Three Dimensional Conformally Flat Landsberg and Berwald Spaces

B. N. Prasad
C-10, Surajkund Colony Gorakhpur, Gorakhpur
T. N. Pandey and Manoj Kumar Singh
Department of Mathematics and Statistics, D. D. U. Gorakhpur University, Gorakhpur

(Received May 30, 2009)

Abstract

The purpose of the present paper is to find the condition under which a three dimensional conformally flat Landsberg space to be a Berwald space.

Keywords: Conformally Flat space, Landsberg space, Berwald Space.
2000 Mathematics Subject Classification: 53B40

1. Introduction

Let $(x, y)=\left(x^{i}, y^{i}\right)$ be a local coordinate system of the total space of the tangent bundle TM of a three dimensional differentiable manifold M .

Let us consider a Finsler space (M, L) which is equipped with the fundamental function $L(x, y)$. Let $g_{i j}$ be the fundamental tensor and $C_{i j k}$ be the Cartan's C-tensor of the Finsler space (M, L) and the matrix (g^{ij}) be the inverse of the matrix $\left(\mathrm{g}_{\mathrm{ij}}\right)$. Then

$$
\mathrm{g}_{\mathrm{ij}}=\frac{1}{2} \frac{\partial^{2} L^{2}}{\partial y^{i} \partial y^{j}}, \quad C_{i j k}=\frac{1}{4} \frac{\partial^{3} L^{2}}{\partial y^{i} \partial y^{j} \partial y^{k}} \quad \text { and } \quad g^{i j} g_{j k}=\delta_{k}^{i} .
$$

If in a Finsler space there exists a local coordinate system (x^{i}, y^{i}) in which the fundamental tensor $g_{i j}$ can be written as a function of the variable y^{i} alone, we call the space, a locally Minkowski space and such a coordinate system (x^{i}, y^{i}) a rectilinear coordinate system. If a Finsler space (M, L) is conformal to a locally Minkowski space ($\mathrm{M}, \overline{\mathrm{L}}$), then (M, L) is called a conformally flat Finsler space.

2. Scalar Components and Conformal Changes in Moor's Frame

A. Moor ${ }^{1}$ introduced a special orthonormal frame field $\left(1^{i}, m^{i}, n^{i}\right)$ in the three dimensional Finsler space. The first vector of the frame is the normalized supporting element l^{1}, the second is the normalized torsion vector $\mathrm{m}^{\mathrm{i}}=\mathrm{C}^{\mathrm{i}} / \mathrm{C}$, and third n^{i} is the unit vector orthogonal to them. Here $C^{i}=g^{i j} C_{j k h} g^{k h}$ and $C^{2}=g_{i j} C^{i} C^{j}$.

In a Moor's frame an arbitrary tensor field can be represented by scalar components along the unit vector l^{i}, m^{i} and n^{i}. For instance, let $T_{j k}^{i}$ be a tensor of type (1,2), then the scalar components $T_{\alpha \beta \gamma}$ are defined by

$$
T_{\alpha \beta \gamma}=T_{j k}^{i} e_{\alpha) i} e_{\beta \beta}^{j} e_{\gamma)}^{k}, \quad \alpha, \beta, \gamma=1,2,3 .
$$

and the tensor $\mathrm{T}_{\mathrm{jk}}^{\mathrm{i}}$ may be expressed as

$$
T_{j k}^{i}=T_{\alpha \beta \gamma} e_{\alpha)}^{i} e_{\beta) j} e_{\gamma) k} \quad \alpha, \beta, \gamma=1,2,3 .
$$

where $e_{1)}^{i}=l^{i}, e_{2)}^{i}=m^{i}, e_{3)}^{i}=n^{i}, e_{\alpha)}=g_{i j} e_{\alpha}^{j}, \alpha=1,2,3$, and $g_{i j} e_{\alpha}^{i} e^{\mathrm{i}}{ }_{\beta}^{\mathrm{j}}=\delta_{\alpha \beta}, \alpha, \beta=1,2,3$. Therefore $\mathrm{g}_{\mathrm{ij}}=1_{\mathrm{i}} 1_{\mathrm{j}}+\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}+\mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}$.

The C-tensor $\mathrm{C}_{\mathrm{ijk}}$ satisfies

$$
\mathrm{C}_{\mathrm{i} j \mathrm{k}} \mathrm{l}^{\mathrm{i}}=\mathrm{C}_{\mathrm{i} j \mathrm{k}} \mathrm{j}^{\mathrm{j}}=\mathrm{C}_{\mathrm{i} j \mathrm{k}} \mathrm{l}^{\mathrm{k}}=0,
$$

So the expression of $\mathrm{C}_{\mathrm{i} j \mathrm{k}}$ in three dimensional Finsler space is written as ${ }^{2}$

$$
\begin{align*}
L C_{i j k}= & H m_{i} m_{j} m_{k}-J\left(m_{i} m_{j} n_{k}+m_{i} n_{j} m_{k}+n_{i} m_{j} m_{k}\right) \tag{2.1}\\
& +I\left(m_{i} n_{j} n_{k}+n_{i} m_{j} n_{k}+n_{i} n_{j} m_{k}\right)+J n_{i} n_{j} n_{k},
\end{align*}
$$

where H, I, J are called main scalars ${ }^{2}$, such that $\mathrm{H}+\mathrm{I}=\mathrm{LC}$.
Now the h-covariant and v-covariant differentiations of the former fields with respect to Cartan's connection $\mathrm{C} \Gamma$ are given by ${ }^{2}$.

$$
\begin{equation*}
l_{i \mid j}=0, \quad m_{i \mid j}=n_{i} h_{j}, \quad n_{i \mid j}=-m_{i} h_{j}, \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left.L l_{i}\right|_{j}=m_{i} m_{j}+n_{i} n_{j},\left.\quad L m_{i}\right|_{j}=-l_{i} m_{j}+n_{i} v_{j} \tag{2.3}
\end{equation*}
$$

$\left.\mathbf{L n}_{\mathbf{i}}\right|_{\mathbf{j}}=-\mathbf{l}_{\mathbf{i}} \mathbf{n}_{\mathbf{j}}-\mathbf{m}_{\mathbf{i}} \mathbf{v}_{\mathbf{j}}$, respectively, where h_{i} and v_{i} are components of vectors called the h-connection vector and v-connection vector respectively.

Let us consider a Finsler space ($\mathrm{M}, \overline{\mathrm{L}}$) which is conformal to a Minkowski space (M, L), i.e. $\bar{L}(x, y)=e^{\sigma(x)} L(y)$.

In this paper we shall use the symbol '-' on the top of the quantities to denote the quantities of the conformally flat Finsler space $(\mathrm{M}, \overline{\mathrm{L}})$.
We use the following notations

$$
\mathrm{F}=\mathrm{L}^{2} / 2, \quad \overline{\mathrm{~F}}=\overline{\mathrm{L}}^{2} / 2, \quad \dot{\partial}_{i}=\frac{\partial}{\partial y^{i}}, \quad \partial_{i}=\frac{\partial}{\partial x^{i}}
$$

So, we get ${ }^{3}$

$$
\begin{gather*}
\overline{\overline{\mathrm{F}}}=\mathrm{e}^{\sigma} \mathrm{F}, \quad \bar{g}_{i j}=e^{2 \sigma} g_{i j}, \quad \bar{g}=e^{4 \sigma} g, \quad \bar{g}^{i j}=e^{-2 \sigma} g^{i j}, \tag{2.4}\\
\bar{l}_{i}=e^{\sigma} l_{i}, \quad \bar{m}_{i}=e^{\sigma} m_{i}, \quad \overline{\bar{n}}_{i}=e^{\sigma} n_{i}, \bar{l}_{i}=e^{-\sigma} l_{i}, \quad \bar{m}_{i}=e^{-\sigma} m_{i} \\
\bar{n}_{i}=e^{-\sigma} n_{i}, \overline{\mathrm{C}}_{\mathrm{ijk}}=\mathrm{e}^{2 \sigma} \mathrm{C}_{\mathrm{i} \mathrm{k} \mathrm{k}}, \quad \overline{\mathrm{C}}_{\mathrm{jk}}^{\mathrm{i}}=\mathrm{C}_{\mathrm{jk}}^{\mathrm{i}}, \overline{\mathrm{H}}=\mathrm{H}, \quad \overline{\mathrm{I}}=\mathrm{I}, \quad \overline{\mathrm{~J}}=\mathrm{J} .
\end{gather*}
$$

Now, we are concerned with the conformal change of Christoffel's symbols

$$
\gamma_{i j k}=g_{j r} \gamma_{i k}^{r}=\frac{1}{2}\left(\partial_{k} g_{i j}+\partial_{i} g_{j k}-\partial_{j} g_{i k}\right) .
$$

From (2.4) we can easily obtain the following

$$
\begin{equation*}
\bar{\gamma}_{j k}^{i}=\gamma_{j k}^{i}+\delta_{j}^{i} \sigma_{k}+\delta_{k}^{i} \sigma_{j}-g_{j k} \sigma^{i}, \quad\left(\sigma_{i}=\frac{\partial \sigma}{\partial x^{i}}, \quad \sigma^{\mathrm{i}}=\mathrm{g}^{\mathrm{ij}} \sigma_{\mathrm{j}}\right) \tag{2.5}
\end{equation*}
$$

Therefore, the conformal change of $2 \mathrm{G}^{i}=\gamma_{j k}^{i} y^{j} y^{k}=\gamma_{00}^{i}$ is given by

$$
\begin{equation*}
2 \overline{\mathrm{G}}^{\mathrm{i}}=2 \mathrm{G}^{\mathrm{i}}+2 \sigma_{\mathrm{k}} \mathrm{y}^{\mathrm{k}} \mathrm{y}^{\mathrm{i}}-\sigma^{\mathrm{i}} \mathrm{~L}^{2} \tag{2.6}
\end{equation*}
$$

If we write $\sigma_{\mathrm{i}}=\sigma_{1} 1_{\mathrm{i}}+\sigma_{2} \mathrm{~m}_{\mathrm{i}}+\sigma_{3} \mathrm{n}_{\mathrm{i}}$ in three dimensional Finsler space (M, L), then

$$
\begin{equation*}
2 \overline{\mathrm{G}}^{\mathrm{i}}=2 \mathrm{G}^{\mathrm{i}}+\mathrm{L}^{2}\left(\sigma_{1} 1^{\mathrm{i}}-\sigma_{2} \mathrm{~m}^{\mathrm{i}}-\sigma_{3} \mathrm{n}^{\mathrm{i}}\right) \tag{2.7}
\end{equation*}
$$

Differentiating equation (2.7) with respect to y^{j} and using equations (2.1), (2.3) and the fact that $G_{j}^{i}=\frac{\partial G^{i}}{\partial y^{j}}$, we get

$$
\begin{align*}
\bar{G}_{j}^{i}=G_{j}^{i}+L l^{i}\left(\sigma_{1} l_{j}+\sigma_{2} m_{j}+\sigma_{3} n_{j}\right) & -L m^{i}\left(\sigma_{2} l_{j}-\sigma_{4} m_{j}+\sigma_{5} n_{j}\right) \tag{2.8}\\
& -L n^{i}\left(\sigma_{3} l_{j}+\sigma_{5} m_{j}-\sigma_{6} n_{j}\right) .
\end{align*}
$$

where we have written

$$
\begin{equation*}
\sigma_{4}=\sigma_{1}+\sigma_{2} \mathbf{H}-\sigma_{3} \mathbf{J}, \sigma_{5}=\sigma_{2} J-\sigma_{3} I \text { and } \sigma_{6}=\sigma_{1}+\sigma_{2} I+\sigma_{3} J . \tag{2.8}
\end{equation*}
$$

On the other hand, the connection coefficients $F_{j k}^{i}$ of Cartan's connection $C \Gamma$ are given by ${ }^{4}$

$$
F_{i j k}=g_{j r} F_{i k}^{r}=\gamma_{i j k}-C_{i j r} G_{k}^{r}-C_{j k r} G_{i}^{r}-C_{i k r} G_{j}^{r} .
$$

Therefore from (2.1), (2.5) and (2.8), we get

$$
\begin{align*}
\bar{F}_{j k}^{i}= & F_{j k}^{i}+l^{i}\left\{\sigma_{1} l_{j} l_{k}+\sigma_{2}\left(l_{j} m_{k}+m_{j} l_{k}\right)+\sigma_{3}\left(l_{j} n_{k}+n_{j} l_{k}\right)-\sigma_{4} m_{j} m_{k}\right. \tag{2.9}\\
& \left.+\sigma_{5}\left(m_{j} n_{k}+n_{j} m_{k}\right)-\sigma_{6} n_{j} n_{k}\right\}-m^{i}\left\{\sigma_{2} l_{j} l_{k}-\sigma_{4}\left(l_{j} m_{k}+m_{j} l_{k}\right)\right. \\
& -\sigma_{5}\left(l_{j} n_{k}+n_{j} l_{k}\right)-\left(\sigma_{3}+\sigma_{5} H+\sigma_{6} J\right)\left(m_{j} n_{k}+n_{j} m_{k}\right) \\
& \left.-\left(\sigma_{2}-\sigma_{4} H-\sigma_{5} J\right) m_{j} m_{k}+\left(\sigma_{2}-\sigma_{4} I+3 \sigma_{5} J+2 \sigma_{6} I\right) n_{j} n_{k}\right\} \\
& -n^{i}\left[\sigma_{3} l_{j} l_{k}+\sigma_{5}\left(l_{j} m_{k}+m_{j} l_{k}\right)-\sigma_{6}\left(l_{j} n_{k}+n_{j} l_{k}\right)\right. \\
& -\left(\sigma_{2}-\sigma_{4} I+\sigma_{6} J\right)\left(m_{j} n_{k}+n_{j} m_{k}\right)+\left\{\sigma_{3}-2 \sigma_{4} J+\sigma_{6} J\right. \\
& \left.\left.+\sigma_{5}(H-2 I)\right\} m_{j} m_{k}-\left(\sigma_{3}+\sigma_{5} I-\sigma_{6} J\right) n_{j} n_{k}\right] .
\end{align*}
$$

Now, we shall deal with the h-covariant derivative $S_{\perp i}$ of a conformally invariant scalar field S with respect to the conformally changed Cartan connection C $\bar{\Gamma}$: $S_{\perp i}=\partial_{\mathrm{i}} \mathrm{S}-\dot{\partial}_{\mathrm{r}} \mathrm{S} \overline{\mathrm{G}}_{\mathrm{i}}^{\mathrm{r}}, \mathrm{S}$ is positively homogeneous of degree zero in y^{i}. Then from (2.8), we have

$$
\begin{aligned}
S_{\perp j}=\partial_{j} S & -\dot{\partial}_{r} S\left\{G_{j}^{r}+L l^{r}\left(\sigma_{1} l_{j}+\sigma_{2} m_{j}+\sigma_{3} n_{j}\right)-L m^{r}\left(\sigma_{2} l_{j}\right.\right. \\
& \left.-\sigma_{4} m_{j}+\sigma_{5} n_{j}\right)-\operatorname{Ln}^{\mathrm{r}}\left(\sigma_{3} 1_{\mathrm{j}}+\sigma_{5} \mathrm{~m}_{\mathrm{j}}-\sigma_{6} \mathbf{n}_{\mathfrak{j}}\right)
\end{aligned}
$$

which gives immediately

$$
\begin{equation*}
S_{\perp j}=S_{\mid j}+S ;_{2}\left(\sigma_{2} l_{j}-\sigma_{4} m_{j}+\sigma_{5} n_{j}\right)+\mathrm{S}_{3}\left(\sigma_{3} l_{j}+\sigma_{5} m_{j}-\sigma_{6} n_{j}\right) . \tag{2.10}
\end{equation*}
$$

Since $S_{\perp i}=S ; \bar{l}_{i}+S ;_{2} \bar{m}_{i}+S ;_{3} \bar{n}_{i}$, from (2.2) and (2.10) we have the relations

$$
\begin{align*}
& S ;_{1}=S ;_{i} \bar{l}^{i}=e^{-\sigma}\left(S,_{1}+S ;_{2} \sigma_{2}+S ;_{3} \sigma_{3}\right), \tag{2.11}\\
& S ;_{2}=S ; \bar{m}_{i}^{i}=e^{-\sigma}\left(S,_{2}-S ;_{2} \sigma_{4}+S ;_{3} \sigma_{5}\right) \text {, } \\
& S ;_{3}=S ;_{i} \bar{l}^{i}=e^{-\sigma}\left(S,_{3}-S ;_{2} \sigma_{5}-S ;_{3} \sigma_{6}\right)
\end{align*}
$$

For the conformal change of the adopted components h_{α} of h-connection vector h_{i}, from (2.2) and (2.4), we have $\bar{m}_{i \perp j}=e^{\sigma}\left(m_{i} \sigma_{j}+m_{i \perp j}\right)$, which in view of (2.8) and (2.9) leads to

$$
\begin{align*}
\bar{h}_{i}=h_{i} & +\left(\sigma_{2} v_{2}+\sigma_{3} v_{3}\right) l_{i}-\left(\sigma_{4} v_{2}-\sigma_{5} v_{3}+\sigma_{3}+H \sigma_{5}+J \sigma_{6}\right. \tag{2.12}\\
& \left.-J \sigma_{4}-I \sigma_{5}\right) m_{j}+\left(v_{2} \sigma_{5}-v_{3} \sigma_{6}+2 J \sigma_{5}+I s_{6}-I s_{4}+s_{2}\right) n_{j} .
\end{align*}
$$

Thus the adopted components $h_{\alpha} \alpha=1,2,3$ of h_{i} in (M, $\left.\bar{L}\right)$ are given by

$$
\begin{align*}
\quad \mathrm{h}_{1}=\mathrm{e}^{-\sigma}\left(\mathrm{h}_{1}+\sigma_{2} \mathrm{v}_{2}+\sigma_{3} \mathrm{v}_{3}\right), \tag{2.13}\\
h_{2}=e^{-\sigma}\left\{h_{2}-\left(\sigma_{4} v_{2}-\sigma_{5} v_{3}+\sigma_{3}+H \sigma_{5}+J \sigma_{6}-J \sigma_{4}-I \sigma_{5}\right)\right\}, \\
h_{3}=e^{-\sigma}\left(h_{3}+v_{2} \sigma_{5}-v_{3} \sigma_{6}+2 J \sigma_{5}+I \sigma_{6}-I \sigma_{4}+\sigma_{2}\right) .
\end{align*}
$$

3. Conformally flat Landsberg space

Berwald spaces are characterized by $C_{i j \mid h}=0$ and Landsberg spaces are characterized by $C_{i j k \mid 0}=0$ where the index ' 0 ' denotes the transvection by the supporting element y^{i}. If a Finsler space is a Berwald space, it is a Landsberg space.
it is shown ${ }^{5,6,7}$ that Landsberg space becomes a Berwald space in many cases. We have discussed the same case with some condition in three dimensional Finsler space.

Definition (3.1) ${ }^{1}$: A Finsler space F^{n} is called conformally flat if F^{n} is conformal to a locally Minkowaski space.

Theorem (3.1) ${ }^{1}$: A Finsler space F^{3} with non zero C is a Berwald space if and only if the h-connection vector h_{i} vanishes and all the main scalars are h-covariant constant.

Theorem (3.2) ${ }^{\mathbf{1}}$: A Finsler space F^{3} with non zero C is a Landsberg space if and only if the h-connection vector h_{i} is orthogonal to the supporting element y^{i}, that is $h_{1}=0$ and the main scalars $H_{1}=I_{1}=J_{1}=0$.

If the three dimensional Finsler space $\overline{\mathrm{F}}^{3}=(\mathrm{M}, \overline{\mathrm{L}})$ is conformal to a Finsler space (M, L), the main scalars $\overline{\mathrm{H}}, \overline{\mathrm{I}}$ and $\overline{\mathrm{J}}$ of (M, $\overline{\mathrm{L}})$ coincide with the main scalars H, I and J of (M, L). In particular we must notice that the main scalars H, I, J and h-connection vector h_{i} in our case are functions of the variable y^{i} alone.

Firstly, we suppose that the Finsler space ($\mathrm{M}, \overline{\mathrm{L}}$) be a Landsberg space. Then from Theorem (3.2) it follows that

$$
\begin{equation*}
\bar{H}_{,_{1}}=0, \bar{I}_{,_{1}}=0, \quad \bar{J}_{,_{1}}=0 \text { and } \bar{h}_{1}=0 . \tag{3.1}
\end{equation*}
$$

The scalar \bar{H}, can be written in terms of Moor'a frame as

$$
\begin{aligned}
H,_{1}= & \bar{H}_{,} \bar{l}^{k}=\left(\frac{\partial \bar{H}}{\partial x^{k}}-\bar{G}_{k}^{r} \frac{\partial \bar{H}}{\partial y^{r}}\right) \bar{l}^{k}=\bar{G}_{k}^{r} \frac{\partial H}{\partial y^{r}} e^{-\sigma} l^{k} \\
= & -L e^{-\sigma}\left\{l^{r}\left(\sigma_{1} l_{k}+\sigma_{2} m_{k}+\sigma_{3} n_{k}\right)-m^{r}\left(\sigma_{2} l_{k}-\sigma_{4} m_{k}+\sigma_{5} n_{k}\right)\right. \\
& \left.\quad-n^{r}\left(\sigma_{3} l_{k}+\sigma_{5} m_{k}-\sigma_{6} n_{k}\right)\right\}\left.l^{k} H\right|_{r} \\
= & -L e^{-\sigma}\left(\left.\sigma_{1} H\right|_{r} l^{r}-\left.\sigma_{2} H\right|_{r} m^{r}-\left.\sigma_{3} H\right|_{r} n^{r}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\bar{H}_{,_{1}}=\left(\sigma_{2} H ;_{2}+\sigma_{3} H ;_{3}\right) e^{-\sigma} . \tag{3.2}
\end{equation*}
$$

Similarly, we have

$$
\begin{align*}
& \mathrm{I}_{1}=\left(\sigma_{2} \mathrm{I}_{2}+\sigma_{3} \mathrm{I}_{3}\right) \mathrm{e}^{-\sigma}, \tag{3.3}\\
& \overline{\mathrm{J}}_{,_{1}}=\left(\sigma_{2} \mathrm{~J}_{{ }_{2}}+\sigma_{3} \mathrm{~J}_{3}\right) \mathrm{e}^{-\sigma} . \tag{3.4}
\end{align*}
$$

Therefore, from (3.1), (3.2), (3.3), (3.4) and (2.12), we get

$$
\begin{align*}
\sigma_{2} H ;_{2}+\sigma_{3} H ;_{3} & =0, & \sigma_{2} I ;_{2}+\sigma_{3} I_{3} & =0, \tag{3.5}\\
\sigma_{2} J ;_{2}+\sigma_{3} J ;_{3} & =0 \text { and } & h_{1}+\sigma_{2} v_{2}+\sigma_{3} v_{3} & =0 .
\end{align*}
$$

Now, we prove that σ_{2} and σ_{3} never vanish simultaneously, for non homothetic transformation.

If possible suppose that $\sigma_{2}=0, \sigma_{3}=0$, then $\sigma_{i}=\sigma_{1} l_{i}+\sigma_{2} m_{i}+\sigma_{3} n_{i}$, gives $\sigma_{i}=\sigma_{1} l_{i}$. Differentiating this with respect to y^{j}, we get

$$
0=\left(\dot{\partial}_{\mathrm{j}} \sigma_{1}\right) \mathbf{1}_{\mathrm{i}}+\sigma_{1} \dot{\partial}_{\mathrm{j}} \mathbf{1}_{\mathrm{i}}=\left(\dot{\partial}_{\mathrm{j}} \sigma_{1}\right) \mathbf{1}_{\mathrm{i}}+\sigma_{1} \mathbf{1}_{\mathrm{i}} \mid \mathrm{j}
$$

which in view of (1.3) gives $0=\left(\dot{\partial}_{j} \sigma_{1}\right) l_{i}+\frac{\sigma_{1}}{L}\left(m_{i} m_{j}+n_{i} n_{j}\right)$ or

$$
\begin{equation*}
\frac{\sigma_{1}}{\mathrm{~L}}\left(\mathrm{~m}_{\mathrm{i}} \mathrm{~m}_{\mathrm{j}}+\mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}\right)=-\left(\dot{\partial}_{\mathrm{j}} \sigma_{1}\right) \mathrm{l}_{\mathrm{i}} \tag{3.6}
\end{equation*}
$$

Since L. H. S. of equation (3.6) is symmetric in i and j therefore

$$
\left(\dot{\partial}_{\mathrm{i}} \sigma_{1}\right) 1_{\mathrm{j}}=\left(\dot{\partial}_{\mathrm{j}} \sigma_{1}\right) 1_{\mathrm{i}}
$$

Contracting this equation by 1^{j}, we get $\left(\dot{\partial}_{i} \sigma_{1}\right)=\left(\dot{\partial}_{j} \sigma_{1}\right) 1^{j}{ }_{1}$. Since σ_{1} is positively homogeneous of degree zero in y^{i}, therefore $\left(\partial_{j} \sigma_{1}\right) 1^{j}=0$, which implies

$$
\dot{\partial}_{\mathbf{i}} \sigma_{1}=0 .
$$

Thus equation (3.6) shows that $\sigma_{1}=0$. Hence $\sigma_{i}=0$ which shows that σ is constant, i.e. the transformation is homothetic.

Hence we conclude that, for non homothetic transformation σ_{2} and σ_{3} do not vanish simultaneously. So we consider here three cases of non homothetic transformation.

Case (i): Let $\sigma_{2} \neq 0$ and $\sigma_{3} \neq 0$. In this case, from (3.5), we have

$$
\begin{equation*}
\frac{\mathrm{H} ;_{2}}{\mathrm{H} ;_{3}}=\frac{\mathrm{I} ; 2}{\mathrm{I} ; 3}=\frac{\mathrm{J} ; 2}{\mathrm{~J} ; 3}=-\frac{\sigma_{3}}{\sigma_{2}} \quad \text { and } \quad h_{1}=-\sigma_{2} \mathrm{v}_{2}-\sigma_{3} \mathrm{v}_{3} . \tag{3.7}
\end{equation*}
$$

Conversely if (3.7) holds then from (2.13), (3.2), (3.3) and (3.4), we get (3.1). So (M, L) is a Landsberg space. Hence we have the following:

Theorem (3.3): A three dimensional Landsberg space is σ-conformally flat if and only if (3.7) holds.

Case (ii): Let $\sigma_{2}=0$ and $\sigma_{3} \neq 0$. In this case, from (3.5), we have

$$
\begin{equation*}
H ;_{3}=0, I ;_{3}=0, J ;_{3}=0 \text { and } h_{1}+\sigma_{3} v_{3}=0 . \tag{3.8}
\end{equation*}
$$

Conversely if (3.8) holds for $\sigma_{2}=0$ and $\sigma_{3} \neq 0$, then from (2.13), (3.2), (3.3) and (3.4) we get (3.1). So (M, $\overline{\mathrm{L}}$) is a Landsberg space. Therefore it follows that

Theorem (3.4): If σ_{i} is orthogonal to m^{i}, then a three dimensional Landsberg space is σ-conformally flat if and only if $H ; 3=0, I ; 3=0, J ; 3=0$ and $\mathrm{h}_{1}=-\sigma_{3} \mathrm{v}_{3}$.

Case (iii): Let $\sigma_{2} \neq 0$ and $\sigma_{3}=0$. In this case, from (3.5), we have

$$
\begin{equation*}
\mathrm{H} ;_{2}=0, \mathrm{I} ;_{2}=0, \mathrm{~J} ;_{2}=0 \text { and } \mathrm{h}_{1}+\sigma_{2} \mathrm{v}_{2}=0 \tag{3.9}
\end{equation*}
$$

Conversely if (3.9) holds for $\sigma_{2} \neq 0$ and $\sigma_{3}=0$, then from (2.13), (3.2), (3.3) and (3.4) we get (3.1). So (M, $\overline{\mathrm{L}}$) is a Landsberg space. Therefore it follows that

Theorem (3.5): If σ_{i} is orthogonal to n^{i}, then a three dimensional Landsberg space is σ-conformally flat if and only if $\mathrm{H} ;_{2}=0, \mathrm{I}_{2}=0, \mathrm{~J} ;_{2}=0$ and $\mathrm{h}_{1}=-\sigma_{2} \mathrm{v}_{2}$.

4. Conformally flat Berwald space

We consider the case when the Finsler space ($\mathrm{M}, \overline{\mathrm{L}}$) be a Berwald space. We shall rewrite $\bar{H}_{\perp k}=\left(\frac{\partial \overline{\mathbf{H}}}{\partial \mathbf{x}^{\mathbf{k}}}-\overline{\mathbf{G}}_{\mathbf{k}}^{\mathrm{r}} \frac{\partial \overline{\mathbf{H}}}{\partial \mathbf{y}^{\mathbf{r}}}\right)$. Since H, I, J and connection vector h_{i} are only functions of the variable (y^{i}), this equation is equivalent to

$$
\bar{H}_{\perp k}=-\overline{\mathrm{G}}_{\mathrm{k}}^{\mathrm{r}} \frac{\partial \mathrm{H}}{\partial \mathrm{y}^{\mathrm{r}}} .
$$

Therefore, from (2.8), we get

$$
\begin{align*}
\overline{\mathrm{H}}_{\perp \mathrm{k}}=-\mathrm{L}\left\{\mathrm{I}^{(}\left(\sigma_{1} \mathrm{l}_{\mathrm{k}}+\sigma_{2} \mathrm{~m}_{\mathrm{k}}+\sigma_{3} \mathrm{n}_{\mathrm{k}}\right)\right. & -\mathrm{m}^{\mathrm{r}}\left(\sigma_{2} \mathrm{l}_{\mathrm{k}}-\sigma_{4} \mathrm{~m}_{\mathrm{k}}+\sigma_{5} \mathrm{n}_{\mathrm{k}}\right) \tag{4.1}\\
& \left.-\mathrm{n}^{\mathrm{r}}\left(\sigma_{3} \mathrm{l}_{\mathrm{k}}+\sigma_{5} \mathrm{~m}_{\mathrm{k}}-\sigma_{6} \mathrm{n}_{\mathrm{k}}\right)\right\}\left.\mathrm{H}\right|_{\mathrm{r}} .
\end{align*}
$$

Since

$$
\left.H\right|_{r}=L^{-1}\left(H ; l_{1}+H ; ;_{2} m_{r}+H ; ;_{3} n_{r}\right) \text { and } H ; ;_{1}=0,
$$

we have

$$
\begin{equation*}
\bar{H}_{\perp k}=H ;_{2}\left(\sigma_{2} l_{k}-\sigma_{4} m_{k}+\sigma_{5} n_{k}\right)+H ;_{3}\left(\sigma_{3} l_{k}+\sigma_{5} m_{k}-\sigma_{6} n_{k}\right) . \tag{4.2}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\bar{I}_{\perp k}=I ;_{2}\left(\sigma_{2} l_{k}-\sigma_{4} m_{k}+\sigma_{5} n_{k}\right)+I ;_{3}\left(\sigma_{3} l_{k}+\sigma_{5} m_{k}-\sigma_{6} n_{k}\right) \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\bar{J}_{\perp k}=\mathrm{J} ;_{2}\left(\sigma_{2} l_{k}-\sigma_{4} m_{k}+\sigma_{5} n_{k}\right)+J ;_{3}\left(\sigma_{3} l_{k}+\sigma_{5} m_{k}-\sigma_{6} n_{k}\right) \tag{4.4}
\end{equation*}
$$

Now, we discuss all the three cases which are discussed in previous section.
Case (i). Let $\sigma_{2} \neq 0$ and $\sigma_{3} \neq 0$.
If the three dimensional Landsberg space $(\mathrm{M}, \overline{\mathrm{L}})$ is conformally flat, then from equations (4.2), (4.3), (4.4), (2.12) and (3.7), we get

$$
\begin{align*}
\bar{H}_{\perp k} & =\left(\sigma_{5} H ;_{3}-\sigma_{4} H ;_{2}\right) m_{k}+\left(\sigma_{5} H ;_{2}-\sigma_{6} H ;{ }_{3}\right) n_{k} \tag{4.5}\\
\bar{I}_{\perp k} & =\left(\sigma_{5} I ;_{3}-\sigma_{4} I ;_{2}\right) m_{k}+\left(\sigma_{5} I ;_{2}-\sigma_{6} I ;_{3}\right) n_{k} \\
\bar{J}_{\perp k} & =\left(\sigma_{5} J ;_{3}-\sigma_{4} J ;_{2}\right) m_{k}+\left(\sigma_{5} J ;_{2}-\sigma_{6} J ;_{3}\right) n_{k}
\end{align*}
$$

and

$$
\begin{aligned}
h_{j}= & \left\{h_{2}-\left(\sigma_{4} v_{2}-\sigma_{5} v_{3}+\sigma_{3}+H \sigma_{5}+J \sigma_{6}-J \sigma_{4}+I \sigma_{5}\right)\right\} m_{j} \\
& +\left\{h_{3}+\left(\sigma_{5} v_{2}+\sigma_{6} v_{3}+2 \sigma_{5} J+\sigma_{6} I-\sigma_{4} I+\sigma_{2}\right)\right\} n_{j}
\end{aligned}
$$

From Theorem (3.1) it follows that the space (M, \bar{L}) is a Berwald space if

$$
\bar{H}_{\perp k}=\bar{I}_{\perp k}=\bar{J}_{\perp k}=0 \text { and } \bar{h}=0 .
$$

Therefore from (4.5) it follows that $(\mathrm{M}, \overline{\mathrm{L}})$ is a Berwald space, if

$$
\begin{gather*}
\sigma_{5} H ;_{3}-\sigma_{4} H ;_{2}=0, \quad \sigma_{5} H ;{ }_{2}-\sigma_{6} H ;_{3}=0, \quad \sigma_{5} I ;_{3}-\sigma_{4} I ;_{2}=0, \tag{4.6}\\
\sigma_{5} I ;_{2}-\sigma_{6} I ;_{3}=0, \quad \sigma_{5} J ;_{3}-\sigma_{4} J ;_{2}=0, \quad \sigma_{5} J ;_{2}-\sigma_{6} J ;_{3}=0 . \\
h_{2}-\left(\sigma_{4} v_{2}-\sigma_{5} v_{3}+\sigma_{3}+H \sigma_{5}+J \sigma_{6}-J \sigma_{4}+I \sigma_{5}\right)=0 \\
h_{3}+\left(\sigma_{5} v_{2}+\sigma_{6} v_{3}+2 \sigma_{5} J+\sigma_{6} I-\sigma_{4} I+\sigma_{2}\right)=0
\end{gather*}
$$

and

Conversely if (4.6) holds, then from (4.5) we get $\overline{H_{\perp k}}=\bar{I}_{\perp k}=\bar{J}_{\perp k}=0$ and $\bar{h}_{i}=0$. Hence $(\mathrm{M}, \overline{\mathrm{L}})$ is a Berwald space.

Theorem (4.1): A three dimensional conformally flat Landsberg space is a Berwald space if and only if the equations (4.6) are satisfied.

Case (ii): Let $\sigma_{2}=0$ and $\sigma_{3} \neq 0$. In this case if a three dimensional Lansberg space is σ - conformally flat then from Theorem (3.4) we get $\mathrm{H}_{3}=$ $0, \mathrm{I} ;{ }_{3}=0, \mathrm{~J} ;_{3}=0$ and $\mathrm{h}_{1}=-\sigma_{3} \mathrm{v}_{3}$. Therefore from (4.6) and (2.8)', a three dimensional σ - conformally flat Landsberg space is a Berwald space if

$$
\begin{equation*}
H ;_{2}=0, I ;_{2}=0, J ;_{2}=0, \tag{4.7}
\end{equation*}
$$

$(4.7)(b) \quad h_{2}=\sigma_{1} v_{2}+\sigma_{3}\left(1-J v_{2}+v_{3} I-H I+2 J^{2}+I J\right)$,
$(4.7)(c) \quad h_{3}=\sigma_{1} v_{3}+\sigma_{3}\left(I v_{2}+J v_{3}\right)$.
Since H, I, J are positively homogeneous of degree zero in y^{i}, therefore $\mathrm{H} ; \mathrm{H}_{1}=0, \mathrm{I} ;_{1}=0, \mathrm{~J} ; 1=0$. Hence main scalars $\mathrm{H}, \mathrm{I}, \mathrm{J}$ are functions of position only.

Conversely, if H, I, J are functions of position only and (4.7)(b) and (4.7)(c) hold for $\sigma_{2}=0$ and $\sigma_{3} \neq 0$, then from (4.5) we get $\bar{H}_{\perp k}=\bar{I}_{\perp k}=\bar{J}_{\perp k}=0$ and $\bar{h}_{i}=0$. Hence ($\mathrm{M}, \overline{\mathrm{L}}$) is a Berwald space. Therefore we get

Theorem (4.2): If σ_{i} is orthogonal to m^{i} then a three dimensional σ conformally flat Landsberg space is a Berwald space if and only main scalars are functions of position only and (4.7)(b) and (4.7)(c) are satisfied.

Case (iii): Let $\sigma_{2} \neq 0$ and $\sigma_{3}=0$. In this case if a three dimensional Lansberg space is σ - conformally flat then from Theorem (3.5) we get $H ; ;_{2}=0, I ;_{2}=0, J ;_{2}=0$ and $h_{1}=-\sigma_{2} v_{2}$. Therefore from (4.6) and (2.8)', a three dimensional σ - conformally flat Landsberg space is a Berwald space if

$(4.8)(a)$	$H ;_{3}=0, I ;_{3}=0, J ;_{3}=0$,
$(4.8)(b)$	$h_{2}=\sigma_{1} v_{2}+\sigma_{2}\left(H v_{2}-J v_{3}\right)$,
$(4.8)(c)$	$h_{3}=\sigma_{1} v_{3}-\sigma_{2}\left(v_{2}-I v_{3}+2 J^{2}+I^{2}-H I+1\right)$

Hence H, I, J are functions of positions only along with (4.8)(a) and (4.8)(b).
Conversely, if H, I, J are functions of position only and (4.8)(b) and (4.8)(c) hold for $\sigma_{2}=0$ and $\sigma_{3}=0$, then from (4.5) we
get $\bar{H}_{\perp k}=\bar{I}_{\perp k}=\bar{J}_{\perp k}=0$ and $\bar{h}_{i}=0$. Hence $(\mathrm{M}, \overline{\mathrm{L}})$ is a Berwald space. Therefore we get

Theorem (4.3): If σ_{i} is orthogonal to n^{i} then a three dimensional σ conformally flat Landsberg space is a Berwald space if and only main scalars are functions of position only and (4.8)(b) and (4.8)(c) are satisfied.

References

1. P. L. Antonelli, Hand book of Finsler geometry, Kluwer, Academic Publishers, Dordrecht, The Netherlands, 2003.
2. M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces. Kaiseisha Press, Saikawa, Otsu, 520 Japan 1986.
3. M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto University, 16 (1976) 25-50.
4. A. Moor, Uber die Torsion-Und Krummungs invarianten der drei reidimensionalen Finslerchen Raume, Math. Nach, 16 (1957) 85-99.
5. M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S., 24 (1972) 29-37.
6. M. Matsumoto, The theory of Finsler spaces with $\mathrm{m}^{\text {th }}$-root metric II, Publ. Math. Debrecen, 49 (1996)135-155.
7. R. Yashikawa, and K. Okubo, Two dimensional conformally flat Finsler spaces, Tensor, N. S., 60 (1998) 99-108.
