Cartesian Product of r-GF Structure Manifolds

Jaya Upreti and Shankar Lal
Department of Mathematics, Kumaun University S. S. J. Campus, Almora, Uttarakhand, India

(Received April 06, 2009)

Abstract

Cartesian product of two manifolds has been defined and studied by Pandey ${ }^{1}$. In this paper we have taken Cartesian product of r-GF structure manifolds, where r is some finite integer, and studied some properties of curvature and Ricci tensor of such a product manifold.

Key words \& Phases: r-GF Structure Manifolds, generalized almost contact structure, KH-structure.
2000 AMS Subject Classification Number: 53C05, 53C25.

1. Introduction

Let $M_{1}, M_{2}, \ldots, M_{r}$ be r-GF structure manifolds each of class C^{∞} and of dimension $n_{1}, n_{2}, \ldots ., n_{r}$ respectively. Suppose $\left(M_{1}\right) m_{1},\left(M_{2}\right) m_{2}, \ldots,\left(M_{r}\right) m_{r}$ be their tangent spaces at $m_{1} \in M_{1}, m_{2} \in M_{2}, \ldots ., m_{r} \in M_{r}$, then the product space $\left(M_{1}\right) m_{1} \times\left(M_{2}\right) m_{2} \times \ldots \times\left(M_{r}\right) m_{r}$ contains vector fields of the form $\left(X_{1}, X_{2}, \ldots, X_{r}\right)$, where $X_{1} \in\left(M_{1}\right) m_{1}, X_{2} \in\left(M_{2}\right) m_{2}, \ldots . ., X_{r} \in\left(M_{r}\right) m_{r}$. Vector addition and scalar multiplication on above product space are defined as follows:

$$
\begin{equation*}
\left(X_{1}, X_{2}, \ldots ., X_{r}\right)+\left(Y_{1}, Y_{2}, \ldots ., Y_{r}\right)=\left(X_{1}+Y_{1}, X_{2}+Y_{2}, \ldots ., X_{r}+Y_{r}\right) \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\lambda\left(X_{1}, X_{2}, \ldots ., X_{r}\right)=\left(\lambda X_{1}, \lambda X_{2}, \ldots ., \lambda X_{r}\right) \tag{1.2}
\end{equation*}
$$

where $X_{i}, Y_{i} \in\left(M_{i}\right) m_{i}, i=1,2, \ldots ., r$ and λ is a scalar.

Under these conditions the product space $\left(M_{1}\right) m_{1} \times\left(M_{2}\right) m_{2} \times \ldots \ldots \times\left(M_{r}\right) m_{r}$ forms a vector space.

Define a linear transformation F on the product space

$$
\begin{equation*}
F\left(X_{1}, X_{2}, \ldots ., X_{r}\right)=\left(F_{1} X_{1}, F_{2} X_{2}, \ldots, F_{r} X_{r}\right), \tag{1.3}
\end{equation*}
$$

where $F_{1}, F_{2}, \ldots \ldots, F_{r}$ are linear transformations on $\left(M_{1}\right) m_{1},\left(M_{2}\right) m_{2}, \ldots \ldots,\left(M_{r}\right) m_{r}$ respectively.
If $f_{1}, f_{2}, \ldots ., f_{r}$ be C^{∞} functions over the spaces $\left(M_{1}\right) m_{1},\left(M_{2}\right) m_{2}, \ldots \ldots .,\left(M_{r}\right) m_{r}$ respectively, we define the C^{∞} function $f_{1}, f_{2}, \ldots ., f_{r}$ on the product space as
(1.4) $\left(X_{1}, X_{2}, \ldots ., X_{r}\right)\left(f_{1}, f_{2}, \ldots, f_{r}\right)=\left(X_{1} f_{1}, X_{2} f_{2}, \ldots \ldots, X_{r} f_{r}\right)$.

Let $D_{1}, D_{2}, \ldots \ldots, D_{r}$ be the connections on the manifolds $M_{1}, M_{2}, \ldots ., M_{r}$ respectively. We define the operator D on the product space as

$$
\begin{equation*}
D_{\left(X_{1}, X_{2}, \ldots \ldots, X_{r}\right)}\left(Y_{1}, Y_{2}, \ldots ., Y_{r}\right)=\left(D_{1_{X_{1}}} Y_{1}, D_{2_{X_{2}}} Y_{2}, \ldots, D_{r_{X_{r}}} Y_{r}\right) . \tag{1.5}
\end{equation*}
$$

Then D satisfies all four properties of a connection and thus it is a connection on the product manifold.

2. Some Results

Theorem 2.1: The product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$ admits a GFstructure if and only if the manifolds $M_{1}, M_{2}, \ldots ., M_{r}$ are GF-structure manifolds.

Proof: Suppose $M_{1}, M_{2}, \ldots ., M_{r}$ are GF-structure manifolds. Thus there exist tensor fields $F_{1}, F_{2}, \ldots, F_{r}$ each of type (1,1) on $M_{1}, M_{2} \ldots, M_{r}$ respectively satisfying

$$
F_{i}^{2}\left(X_{i}\right)=a^{2} X_{i}, \quad i=1,2, \ldots ., r
$$

where a is any complex number, not equal to zero.
In view of equation (1.3) it follows that there exists a linear transformation F on $M_{1} \times M_{2} \times \ldots . \times M_{r}$ satisfying

$$
\begin{align*}
F^{2}\left(X_{1}, X_{2}, \ldots, X_{r}\right) & =\left(F^{2}{ }_{1} X_{1}, F_{2}^{2} X_{2}, \ldots, F_{r}^{2} X_{r}\right) \tag{2.2}\\
& =a^{2}\left(X_{1}, X_{2}, \ldots, X_{r}\right) .
\end{align*}
$$

Thus, the product manifold admits a GF-structure.
Let us define a Riemannian metric g on the product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$ as

$$
\begin{align*}
a^{2} g\left(\left(X_{1}, X_{2}, \ldots ., X_{r}\right),\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right)\right) & =a^{2} g_{1}\left(X_{1}, Y_{1}\right)+a^{2} g_{2}\left(X_{2}, Y_{2}\right) \tag{2.3}\\
& +\ldots .+a^{2} g_{r}\left(X_{r}, Y_{r}\right),
\end{align*}
$$

where $g_{1}, g_{2}, \ldots, g_{r}$ are the Riemannian metrics over the manifolds $M_{1}, M_{2} \ldots, M_{r}$ respectively.
If $\xi_{1}, \xi_{2}, \ldots ., \xi_{r}$ be vector fields and $\eta_{1}, \eta_{2}, \ldots ., \eta_{r}$ be 1 -forms on the GFstructure manifolds $M_{1}, M_{2} \ldots, M_{r}$ respectively, then a vector field ξ and a 1-form η on the product manifold $M_{1} \times M_{2} \times \ldots \ldots . \times M_{r}$ is defined.

We now prove the following results.
Theorem 2.2: The product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$ admits a generalized almost contact structure if and only if the manifolds $M_{1}, M_{2} \ldots, M_{r}$ possess the same structure.

Proof: Let $M_{1}, M_{2} \ldots, M_{r}$ are generalized almost contact manifolds. Thus there exists tensor fields F_{i} of type (1,1), vector fields ξ_{i} and 1-forms. η_{i}, $i=1,2, \ldots ., r$ satisfying

$$
\begin{equation*}
F_{i}^{2}\left(X_{i}\right)=a^{2} X_{i}+\eta_{i}\left(X_{i}\right) \xi_{i} \tag{2.4}
\end{equation*}
$$

for product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$.

$$
F^{2}\left(X_{1}, X_{2}, \ldots, X_{r}\right)=\left(F_{1}^{2} X_{1}, F_{2}^{2} X_{2}, \ldots, F_{r}^{2} X_{r}\right),
$$

by the help of equation (2.4), takes the form
$F^{2}\left(X_{1}, X_{2}, \ldots, X_{r}\right)=a^{2}\left(X_{1}, X_{2}, \ldots ., X_{r}\right)+\left(\eta_{1}\left(X_{1}\right) \xi_{1}, \eta_{2}\left(X_{2}\right) \xi_{2}, \ldots, \eta_{r}\left(X_{r}\right) \xi_{r}\right)$, or

$$
\begin{equation*}
F^{2}(X)=a^{2} X+\eta(X) \xi \tag{2.5}
\end{equation*}
$$

Hence the product manifold admits a generalized almost contact metric structure ${ }^{2}$.

Theorem 2.3: The product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$ admits a $\mathrm{KH}-$ structure if and only if the manifolds $M_{1}, M_{2} \ldots, M_{r}$ are KH -structure manifolds.

Proof: Suppose $M_{1}, M_{2} \ldots, M_{r}$ are KH -structure manifolds. Thus

$$
\begin{align*}
\left(D_{1_{X_{1}}} F_{1}\right)\left(Y_{1}\right) & =\left(D_{2_{X_{2}}} F_{2}\right)\left(Y_{2}\right) \tag{2.6}\\
& =\ldots \ldots \ldots \ldots \ldots \ldots \\
& =\left(D_{r_{X_{r}}} F_{r}\right)\left(Y_{r}\right) \\
& =0 .
\end{align*}
$$

As D is a connection on the product manifold, we have

$$
\begin{align*}
\left(D_{\left(X_{1}, X_{2}, \ldots, X_{r}\right)} F\right)\left(Y_{1}, Y_{2}, \ldots ., Y_{r}\right) & =D_{\left(X_{1}, X_{2}, \ldots, X_{r}\right)}\left\{F\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right)\right. \tag{2.7}\\
& -F\left\{D_{\left(X_{1}, X_{2}, \ldots, X_{r}\right)}\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right)\right\} .
\end{align*}
$$

In view of equation (1.3) and equation (1.5), this takes the form

$$
\begin{aligned}
\left(D_{\left(X_{1}, X_{2}, \ldots, X_{r}\right)} F\right)\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right)= & D_{\left(X_{1}, X_{2}, \ldots, X_{r}\right)}\left(F_{1} Y_{1}, F_{2} Y_{2}, \ldots ., F_{r} Y_{r}\right) \\
& -F\left(D_{1 X_{1}} Y_{1}, D_{2_{X_{2}}} Y_{2}, \ldots, D_{r X_{r}} Y_{r}\right) \\
= & -\left(D_{1_{X_{1}}} F_{1} Y_{1}, D_{2_{X_{2}}} F_{2} Y_{2}, \ldots, D_{r X_{r}} F_{r} Y_{r}\right) \\
& -\left(F_{1} D_{1 X_{1}} Y_{1}, F_{2} D_{2_{X_{2}}} Y_{2}, \ldots, F_{r} D_{r X_{r}} Y_{r}\right) \\
= & \left(\left(D_{1 X_{1}} F_{1}\right)\left(Y_{1}\right),\left(D_{2_{X_{2}}} F_{2}\right)\left(Y_{2}\right), \ldots .\left(D_{r X_{r}} F_{r}\right)\left(Y_{r}\right)\right. \\
= & 0 .
\end{aligned}
$$

Thus, the product manifold is KH -structure manifold.
Theorem 2.4: The product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$ of GF-structure manifolds $M_{1}, M_{2} \ldots, M_{r}$ is almost Tachibana if and only if the manifolds $M_{1}, M_{2} \ldots, M_{r}$ are separately Tachibana manifolds.

Proof: Let a GF-structure manifolds $M_{1}, M_{2}, \ldots, M_{r}$ are almost Tachibana manifolds. Then

$$
\begin{equation*}
\left(D_{i_{X_{i}}} F_{i}\right)\left(Y_{i}\right)+\left(D_{i_{Y_{i}}} F_{i}\right)\left(Y_{i}\right)=0, \quad i=1,2, \ldots, r . \tag{2.8}
\end{equation*}
$$

3. Curvature and Ricci Tensor

Let $X=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ and $Y=\left(Y_{1}, Y_{2}, \ldots ., Y_{r}\right)$ be C^{∞} vector fields on the product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$ and $F=\left(f_{1}, f_{2}, \ldots ., f_{r}\right)$ be a C^{∞} function. Then

$$
\begin{align*}
& {\left[\left(X_{1}, X_{2}, \ldots, X_{r}\right),\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right)\right]\left(f_{1}, f_{2}, \ldots, f_{r}\right)} \tag{3.1}\\
& \quad=\left(X_{1}, X_{2}, \ldots, X_{r}\right)\left\{\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right)\left(f_{1}, f_{2}, \ldots ., f_{r}\right)\right\}-\left(Y_{1}, Y_{2}, \ldots ., Y_{r}\right) \\
& \quad=\left(\left[X_{1}, Y_{1}\right] f_{1},\left[X_{2}, Y_{2}\right] f_{2}, \ldots,\left[X_{r}, Y_{r}\right] f_{r}\right) .
\end{align*}
$$

Suppose $K_{i}\left(X_{i}, Y_{i}, Z_{i}\right), i=1,2, \ldots, r$ be the curvature tensors of the GFstructure manifolds $M_{1}, M_{2}, \ldots, M_{r}$ respectively. If $K(X, Y, Z)$ be the curvature tensor of the product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$. Then we have

$$
\begin{equation*}
K(X, Y, Z)=\left[K_{1}\left(X_{1}, Y_{1}, Z_{1}\right), K_{2}\left(X_{2}, Y_{2}, Z_{2}\right), \ldots ., K_{r}\left(X_{r}, Y_{r}, Z_{r}\right)\right] . \tag{3.2}
\end{equation*}
$$

If $W=\left(W_{1}, W_{2}, \ldots, W_{r}\right)$ be a vector field on the product manifold, then

$$
\begin{align*}
& K^{\prime}(X, Y, Z, W)=g(K(X, Y, Z, W)), \tag{3.3}\\
& K^{\prime}(X, Y, Z, W)=K_{1}^{\prime}\left(X_{1}, Y_{1}, Z_{1}, W_{1}\right)+K_{2}^{\prime}\left(X_{2}, Y_{2}, Z_{2}, W_{2}\right)+\ldots \\
& \\
& +K_{r}^{\prime}\left(X_{r}, Y_{r}, Z_{r}, W_{r}\right)
\end{align*}
$$

Thus, we have
Theorem 3.1: The product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$ is of constant curvature if and only if GF-structure manifolds $M_{1}, M_{2}, \ldots, M_{r}$ are separately of constant curvature.

Theorem 3.2: The Ricci tensor of the product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$ is the sum of the Ricci tensor of the GF-structure manifolds $M_{1}, M_{2}, \ldots ., M_{r}$.

Theorem 3.3: The product manifold $M_{1} \times M_{2} \times \ldots \times M_{r}$ is an Einstein space if and if only if the GF-structure manifolds $M_{1}, M_{2}, \ldots, M_{r}$ are separately Einstein spaces.

Proof: Let the product manifold $M_{1} \times M_{2} \times \ldots . \times M_{r}$ be an Einstein space. Thus

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=\operatorname{Cg}(X, Y), \tag{3.5}
\end{equation*}
$$

where $C=\frac{K}{n}, K$ being the scalar curvature and n being the dimension of the product manifold. Then

$$
\operatorname{Ric}\left(X_{i}, Y_{i}\right)=C g_{i}\left(X_{i}, Y_{i}\right), \quad i=1,2, \ldots, r .
$$

Therefore the manifolds $M_{1}, M_{2}, \ldots, M_{r}$ are also Einstein spaces.

References

1. H. B. Pandey, Cartesian product of two manifolds, Indian Journ. Pure Appli. Math., 12(1) (1981) 55-60.
2. J. Pant, Hypersurface immersed in a GF-structure manifold, Demonstratio Mathematica, 19(3) (1986) 693-697.
