Cartesian Product of r-GF Structure Manifolds

Jaya Upreti and Shankar Lal

Department of Mathematics, Kumaun University S. S. J. Campus, Almora, Uttarakhand, India

(Received April 06, 2009)

Abstract: Cartesian product of two manifolds has been defined and studied by Pandey¹. In this paper we have taken Cartesian product of r-GF structure manifolds, where r is some finite integer, and studied some properties of curvature and Ricci tensor of such a product manifold.

Key words & Phases: r-GF Structure Manifolds, generalized almost contact structure, KH-structure.

2000 AMS Subject Classification Number: 53C05, 53C25.

1. Introduction

Let $M_1, M_2, ..., M_r$ be r-GF structure manifolds each of class C^{∞} and of dimension $n_1, n_2, ..., n_r$ respectively. Suppose $(M_1)m_1, (M_2)m_2, ..., (M_r)m_r$ be their tangent spaces at $m_1 \in M_1$, $m_2 \in M_2, ..., m_r \in M_r$, then the product space $(M_1)m_1 \times (M_2)m_2 \times ... \times (M_r)m_r$ contains vector fields of the form $(X_1, X_2, ..., X_r)$, where $X_1 \in (M_1)m_1, X_2 \in (M_2)m_2, ..., X_r \in (M_r)m_r$. Vector addition and scalar multiplication on above product space are defined as follows:

(1.1) $(X_1, X_2, ..., X_r) + (Y_1, Y_2, ..., Y_r) = (X_1 + Y_1, X_2 + Y_2, ..., X_r + Y_r),$

(1.2)
$$\lambda(X_1, X_2, \dots, X_r) = (\lambda X_1, \lambda X_2, \dots, \lambda X_r),$$

where $X_i, Y_i \in (M_i)m_i$, i = 1, 2, ..., r and λ is a scalar.

Under these conditions the product space $(M_1)m_1 \times (M_2)m_2 \times \dots \times (M_r)m_r$ forms a vector space. Define a linear transformation F on the product space

(1.3)
$$F(X_1, X_2, ..., X_r) = (F_1 X_1, F_2 X_2, ..., F_r X_r),$$

where F_1, F_2, \dots, F_r are linear transformations on $(M_1)m_1, (M_2)m_2, \dots, (M_r)m_r$ respectively.

If $f_1, f_2, ..., f_r$ be C^{∞} functions over the spaces $(M_1)m_1, (M_2)m_2, ..., (M_r)m_r$ respectively, we define the C^{∞} function $f_1, f_2, ..., f_r$ on the product space as

(1.4)
$$(X_1, X_2, ..., X_r)(f_1, f_2, ..., f_r) = (X_1 f_1, X_2 f_2, ..., X_r f_r).$$

Let D_1, D_2, \dots, D_r be the connections on the manifolds M_1, M_2, \dots, M_r respectively. We define the operator D on the product space as

(1.5)
$$D_{(X_1, X_2, \dots, X_r)}(Y_1, Y_2, \dots, Y_r) = (D_{1_{X_1}}Y_1, D_{2_{X_2}}Y_2, \dots, D_{r_{X_r}}Y_r).$$

Then D satisfies all four properties of a connection and thus it is a connection on the product manifold.

2. Some Results

Theorem 2.1: The product manifold $M_1 \times M_2 \times ... \times M_r$ admits a GFstructure if and only if the manifolds $M_1, M_2, ..., M_r$ are GF-structure manifolds.

Proof: Suppose $M_1, M_2, ..., M_r$ are GF-structure manifolds. Thus there exist tensor fields $F_1, F_2, ..., F_r$ each of type (1,1) on $M_1, M_2, ..., M_r$ respectively satisfying

(2.1)
$$F_i^2(X_i) = a^2 X_i, \qquad i = 1, 2, ..., r$$

where a is any complex number, not equal to zero.

In view of equation (1.3) it follows that there exists a linear transformation F on $M_1 \times M_2 \times \dots \times M_r$ satisfying

(2.2)
$$F^{2}(X_{1}, X_{2}, ..., X_{r}) = (F^{2}_{1}X_{1}, F^{2}_{2}X_{2}, ..., F^{2}_{r}X_{r})$$
$$= a^{2}(X_{1}, X_{2}, ..., X_{r}).$$

Thus, the product manifold admits a GF-structure.

Let us define a Riemannian metric g on the product manifold $M_1 \times M_2 \times \dots \times M_r$ as

(2.3)
$$a^{2}g((X_{1}, X_{2}, ..., X_{r}), (Y_{1}, Y_{2}, ..., Y_{r})) = a^{2}g_{1}(X_{1}, Y_{1}) + a^{2}g_{2}(X_{2}, Y_{2}) + + a^{2}g_{r}(X_{r}, Y_{r}),$$

where $g_1, g_2, ..., g_r$ are the Riemannian metrics over the manifolds $M_1, M_2, ..., M_r$ respectively.

If $\xi_1, \xi_2, ..., \xi_r$ be vector fields and $\eta_1, \eta_2, ..., \eta_r$ be 1-forms on the GFstructure manifolds $M_1, M_2, ..., M_r$ respectively, then a vector field ξ and a 1-form η on the product manifold $M_1 \times M_2 \times ... \times M_r$ is defined.

We now prove the following results.

Theorem 2.2: The product manifold $M_1 \times M_2 \times ... \times M_r$ admits a generalized almost contact structure if and only if the manifolds $M_1, M_2, ..., M_r$ possess the same structure.

Proof: Let $M_1, M_2, ..., M_r$ are generalized almost contact manifolds. Thus there exists tensor fields F_i of type (1,1), vector fields ξ_i and 1-forms. η_i , i = 1, 2, ..., r satisfying

(2.4)
$$F_i^2(X_i) = a^2 X_i + \eta_i(X_i) \xi_i,$$

for product manifold $M_1 \times M_2 \times \dots \times M_r$.

$$F^{2}(X_{1}, X_{2}, ..., X_{r}) = (F^{2}_{1}X_{1}, F^{2}_{2}X_{2}, ..., F^{2}_{r}X_{r}),$$

by the help of equation (2.4), takes the form

 $F^{2}(X_{1}, X_{2}, ..., X_{r}) = a^{2}(X_{1}, X_{2}, ..., X_{r}) + (\eta_{1}(X_{1})\xi_{1}, \eta_{2}(X_{2})\xi_{2}, ..., \eta_{r}(X_{r})\xi_{r}),$ or

(2.5)
$$F^{2}(X) = a^{2}X + \eta(X)\xi$$

Hence the product manifold admits a generalized almost contact metric structure².

Theorem 2.3: The product manifold $M_1 \times M_2 \times ... \times M_r$ admits a KHstructure if and only if the manifolds $M_1, M_2, ..., M_r$ are KH-structure manifolds.

Proof: Suppose $M_1, M_2, ..., M_r$ are KH-structure manifolds. Thus

(2.6)
$$(D_{1_{X_1}}F_1)(Y_1) = (D_{2_{X_2}}F_2)(Y_2)$$
$$= \dots$$
$$= (D_{r_{X_r}}F_r)(Y_r)$$
$$= 0.$$

As D is a connection on the product manifold, we have

(2.7)
$$(D_{(X_1, X_2, \dots, X_r)}F)(Y_1, Y_2, \dots, Y_r) = D_{(X_1, X_2, \dots, X_r)}\{F(Y_1, Y_2, \dots, Y_r) - F\{D_{(X_1, X_2, \dots, X_r)}(Y_1, Y_2, \dots, Y_r)\}.$$

In view of equation (1.3) and equation (1.5), this takes the form

$$(D_{(X_1, X_2, \dots, X_r)}F)(Y_1, Y_2, \dots, Y_r) = D_{(X_1, X_2, \dots, X_r)}(F_1Y_1, F_2Y_2, \dots, F_rY_r)$$

- $F(D_{1_{X_1}}Y_1, D_{2_{X_2}}Y_2, \dots, D_{r_{X_r}}Y_r)$
= $-(D_{1_{X_1}}F_1Y_1, D_{2_{X_2}}F_2Y_2, \dots, D_{r_{X_r}}F_rY_r)$
- $(F_1D_{1_{X_1}}Y_1, F_2D_{2_{X_2}}Y_2, \dots, F_rD_{r_{X_r}}Y_r)$
= $((D_{1_{X_1}}F_1)(Y_1), (D_{2_{X_2}}F_2)(Y_2), \dots, (D_{r_{X_r}}F_r)(Y_r))$
= $0.$

Thus, the product manifold is KH-structure manifold.

Theorem 2.4: The product manifold $M_1 \times M_2 \times ... \times M_r$ of GF-structure manifolds $M_1, M_2, ..., M_r$ is almost Tachibana if and only if the manifolds $M_1, M_2, ..., M_r$ are separately Tachibana manifolds.

Proof: Let a GF-structure manifolds $M_1, M_2, ..., M_r$ are almost Tachibana manifolds. Then

Cartesian Product of r-GF Structure Manifolds

(2.8)
$$(D_{i_{X_i}}F_i)(Y_i) + (D_{i_{Y_i}}F_i)(Y_i) = 0, \quad i = 1, 2, ..., r.$$

3. Curvature and Ricci Tensor

Let $X = (X_1, X_2, ..., X_r)$ and $Y = (Y_1, Y_2, ..., Y_r)$ be C^{∞} vector fields on the product manifold $M_1 \times M_2 \times ... \times M_r$ and $F = (f_1, f_2, ..., f_r)$ be a C^{∞} function. Then

$$(3.1) [(X_1, X_2, ..., X_r), (Y_1, Y_2, ..., Y_r)](f_1, f_2, ..., f_r)$$

= $(X_1, X_2, ..., X_r) \{ (Y_1, Y_2, ..., Y_r) (f_1, f_2, ..., f_r) \} - (Y_1, Y_2, ..., Y_r)$
= $([X_1, Y_1]f_1, [X_2, Y_2]f_2, ..., [X_r, Y_r]f_r).$

Suppose $K_i(X_i, Y_i, Z_i)$, i = 1, 2, ..., r be the curvature tensors of the GFstructure manifolds $M_1, M_2, ..., M_r$ respectively. If K(X, Y, Z) be the curvature tensor of the product manifold $M_1 \times M_2 \times ... \times M_r$. Then we have

(3.2)
$$K(X,Y,Z) = [K_1(X_1,Y_1,Z_1), K_2(X_2,Y_2,Z_2), ..., K_r(X_r,Y_r,Z_r)].$$

If $W = (W_1, W_2, ..., W_r)$ be a vector field on the product manifold, then

(3.3)
$$K'(X,Y,Z,W) = g(K(X,Y,Z,W)),$$

(3.4)
$$K'(X,Y,Z,W) = K'_{1}(X_{1},Y_{1},Z_{1},W_{1}) + K'_{2}(X_{2},Y_{2},Z_{2},W_{2}) + \dots + K'_{r}(X_{r},Y_{r},Z_{r},W_{r})$$

Thus, we have

Theorem 3.1: The product manifold $M_1 \times M_2 \times ... \times M_r$ is of constant curvature if and only if GF-structure manifolds $M_1, M_2, ..., M_r$ are separately of constant curvature.

Theorem 3.2: The Ricci tensor of the product manifold $M_1 \times M_2 \times \ldots \times M_r$ is the sum of the Ricci tensor of the GF-structure manifolds M_1, M_2, \ldots, M_r .

Theorem 3.3: The product manifold $M_1 \times M_2 \times ... \times M_r$ is an Einstein space if and if only if the GF-structure manifolds $M_1, M_2, ..., M_r$ are separately Einstein spaces.

Proof: Let the product manifold $M_1 \times M_2 \times \dots \times M_r$ be an Einstein space. Thus

where $C = \frac{K}{n}$, K being the scalar curvature and n being the dimension of the product manifold. Then

$$Ric(X_i, Y_i) = Cg_i(X_i, Y_i), \quad i = 1, 2, ..., r.$$

Therefore the manifolds M_1, M_2, \dots, M_r are also Einstein spaces.

References

- 1. H. B. Pandey, Cartesian product of two manifolds, *Indian Journ. Pure Appli. Math.*, **12(1)** (1981) 55-60.
- 2. J. Pant, Hypersurface immersed in a GF-structure manifold, *Demonstratio Mathematica*, **19**(**3**) (1986) 693-697.