i j k i j k i j k i j k

i j k i j k i j k i j k

LC Hm m m J m m n m n m  n m m    

I m n n  n m n  n n m  J n n n ,

   

   
  

 

 

where H, I, J are called main scalars
2
, such that H + I =LC.  

 

Now the h-covariant and v-covariant differentiations of the former fields 

with respect to Cartan’s connection C are given by
2
. 

 

(2.2)           | | | 0,    ,       ,i j i j i j i j i jl m n h n m h      
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(2.3)  
i j i j i jLl m m n n  ,   

i j i j i jLm l m n v   ,  
  

 
jijiji vmnlLn  , respectively, where hi and vi are components of 

vectors called the h-connection vector and v-connection vector respectively.  

Let us consider a Finsler space (M,L) which is conformal to a 

Minkowski space (M, L), i.e.L(x, y) = e
(x)

 L(y).  

In this paper we shall use the symbol ‘’ on the top of the quantities to 

denote the quantities of the conformally flat Finsler space (M,L). 

We use the following notations 

           2 2F  L / 2,       F L / 2, ,i ii iy x

 
     

 
. 

So, we get
3
  

(2.4)    F  e F,     2

i j ijg e g ,    4 ,g e g    2 ,ij ijg e g   

       , i il e l   , i im e m   , i in e n  , i il e l   , i im e m                                

 , i in e n
2

i j k i j kC e C ,   i i

jk jkC  C ,  H  H,   I  I,   J  J.     

    

Now, we are concerned with the conformal change of Christoffel’s symbols 

            
1

( )
2

r

ijk jr ik k ij i jk j ikg g g g      . 

From (2.4) we can easily obtain the following 

(2.5) i i i i i

jk jk j k k j jkg          , ( ,i ix








  i ij

j g  ). 

Therefore, the conformal change of 2G
i
 =  00

i j k i

jk y y   is given by 

(2.6)                             
i i k i i 2

k 2G  2G  2 y y   L .     

If we write i 1 i 2 i 3 il m n       in three dimensional Finsler space (M,L), 

then  

  i i 2 i i i

1 2 32.7                    2G  2G L ( l m n )      ,  
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Differentiating equation (2.7) with respect to y
j
 and using equations (2.1), 

(2.3) and the fact that 
j

i
i

j
y

G
G




 , we get 

(2.8)      )()( 542321 jjj

i

jjj

ii

j

i

j nmlLmnmlLlGG     

                                                            )( 653 jjj

i nmlLn   . 

where we have written  

(2.8) 4 = JH 321  , 5 2 3J I    and  6 1 2 3I J      . 

On the other hand, the connection coefficients i
jk

F of Cartan’s connection 

C are given by
4
  

 

             r r r r

ijk jr ik ijk ijr k jkr i ikr jF g F C G C G C G     . 

 

Therefore from (2.1), (2.5) and (2.8), we get 
 

(2.9)     
1 2{ (i i i

jk jk j k jF F l l l l     3 4 )  k j k j k j k j km m l l n n l m m      

                                  5 6 2 4   } {  i

j k j k j k j k j k j km n n m n n m l l l m m l                                             

   5 3 5 6 (  )  j k j k j k j kl n n l H J m n n m          

                       2 4 5 2 4 5 6( )  (   3   2 ) }j k j kH J m m I J I n n              

                          3 5 6[   i

j k j k j k j k j kn l l l m m l l n n l                             

                             2 4 6 3 4 6(  )    { 2  j k j kI J m n n m J J                                 

                           5 3 5 6( 2 )} ( ) ].j k j kH I m m I J n n         

Now, we shall deal with the h-covariant derivative Si of a conformally 

invariant scalar field S with respect to the conformally changed Cartan 

connection C: iS  = SS ri   r
iG , S is positively homogeneous of 

degree zero in y
i
. Then from (2.8), we have 

 

                 jS = 
j rS S  {

1 2 3( )r r

j j j jG Ll l m n      2(r

jLm l  

                             4 5 )j jm n   )nml(Ln j6j5j3
r  , 

which gives immediately  
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(2.10)        | 2  ;j jS S S   2 4 5 3 3 5 6( ) S; ( ).j j j j j jl m n l m n             
 

Since 1 2 3 ;  ;  ;i i i iS S l S m S n    , from (2.2) and (2.10) we have the 

relations 

  1 1 2 2 3 3

2 2 2 4 3 5

3 3 2 5 3 6

2.11                              ;  ;  ( ,  ; ; ),

;  ;  ( , ; ; ),

;  ;  ( , ; ; )

i

i

i

i

i

i

S S l e S S S

S S m e S S S

S S l e S S S







 

 

 







   

   

   

 

For the conformal change of the adopted components h of h-connection 

vector hi, from (2.2) and (2.4), we have mij = e

(mi j + mij ), which in 

view of (2.8) and (2.9) leads to 
 

 

2 2 3 3 4 2 5 3 3 5 6

4 5 2 5 3 6 5 6 4 2

(2.12)   ( ) (   

)  (  2  ) .

i i i

j j

h h v v l v v H J

J I m v v J Is Is s n

      

    

       

       
 

Thus the adopted components hα α= 1, 2, 3 of hi in (M,L) are given by 

  1 1 2 2 3 32.13      h  e (h v v ),                                            

2 2 4 2 5 3 3 5 6 4 5 {   (   )},h e h v v H J J I                              

3 3 2 5 3 6 5 6 4 2 (   2  ).h e h v v J I I              

 

3. Conformally flat Landsberg space 
 

Berwald spaces are characterized by |  0ijk hC  and Landsberg spaces are 

characterized by |0  0ijkC  where the index ‘0’ denotes the transvection by 

the supporting element y
i
. If a Finsler space is a Berwald space, it is a 

Landsberg space.  

it is shown
5,6,7 

that Landsberg space becomes a Berwald space in many 

cases. We have discussed the same case with some condition in three 

dimensional Finsler space. 
 

Definition (3.1)
1
: A Finsler space F

n
 is called conformally flat if F

n
 is 

conformal to a locally Minkowaski space. 
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Theorem (3.1)
1
: A Finsler space F

3
 with non zero C is a Berwald space 

if and only if the h-connection vector hi vanishes and all the main scalars 

are h-covariant constant. 
 

Theorem (3.2)
1
: A Finsler space F

3
 with non zero C is a Landsberg 

space if and only if the h-connection vector hi is orthogonal to the 

supporting element y
i
, that is h1 = 0 and the main scalars H,1 = I,1 = J,1 = 0. 

 

If the three dimensional Finsler space F
3
 = (M,L) is conformal to a 

Finsler space (M, L), the main scalars H,I andJ of (M,L) coincide with 

the main scalars H, I and J of (M, L). In particular we must notice that the 

main scalars H, I, J and h-connection vector hi in our case are functions of 

the variable y
i 
alone. 

Firstly, we suppose that the Finsler space (M,L) be a Landsberg space. 

Then from Theorem (3.2) it follows that 
 

 (3.1)         1 1 1 1,  0, ,  0, ,  0 and  0.H I J h     
 

The scalar 1,H can be written in terms of Moor’a frame as 
 

            1, ,  k r k r k

k k kk r r

H H H
H H l G l G e l

x y y

   
    

   
 

              1 2 3 2 4 5

3 5 6

{ ( ) ( ) 

( )} |

r r

k k k k k k

r k

k k k r

Le l l m n m l m n

n l m n l H

      

  

      

  
 

         = 1 2 3( | | | ).r r r

r r rLe H l H m H n       

Therefore, 
 

(3.2)                  1 2 2 3 3,  ( ; ; ) .H H H e      
 

Similarly, we have 
 

 

 

1 2 2 3 3

1 2 2 3 3

3.3                                  I,  ( I; I; )e , 

3.4                      J,  ( J; J; )e .





 

 





 

 
 

 

Therefore, from (3.1), (3.2), (3.3), (3.4) and (2.12), we get 
 

2 2 3 3 2 2 3 3

2 2 3 3 1 2 2 3 3

(3.5)       ; ;  0,              ; ;  0,                                   

; ;  0  and      0.

H H I I

J J h v v
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Now, we prove that 2  and 3  never vanish simultaneously, for non 

homothetic transformation.  

If possible suppose that 2  = 0, 3  = 0, then 1 2 3 ,i i i il m n       

gives 1 .i il   Differentiating this with respect to y
j
, we get  

           0 = ij1i1j ll)(   = 
ji1i1j ll)(  , 

which in view of (1.3) gives  0 = )nnmm(
L

l)( jiji
1

i1j 


  or 

(3.6)      
i1jjiji

1 l)()nnmm(
L


  . 

Since  L. H. S. of equation (3.6) is symmetric in i and j therefore  

i1jj1i l)(l)(   . 

Contracting this equation by l
j
, we get i

j
1j1i ll)()(   . Since 1 is 

positively homogeneous of degree zero in y
i
, therefore 0l)( j

1j  , 

which implies                    01i  . 

Thus equation (3.6) shows that 1  = 0. Hence i = 0 which shows that  is 

constant, i.e. the transformation is homothetic. 

 Hence we conclude that, for non homothetic transformation 2 and 3 do 

not vanish simultaneously. So we consider here three cases of non 

homothetic transformation. 
 

Case (i): Let 2   0 and 3   0. In this case, from (3.5), we have 

(3.7)  

2

3

3

2

3

2

3

2

;J

;J

;I

;I

;H

;H




  and  1 2 2 3 3h v v    . 

Conversely  if (3.7) holds then from (2.13), (3.2), (3.3) and (3.4), we get 

(3.1). So (M,L) is a Landsberg space. Hence we have the following: 

Theorem (3.3): A three dimensional Landsberg space is -conformally 

flat if and only if (3.7) holds. 
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Case (ii): Let 2  = 0 and 3   0. In this case, from (3.5), we have 

(3.8)       3 3 3 1 3 3;  0,   ;  0, ;  0 and  0.H I J h v      

Conversely if (3.8) holds for 2  = 0 and 3   0, then from (2.13), (3.2), 

(3.3) and (3.4) we get (3.1). So (M,L) is a Landsberg space. Therefore it 

follows that 

Theorem (3.4): If i is orthogonal to m
i
, then a three dimensional 

Landsberg space is -conformally flat if and only if H;3 = 0, I;3 = 0,  J;3 = 0 

and  1 3 3h v .   

Case (iii):  Let 2  0 and 3  = 0. In this case, from (3.5), we have 

(3.9)    2 2 2 1 2 2H;  0,  I;  0,J;  0 and  h v  0.      

Conversely if (3.9) holds for 2  0 and 3  = 0, then from (2.13), (3.2), 

(3.3) and (3.4) we get (3.1). So (M,L) is a Landsberg space. Therefore it 

follows that 
 

Theorem (3.5): If i is orthogonal to n
i
, then a three dimensional 

Landsberg space is -conformally flat if and only if 

2 2 2 1 2 2H;  0,  I;  0,  J;  0 and h v .      

 
4. Conformally flat Berwald space 

 

 We consider the case when the Finsler space (M,L) be a Berwald 

space. We shall rewrite kH 























r

r
kk y

H
G

x

H . Since H, I, J and 

connection vector hi are only functions of the variable (y
i
), this equation is 

equivalent to  

                                 kH 
r

r
k

y

H
G




 . 

Therefore, from (2.8), we get 

(4.1)  
r r

1 k 2 k 3 k 2 k 4 k 5 k

r

3 k 5 k 6 k r

H L{l ( l m n ) m ( l m n )

n ( l m n )}H | .

k      

  

       

  

 

Since          1

1 2 3 1|  ;  ;  ;  and ;  0r r r rH L H l H m H n H    ,  



           Three Dimensional Conformally Flat Landsberg and Berwald Spaces                  307 

 

we have 

(4.2)  
2 2 4 5 3 3 5 6 ; ( )  ; ( )k k k k k k kH H l m n H l m n            . 

Similarly, we get 

(4.3)  
2 2 4 5 3 3 5 6 ; ( )  ; ( ),k k k k k k kI I l m n I l m n              

(4.4)  
2 2 4 5 3 3 5 6 J; ( )  ; ( )k k k k k k kJ l m n J l m n            . 

Now, we discuss all the three cases which are discussed in previous section. 
 

Case (i). Let 2   0 and 3   0.  

 If the three dimensional Landsberg space (M,L) is conformally flat, 

then from equations (4.2), (4.3), (4.4), (2.12) and (3.7), we get 

(4.5)   5 3 4 2 5 2 6 3  ( ; ; )  ( ; ; ) ,k k kH H H m H H n         

             5 3 4 2 5 2 6 3  ( ; ; )  ( ; ; ) ,k k kI I I m I I n         

           5 3 4 2 5 2 6 3  ( ; ; )  ( ; ; ) ,k k kJ J J m J J n         

                     

2 4 2 5 3 3 5 6 4 5

3 5 2 6 3 5 6 4 2

and  { (    )}  

 {  (  2   )} .

j j

j

h h v v H J J I m

h v v J I I n

      

     

       

      
  

From Theorem (3.1) it follows that the space (M,L) is a Berwald space if                 

 0 and  0.k k k iH I J h        

Therefore from (4.5) it follows that (M,L) is a Berwald space, if 

(4.6)  5 3 4 2 5 2 6 3 5 3 4 2; ;  0,    ; ;  0,     ; ;  0,      H H H H I I             

             5 2 6 3 5 3 4 2 5 2 6 3; ;  0,      ; ;  0,      ; ;  0. I I J J J J              

2 4 2 5 3 3 5 6 4 5

3 5 2 6 3 5 6 4 2

(    )  0

and                   (  2   )  0.

h v v H J J I

h v v J I I

      

     

       

      
 

Conversely if (4.6) holds, then from (4.5) we 

get  0 and  0.k k k iH I J h       Hence (M,L) is a Berwald space.   
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Theorem (4.1): A three dimensional conformally flat Landsberg space 

is a Berwald space if and only if the equations (4.6) are satisfied.  
 

Case (ii): Let 2  = 0 and 3   0. In this case if a three dimensional 

Lansberg space is - conformally flat then from Theorem (3.4) we get H;3 = 

0, I;3 = 0,  J;3 = 0 and  h1 =  3 v3. Therefore from (4.6) and (2.8), a three 

dimensional - conformally flat Landsberg space is a Berwald space if  

  

  

    

2 2 2

2

2 1 2 3 2 3

3 1 3 3 2 3

4.7             ;  0,    ;  0, ;  0,

4.7             (1   2  ),

4.7             .

a H I J

b h v Jv v I HI J IJ

c h v Iv Jv

 

 

  

      

  

 

Since H, I, J are positively homogeneous of degree zero in y
i
, therefore  

H;1 = 0,  I;1 = 0, J;1 = 0. Hence main scalars H, I, J are functions of position 

only.  

Conversely, if H, I, J are functions of position only and (4.7)(b) and 

(4.7)(c) hold for  2 = 0 and 3  0, then from (4.5) we 

get  0 and  0.k k k iH I J h       Hence (M,L) is a Berwald space. 

Therefore we get 

Theorem (4.2): If i is orthogonal to m
i
 then a three dimensional -

conformally flat Landsberg space is a Berwald space if and only main 

scalars are functions of position only and (4.7)(b) and (4.7)(c) are satisfied. 
 

Case (iii): Let 2   0 and 3  = 0. In this case if a three dimensional 

Lansberg space is - conformally flat then from Theorem (3.5) we get 

2 2 2 1 2 2;  0,  ;  0,  ;  0 and H I J h v     . Therefore from (4.6) and (2.8), a 

three dimensional - conformally flat Landsberg space is a Berwald space if  

  

  

  

3 3 3

2 1 2 2 2 3

2 2

3 1 3 2 2 3

4.8             ;  0,    ;  0, ;  0,

4.8             ( ),

4.8             (  2    1)

a H I J

b h v Hv Jv

c h v v Iv J I HI

 

 

  

  

      

 

Hence H, I, J are functions of positions only along with (4.8)(a) and (4.8)(b). 

Conversely, if H, I, J are functions of position only and (4.8)(b) and 

(4.8)(c) hold for  2  = 0 and 3  = 0, then from (4.5) we 
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get  0 and  0.k k k iH I J h       Hence (M,L) is a Berwald space. 

Therefore we get 

Theorem (4.3): If i is orthogonal to n
i
 then a three dimensional -

conformally flat Landsberg space is a Berwald space if and only main 

scalars are functions of position only and (4.8)(b) and (4.8)(c) are satisfied. 
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