# Special Types of Projective Motions in a Projective Finsler Space 

C. K. Mishra*, D. D. S. Yadav and Gautam Lodhi<br>Department of Mathematics and Statistics<br>Dr. R. M. L. Avadh University, Faizabad - 224001 (U.P.), India<br>Email: chayankumarmishra@yahoomail.com

(Received March 15, 2009)


#### Abstract

The studies of a Projective Finsler space have been carried out by Misra and Meher ${ }^{1}$. Special types of projective motions have been introduced using a contra, a concurrent, a special concircular and torseforming transformations in a recurrent Finsler space and Finsler space in detail by Misra ${ }^{2-4}$, Misra and Meher ${ }^{5}$, Pandey ${ }^{6-9}$, Misra and Mishra ${ }^{10}$. Takano ${ }^{11}$ studied the existence of affine motion in a non-Riemannian $\mathrm{K}^{*}$ space and obtained several significant results. He also studied the existence of projective motion in a Riemannian space of birecurrent curvature. The purpose of the present paper is to study special types of projective motions in a projective Finsler space.


Key words: Projective Finsler space, Projective motion, Special transformations.
2000 AMS Subject Classification Number: 53B40

## 1. Introduction

Let $\mathrm{F}_{\mathrm{n}}$ be an n -dimensional Finsler space equipped with Berwald's connection parameters $G_{j k}^{i}(x, \dot{x})$. These parameters are homogeneous functions of degree zero in their directional arguments. Hence, from the Euler's theorem, following relations hold

$$
\begin{equation*}
G_{j k h}^{i} \dot{x}^{j}=0 \tag{1.1}
\end{equation*}
$$

where

$$
G_{j k h}^{i}=\dot{\partial}_{j} G_{k h}^{i} .
$$

[^0]The covariant derivative of a vector field $X^{i}(x, \dot{x})$ is defined by

$$
\begin{equation*}
\mathscr{B}_{k} X^{i}=\partial_{k} X^{i}-\left(\dot{\partial}_{j} X^{i}\right) G_{k}^{j}+X^{j} G_{j k}^{i}, \tag{1.2}
\end{equation*}
$$

where $\partial_{k} \equiv \frac{\partial}{\partial x^{k}}$ and $\dot{\partial}_{k} \equiv \frac{\partial}{\partial \dot{x}^{k}}$.
The projective connection parameters are defined by Misra and Meher ${ }^{1}$ as

$$
\begin{equation*}
\Pi_{j k}^{i}=G_{j k}^{i}-\frac{1}{n+1}\left(\delta_{j}^{i} G_{k r}^{r}+\delta_{k}^{i} G_{j r}^{r}+\dot{x}^{i} G_{j k r}^{r}\right), \tag{1.3}
\end{equation*}
$$

where $\Pi_{j k}^{i}$ is symmetric in its lower indices and is homogeneous of degree zero in its directional arguments .
The connection parameters $\Pi_{j k}^{i}$ satisfy the following contractions:

$$
\begin{cases}(a) & \Pi_{i j}^{i}=\Pi_{j i}^{i}=0  \tag{1.4}\\ (b) & \Pi_{i}^{i}=0 \\ (c) & \Pi_{i k h}^{i}=\Pi_{k k i}^{i}=\Pi_{k i h}^{i}=0\end{cases}
$$

where

$$
\begin{aligned}
\Pi_{j k h}^{i} & =\dot{\partial}_{j} \Pi_{k h}^{i} \\
& =G_{j k h}^{i}-\frac{1}{n+1}\left(\delta_{k}^{i} G_{j h r}^{r}+\delta_{h}^{i} G_{j k r}^{r}+\delta_{j}^{i} G_{k h r}^{r}+\dot{x}^{i} G_{j k h r}^{r}\right)
\end{aligned}
$$

Furthermore, the projective connection parameters also satisfy

$$
\begin{equation*}
\Pi_{j k h}^{i} \dot{x}^{j}=\Pi_{j k h}^{i} \dot{x}^{k}=\Pi_{j k h}^{i} \dot{x}^{h}=0, \tag{1.6}
\end{equation*}
$$

The entities $\Pi_{j k h}^{i}$ are positively homogeneous of degree -1 in their directional arguments. The entities $\Pi_{j k h}^{i}$ constitute a tensor and are symmetric in all of its lower indices.
Transvecting (1.3) by $\dot{x}^{k}$, we get

$$
\left\{\begin{array}{l}
\text { (a) } \Pi_{j k}^{i} \dot{x}^{k}=\Pi_{j}^{i}=G_{j}^{i}-\frac{1}{n+1}\left(\delta_{j}^{i} G_{r}^{r}+\dot{x}^{i} G_{r j}^{r}\right),  \tag{1.7}\\
\text { (b) } \Pi_{j}^{i} \dot{x}^{j}=\Pi^{i}=2 G^{i}-\frac{2}{n+1} \dot{x}^{i} G_{r}^{r},
\end{array}\right.
$$

The projective covariant derivative of a vector field $X^{i}(x, \dot{x})$ is defined by Misra ${ }^{3}$

$$
\begin{equation*}
\mathscr{P}_{j} X^{i}=\partial_{j} X^{i}-\left(\dot{\partial}_{m} X^{i}\right) \Pi_{p j}^{m} \dot{x}^{p}+X^{m} \Pi_{m j}^{i} . \tag{1.8}
\end{equation*}
$$

The projective covariant derivative gives rise to the commutation formula

$$
\begin{equation*}
\left(\mathscr{P}_{j} \mathscr{P}_{k}-\mathscr{P}_{k} \mathscr{P}_{j}\right) X^{i}=Q_{m j k}^{i} X^{m}-\left(\dot{\partial}_{m} X^{i}\right) Q_{p j k}^{m} \dot{x}^{p}, \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{j k h}^{i}(x, \dot{x})=2\left(\partial_{[j} \Pi_{k] h}^{i}+\Pi_{r[k}^{s} \Pi_{j j h s}^{i} \dot{x}^{r}+\Pi_{r[j}^{i} \Pi_{k] h}^{r}\right), \tag{1.10}
\end{equation*}
$$

which are analogous to a curvature tensor. The entities $Q_{j k h}^{i}$ are homogeneous functions of degree zero in their directional arguments. It may be noted that $Q_{j k h}^{i}$ are equal to $Q_{h j k}^{i}$ this will mean that $Q_{j k h}^{i}$ is symmetric in their lower indices $j$ and $h$, and $Q_{j k h}^{i}$ is skew-symmetric in its lower indices $j$ and $k$

$$
\begin{equation*}
Q_{j k h}^{i}(x, \dot{x})=-Q_{k j h}^{i}(x, \dot{x}) . \tag{1.11}
\end{equation*}
$$

The contraction of indices in $Q_{j k h}^{i}$ yields

$$
\begin{cases}(a) & Q_{j k i}^{i}=0  \tag{1.12}\\ (b) & Q_{i k h}^{i}=Q_{k h}, \\ (c) & Q_{j h h}^{i}=-Q_{i j h}^{i}=-Q_{j h}, \\ (d) & Q_{i k}^{i}=Q_{k}\end{cases}
$$

On the other hand the contraction with respect to $i, j$ yields the quantities

$$
\begin{equation*}
Q_{i k h}^{i}=Q_{k h}=\dot{\partial}_{i} \Pi_{k h}^{i}-\dot{x}^{r} \Pi_{r i}^{s} \Pi_{k h s}^{i}-\Pi_{r k}^{i} \Pi_{i h}^{r} \tag{1.13}
\end{equation*}
$$

which are analogous to Ricci tensor of Riemannian geometry. The contracted quantities $Q_{k h}$ are symmetric in their indices. Applying the definition of projective covariant derivative, $Q_{k h}$ may also be written as

$$
\begin{equation*}
Q_{k h}=\mathscr{P}_{i} \Pi_{k h}^{i}+\Pi_{r k}^{i} \Pi_{i h}^{r} . \tag{1.14}
\end{equation*}
$$

The following homogeneous properties of entities $Q_{j k h}^{i}$ are given by

Definition 1.1: A Finsler space equipped with the entities $\Pi_{j k}^{i}, Q_{j k h}^{i}$ etc. is called a projective Finsler space and is denoted by $\mathrm{P}-\mathrm{F}_{\mathrm{n}}$.

Let us consider an infinitesimal point transformation

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\varepsilon v^{i}, \tag{1.16}
\end{equation*}
$$

where $v^{i}$ denotes the components of a contravariant vector field, independent of the directional arguments and $\varepsilon$ is an infinitesimal constant. The Lie-derivative of a vector $X^{i}(x, \dot{x})$ with respect to (1.16) is expressed by

$$
\begin{equation*}
£ X^{i}=v^{s} \mathscr{P}_{s} X^{i}-X^{s} \mathscr{P}_{s} v^{i}-\left(\dot{\partial}_{s} X^{i}\right)\left(\mathscr{P}_{m} v^{s}\right) \dot{x}^{m}, \tag{1.17}
\end{equation*}
$$

where $£$ stands for the Lie-derivative. The Lie-derivative of the entities $Q_{j k h}^{i}$ and the connection parameters $\Pi_{j k}^{i}$ are given by

$$
\begin{align*}
£ Q_{j k h}^{i}= & v^{s} \mathscr{P}_{j} Q_{s k h}^{i}-Q_{j k h}^{s} \mathscr{P}_{s} v^{i}+Q_{s k h}^{i} \mathscr{P}_{j} v^{s}+Q_{j s h}^{i} \mathscr{P}_{k} v^{s}  \tag{1.18}\\
& +Q_{j k s}^{i} \mathscr{P}_{h} v^{s}-\left(\dot{\partial}_{s} Q_{j k h}^{i}\right)\left(\mathscr{P}_{m} v^{s}\right) \dot{x}^{m},
\end{align*}
$$

and

$$
\begin{equation*}
£ \Pi_{j k}^{i}=\mathscr{P}_{j} \mathcal{P}_{k} v^{i}+v^{h} Q_{k j k}^{i}+\Pi_{j k h}^{i}\left(\mathcal{P}_{r} v^{h}\right) \dot{x}^{r}+\frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right), \tag{1.19}
\end{equation*}
$$

respectively. The processes of Lie-derivative and projective covariant derivative are connected by

$$
\begin{equation*}
\mathscr{P}_{j} £ \Pi_{k h}^{i}-\mathscr{P}_{k} £ \Pi_{j h}^{i}=£ Q_{j k h}^{i}-\Pi_{h s j}^{i}\left(£ \Pi_{k r}^{s}\right) \dot{x}^{r}+\Pi_{h s k}^{i}\left(£ \Pi_{j r}^{s}\right) \dot{x}^{r} . \tag{1.20}
\end{equation*}
$$

If a projective Finsler space admits a projective motion then the Liederivatives of the projective connection $\Pi_{j k}^{i}$ and curvature tensor type entites $Q_{j k h}^{i}$ satisfy

$$
\begin{equation*}
£ \Pi_{j k}^{i}=0, \tag{1.21}
\end{equation*}
$$

and

$$
\begin{equation*}
£ Q_{j k h}^{i}=0 . \tag{1.22}
\end{equation*}
$$

Let us now consider an infinitesimal transformation of the type (1.16). As indicated by Takano ${ }^{11}$ the projective covariant derivative of the vector $v^{i}$ appearing in (1.16) may assume a number of values which are being respectively given as

$$
\begin{cases}\text { (a) } & \mathscr{P}_{j} v^{i}=0,  \tag{1.23}\\ \text { (b) } & \mathscr{P}_{j} v^{i}=c \delta_{j}^{i}, \\ \text { (c) } & \mathscr{P}_{j} v^{i}=\rho(x, \dot{x}) \delta_{j}^{i}, \quad \rho \neq \text { constant } \\ (d) & \mathscr{P}_{j} v^{i}=\phi_{j}(x, \dot{x}) v^{i}, \quad \phi \neq 0 \\ (e) & \mathscr{P}_{j} v^{i}=\rho(x, \dot{x}) \delta_{j}^{i}+\phi_{j}(x, \dot{x}) v^{i}, \quad \mathscr{P}_{j} \phi_{k}-\mathscr{P}_{k} \phi_{j}=0 \\ (f) & \mathscr{P}_{j} v^{i}=\rho(x, \dot{x}) \delta_{j}^{i}+\phi_{j}(x, \dot{x}) v^{i},\end{cases}
$$

The vector $v^{i}$ appearing in (1.23) assumes different names like contra vector field / concurrent vector field / special concircular vector field / recurrent vector field / concircular vector field and torse-forming vector field respectively. The transformations with such
different $v^{i}$ are respectively named as contra / concurrent / special concircular / recurrent / concircular and torse-forming transformations.
The functions $\phi_{j}$ are positively homogeneous of degree zero in directional arguments and satisfy ${ }^{\mathbf{1 0}}$

$$
\begin{equation*}
\dot{x}^{k} \phi_{k}=\dot{x}^{k} \dot{\partial}_{k} \phi=\phi \tag{1.24}
\end{equation*}
$$

## 2. Contra Transformation Defining Projective Motion

The Lie-derivative of the connection coefficient with respect to an infinitesimal transformation (1.16) is given by (1.19). Thus, if contra transformation defines a projective motion, we have from (1.19), (1.21) and (1.23a) the following after a little simplification

$$
\begin{equation*}
v^{h} Q_{h j k}^{i}=\frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right) . \tag{2.1}
\end{equation*}
$$

The contraction of (2.1) with respect to the indices $i$ and $k$ gives

$$
\begin{equation*}
\partial_{j} \partial_{r} v^{r}=0 . \tag{2.2}
\end{equation*}
$$

where we have taken (1.12a) into account. Using the equation (2.2) in (2.1), we get

$$
\begin{equation*}
v^{h} Q_{h j k}^{i}=0 . \tag{2.3}
\end{equation*}
$$

We, therefore, have
Theorem 2.1: A $P-F_{n}$ admitting a projective motion of the type (1.23a) satisfies (2.3).

## 3. Concurrent Transformation Defining Projective Motion

In this section, we consider the case when a concurrent transformation defines a projective motion. With the help of the equations (1.19), (1.21) and (1.23b), we get

$$
\begin{equation*}
v^{h} Q_{h j k}^{i}+c \prod_{j k h}^{i} \dot{x}^{h}-\frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right)=0 . \tag{3.1}
\end{equation*}
$$

Using the equation (1.5) in (3.1), we get

$$
\begin{equation*}
v^{h} Q_{h j k}^{i}=\frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right) . \tag{3.2}
\end{equation*}
$$

The contraction of (3.2) with respect to the indices $i, k$ and using equation (1.12a) thereafter, we obtain

$$
\begin{equation*}
\partial_{j} \partial_{r} v^{r}=0 . \tag{3.3}
\end{equation*}
$$

Using equation (3.3) in (3.2), we get

$$
\begin{equation*}
v^{h} Q_{h j k}^{i}=0 . \tag{3.4}
\end{equation*}
$$

Therefore, we have
Theorem 3.1: A $P-F_{n}$ admitting a projective motion of the type (1.23b) satisfies (3.4).

Using the equations (1.22), and (1.23b) in (1.18), we get

$$
\begin{equation*}
v^{s} \mathscr{P}_{j} Q_{s k h}^{i}+2 c Q_{j k h}^{i}=0 . \tag{3.5}
\end{equation*}
$$

Thus, we have

Theorem 3.2: If the concurrent transformation (1.16) defines a projective motion in $P-F_{n}$, then the relation (3.5) holds.

## 4. Special Concircular Transformation Defining Projective Motion

In this section, we consider the case when a special concircular transformation defines a projective motion. With the help of the equations (1.19), (1.21) and (1.23c), we get

$$
\begin{equation*}
\rho_{j} \delta_{k}^{i}+v^{h} Q_{h j k}^{i}+\rho \Pi_{j k h}^{i} \dot{x}^{h}=\frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right), \tag{4.1}
\end{equation*}
$$

where $\mathscr{P}_{j} \rho=\rho_{j}$.
Using equation (1.6) in (4.1), we get

$$
\begin{equation*}
\rho_{j} \delta_{k}^{i}+v^{h} Q_{h j k}^{i}=\frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right) . \tag{4.2}
\end{equation*}
$$

Contracting (4.2) with respect to the indices $i$ and $k$ and using (1.12a) thereafter, we obtain

$$
\begin{equation*}
\partial_{j} \partial_{r} v^{r}=n \rho_{j} . \tag{4.3}
\end{equation*}
$$

Similarly, if equation (4.2) is contracted with respect to the indices $i$ and $j$ then (4.1) in view of the equation (1.12c), yields

$$
\begin{equation*}
\rho_{k}-v^{h} Q_{h k}=\partial_{k} \partial_{r} v^{r} . \tag{4.4}
\end{equation*}
$$

Thus eliminating $\partial_{j} \partial_{r} v^{r}$ from (4.3) and (4.4), we get

$$
\begin{equation*}
v^{h} Q_{h j}+(n-1) \rho_{j}=0 . \tag{4.5}
\end{equation*}
$$

We, therefore have
Theorem 4.1: If the special concircular transformation (1.16) defines a projective motion in projective Finsler space then (4.5) necessarily holds.

Using the equations (1.15c), (1.22) and (1.23c) in (1.18), we get

$$
\begin{equation*}
v^{s} \mathscr{P}_{j} Q_{s k h}^{i}+2 \rho Q_{j k h}^{i}=0 \tag{4.6}
\end{equation*}
$$

Thus, we have

Theorem 4.2: If the special concircular transformation (1.16) defines a projective motion in projective Finsler space then the relation (4.7) necessarily holds.

## 5. Recurrent Transformation Defining Projective Motion

In this section, we consider the case when a recurrent transformation defines a projective motion. With the help of the equations (1.19), (1.21), (1.23d) and (1.24) we get

$$
\begin{equation*}
\left(\mathscr{P}_{j} \phi_{k}+\phi_{j} \phi_{k}\right) v^{i}+v^{h} Q_{h j k}^{i}+\Pi_{j k h}^{i} v^{h} \phi=\frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right) . \tag{5.1}
\end{equation*}
$$

Contracting (5.1) with respect to the indices $i, j$ and using (1.12c), (1.4c) together with the skew-symmetric property of $Q_{j k h}^{i}$, we deduce

$$
\begin{equation*}
\left(\mathscr{P}_{i} \phi_{k}+\phi_{i} \phi_{k}\right) v^{i}-v^{h} Q_{h k}=\partial_{k} \partial_{r} v^{r} . \tag{5.2}
\end{equation*}
$$

Similarly, if (5.1) is contracted with respect to the indices $i$ and $k$ then in view of the equation (1.12a) and (1.4c), we obtain

$$
\begin{equation*}
\left(\mathscr{P}_{j} \phi_{i}+\phi_{j} \phi_{i}\right) v^{i}=\partial_{j} \partial_{r} v^{r} . \tag{5.3}
\end{equation*}
$$

Eliminating $\partial_{j} \partial_{r} v^{r}$ from (5.2) and (5.3), we have

$$
\begin{equation*}
\left(Q_{h j}+\mathscr{P}_{j} \phi_{h}-\mathscr{P}_{h} \phi_{j}\right) v^{h}=0 . \tag{5.4}
\end{equation*}
$$

Thus, we have
Theorem 5.1: If the recurrent transformation (1.16) defines a projective motion in $P-F_{n}$, then the relation (5.4) holds.

Theorem 5.2: The invariance property of $\phi_{j}$ under the projective covariant operator $\mathscr{P}_{i}$ implies that the projective motion in projective Finsler space satisfies the relations

$$
\begin{cases}(a) & v^{h} Q_{h j}=0  \tag{5.5}\\ (b) & \partial_{k} \partial_{r} v^{r}-\phi_{i} \phi_{k} v^{i}=0\end{cases}
$$

Proof : As $\phi_{1}$ is a projective covariant constant (5.5a) can be easily found out from (5.4). In view of (5.5a) and (5.2), we have (5.5b).

Using the equations (1.15c), (1.22), and (1.23d) in (1.18), we get

$$
\begin{equation*}
\left[\rho_{j} Q_{s k h}^{i}+Q_{s k h}^{i} \phi_{j}+Q_{j s h}^{i} \phi_{k}+Q_{j k s}^{i} \phi_{h}+\left(\dot{\partial} \dot{\partial}_{s} Q_{j k h}^{i}\right) \phi_{m} \dot{x}^{m}\right] v^{s}=Q_{j k h}^{s} \phi_{s} v^{i} . \tag{5.6}
\end{equation*}
$$

Contracting (5.6) with respect to the indices $i$ and $j$ and using the equations (1.12b) and (1.24), we get

$$
\begin{equation*}
v^{s} \mathscr{P}_{i} Q_{s k h}^{i}+Q_{s h} \phi_{k} v^{s}+Q_{k s} \phi_{h} v^{s}=-\left(\dot{\partial}_{s} Q_{k h}\right) \phi v^{s} . \tag{5.7}
\end{equation*}
$$

Similarly, if contracting (5.6) with respect to the indices $i, k$ and using (1.12c), we get

$$
\begin{equation*}
v^{s} \mathscr{P}_{j} Q_{s h}+Q_{s h} \phi_{j} v^{s}+Q_{j s} \phi_{h} v^{s}=-\left(\dot{\partial}_{s} Q_{j h}\right) \phi v^{s} \tag{5.8}
\end{equation*}
$$

Thus eliminating ( $\left.\dot{\partial}_{s} Q_{j h}\right) \phi v^{s}$ from (5.7) and (5.8), we get

$$
\begin{equation*}
v^{s}\left(\mathscr{P}_{i} Q_{s j h}^{i}-\mathscr{P}_{j} Q_{s h}\right)=0 \tag{5.9}
\end{equation*}
$$

Thus, we have
Theorem 5.3: If the recurrent transformation (1.16) defines a projective motion in $P-F_{n}$, then the relation (5.9) holds.

## 6. Concircular Transformation Defining Projective Motion

In this section, we consider the case when a concircular transformation defines a projective motion. With the help of the equations (1.19), (1.21), and (1.23e), we get

$$
\delta_{k}^{i} \rho_{j}+\mathscr{P}_{j}\left(\phi_{k} v^{i}\right)+v^{h} Q_{h j k}^{i}+\rho \Pi_{j k h}^{i} \dot{x}^{h}+\Pi_{j k h}^{i} v^{h} \phi_{r} \dot{x}^{r}
$$

$$
\begin{equation*}
=\frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right), \tag{6.1}
\end{equation*}
$$

where $\mathscr{P}_{j} \rho=\rho_{j}$.
Using the equations (1.5), (1.23e) and (1.24) in (6.1), we obtain

$$
\begin{align*}
\delta_{k}^{i} \rho_{j}+ & \left(\mathcal{P}_{j} \phi_{k}\right) v^{i}+\delta_{j}^{i} \rho \phi_{k}+\phi_{j} \phi_{k} v^{i}+v^{h} Q_{h j k}^{i}+v^{h} \Pi_{j k h}^{i} \phi \\
& =\frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right) . \tag{6.2}
\end{align*}
$$

Contracting (6.2) with respect to the indices $i, j$ and using (1.4c) and (1.12c) together with the skew-symmetric property of $Q_{j k h}^{i}$, we deduce

$$
\begin{equation*}
\rho_{k}+\left(\mathscr{P}_{i} \phi_{k}+\phi_{i} \phi_{k}\right) v^{i}+n \rho \phi_{k}-v^{h} Q_{h k}=\partial_{k} \partial_{r} v^{r} \tag{6.3}
\end{equation*}
$$

Similarly contracting (6.2) with respect to the indices $i$ and $k$, in view of the equations (1.4c) and (1.12a), we obtain from (6.2)

$$
\begin{equation*}
n \rho_{j}+\left(\mathscr{P}_{j} \phi_{i}+\phi_{i} \phi_{j}\right) v^{i}+\phi_{j} \rho=\partial_{j} \partial_{r} v^{r} . \tag{6.4}
\end{equation*}
$$

Thus eliminating $\left(\partial_{j} \partial_{r} v^{r}\right)$ from (6.3) and (6.4) and using (1.23), we have

$$
\begin{equation*}
v^{h} Q_{h j}+(n-1)\left(\rho_{j}-\rho \phi_{j}\right)=0 \tag{6.5}
\end{equation*}
$$

We, therefore have
Theorem 6.1: If the concircular transformation (1.16) defines a projective motion in $P-F_{n}$ then the relation (6.5) holds.

Imposing further conditions on the functions $\rho$ and $\phi_{1}$, we have
Theorem 6.2: The invariance property of $\rho$ and $\phi_{i}$, under the projective covariant operator $\mathscr{P}_{m}$ implies that the projective motion in projective Finsler space satisfies the relations

$$
\begin{cases}(a) & v^{h} Q_{h j}=(n-1) \rho \phi_{j},  \tag{6.6}\\ (b) & v^{h} Q_{h k}-n \rho \phi_{k}-\phi_{i} \phi_{k} v^{i}+\partial_{k} \partial_{r} v^{r}=0\end{cases}
$$

Proof: As $\phi_{1}$ and $\rho$ are projective covariant constants, (6.6a) can be easily found out from (6.5). Using (6.6) in (6.3), we can see the truth of the theorem.

Using the equations (1.15c), (1.22) and (1.23e) in (1.18), we obtain

$$
\begin{align*}
v^{s} \mathscr{P}_{j} Q_{s k h}^{i}+2 \rho Q_{j k h}^{i}-Q_{j k h}^{s} \phi_{s} v^{i}+Q_{s k h}^{i} \phi_{j} v^{s}+Q_{j s h}^{i} \phi_{k} v^{s} & +Q_{j k s}^{i} \phi_{h} v^{s}  \tag{6.7}\\
& =-\left(\dot{\partial}_{s} Q_{j k h}^{i}\right) \phi v^{s} .
\end{align*}
$$

Contracting (6.7) with respect to the indices $i$ and $j$ and using (1.12b), we get

$$
\begin{equation*}
v^{s} \mathscr{P}_{i} Q_{s k h}^{i}+2 \rho Q_{k h}+Q_{s h} \phi_{k} v^{s}+Q_{k s} \phi_{h} v^{s}=-\left(\dot{\partial}_{s} Q_{k h}\right) \phi v^{s} \tag{6.8}
\end{equation*}
$$

Similarly, contracting (6.7) with respect to the indices $i, k$ and using the equation (1.12c), we obtain

$$
\begin{equation*}
v^{s} \mathscr{P}_{j} Q_{s h}+2 \rho Q_{j h}+Q_{s h} \phi_{j} v^{s}+Q_{j s} \phi_{h} v^{s}=-\left(\dot{\partial}_{s} Q_{j h}\right) \phi v^{s} . \tag{6.9}
\end{equation*}
$$

Thus eliminating ( $\dot{\partial}_{s} Q_{j h}$ ) $\phi v^{s}$ in (6.8) and (6.9), we get

$$
\begin{equation*}
v^{s}\left(\mathscr{P}_{i} Q_{s h h}^{i}-\mathscr{P}_{j} Q_{s h}\right)=0 . \tag{6.10}
\end{equation*}
$$

Thus, we have
Theorem 6.3: If the concircular transformation (1.16) defines a projective motion in $P-F_{n}$, then the relation (6.10) holds.

## 7. Torse-forming Transformation Defining Projective Motion

In this section, we consider the case when a torse-forming transformation defines a projective motion. With the help of the equations (1.5), (1.16), (1.19), (1.21) and (1.23f), we get

$$
\begin{align*}
\delta_{k}^{i} \rho_{j}+\left(\mathcal{P}_{j} \phi_{k}\right) v^{i}+\delta_{j}^{i} \rho \phi_{k}+\phi_{j} \phi_{k} v^{i}+v^{h} Q_{h j k}^{i}+v^{h} \prod_{j k h}^{i} \phi= & \frac{1}{n+1}\left(\delta_{j}^{i} \partial_{k} \partial_{r} v^{r}\right.  \tag{7.1}\\
& \left.+\delta_{k}^{i} \partial_{j} \partial_{r} v^{r}\right)
\end{align*}
$$

where $\mathscr{P}_{j} \rho=\rho_{j}$.
Contracting (7.1) with respect to the indices $i$ and $j$ and using (1.4c), (1.12c), together with the skew-symmetric property of $Q_{j k h}^{i}$, we deduce

$$
\begin{equation*}
\rho_{k}+\left(\mathcal{P}_{i} \phi_{k}+\phi_{i} \phi_{k}\right) v^{i}+n \rho \phi_{k}-v^{h} Q_{h k}=\partial_{k} \partial_{r} v^{r} . \tag{7.2}
\end{equation*}
$$

Similarly, if contracting (7.1) with respect to the indices $i$ and $k$, then in view of the equations (1.4c) and (1.12a), we obtain from (7.1)

$$
\begin{equation*}
n \rho_{j}+\left(P_{j} \phi_{i}+\phi_{i} \phi_{j}\right) v^{i}+\phi_{j} \rho=\partial_{j} \partial_{r} v^{r} \tag{7.3}
\end{equation*}
$$

Thus eliminating ( $\partial_{j} \partial_{r} v^{r}$ ) from (7.2) and (7.3), we have

$$
\begin{equation*}
v^{r} Q_{h j}+(n-1)\left(\rho_{j}-\rho \phi_{j}\right)+\left(\mathscr{P}_{j} \phi_{i}-\mathscr{P}_{i} \phi_{j}\right) v^{i}=0 . \tag{7.4}
\end{equation*}
$$

We, therefore have
Theorem 7.1: If the torse-forming transformation (1.16) defines a projective motion in projective Finsler space then the relation (7.4) necessarily holds .

Imposing further conditions on the functions $\rho$ and $\phi_{1}$, we have

Theorem 7.2: The invariance property of $\rho$ and $\phi_{l}$ under the projective covariant operator $P_{m}$ implies that the projective motion in projective Finsler space satisfies the relations

$$
\begin{cases}(a) & v^{h} Q_{h j}=(n-1) \rho \phi_{j},  \tag{7.5}\\ (b) & v^{h} Q_{h k}-n \rho \phi_{k}-\phi_{i} \phi_{k} v^{i}+\partial_{k} \partial_{r} v^{r}=0 .\end{cases}
$$

Proof: As $\phi_{1}$ and $\rho$ are projective covariant constants, (7.5a) can be easily found out from (7.4). Using (7.5a) in (7.2), we can see the truth of the theorem.

Using equations (1.15c), (1.16), (1.22), (1.23f) and (1.24) in (1.18), we get

$$
\begin{align*}
& v^{s} \mathscr{P}_{j} Q_{s k h}^{i}+2 \rho Q_{j k h}^{i}-Q_{j k h}^{s} \phi_{s} v^{i}+Q_{s k h}^{i} \phi_{j} v^{s}+Q_{j s h}^{i} \phi_{k} v^{s} \\
& +Q_{j k s}^{i} \phi_{h} v^{s}=-\left(\dot{\partial}_{s} Q_{j k h}^{i}\right) \phi v^{s} . \tag{7.6}
\end{align*}
$$

Contracting (7.6) with respect to the indices $i$ and $j$ and using (1.12b), we get

$$
\begin{equation*}
v^{s} \mathscr{P}_{i} Q_{s k h}^{i}+2 \rho Q_{k h}+Q_{s h} \phi_{k} v^{s}+Q_{k s} \phi_{h} v^{s}=-\left(\dot{\partial}_{s} Q_{k h}\right) \phi v^{s} \tag{7.7}
\end{equation*}
$$

Similarly, contracting (7.6) with respect to the indices $i$ and $k$ and using the equation (1.12c), we get

$$
\begin{equation*}
v^{s} \mathscr{P}_{j} Q_{s h}+2 \rho Q_{j h}+Q_{s h} \phi_{j} v^{s}+Q_{j s} \phi_{h} v^{s}=-\left(\dot{\partial}_{s} Q_{j h}\right) \phi v^{s} \tag{7.8}
\end{equation*}
$$

Thus eliminating ( $\dot{\partial}_{s} Q_{j h}$ ) $\phi v^{s}$ from (7.7) and (7.8), we get

$$
\begin{equation*}
v^{s}\left(\mathscr{P}_{i} Q_{s h}^{i}-\mathscr{P}_{j} Q_{s h}\right)=0 \tag{7.9}
\end{equation*}
$$

Thus, we have
Theorem 7.3: If the torse-forming transformation (1.16) defines a projective motion in $P-F_{n}$, then the relation (7.9) necessarily holds.

## Acknowledgement

The authors would like to thank Prof. P. N. Pandey, University of Allahabad, Allahabad for many useful suggestions and comments.

## References

1. R. B. Misra and F. M. Meher, Lie differentiation and projective motion in the projective Finsler space, Tensor, N. S., 23(1972) 57-65.
2. R. B. Misra, A turning point in the theory of recurrent Finsler manifolds II, certain types of projective motions, Boll. Un. Mat. Ital. (5), 16B (1979) 32-53.
3. R. B. Misra, The projective transformation in a Finsler space, Ann., Soc. Sci. de. Bruxelles, 80(1966) 227-239.
4. R. B. Misra, Groups of transformations in Finslerian spaces, ICTP, Internal report, IC/95/11, (1995) 1-19.
5. R. B. Misra and F. M. Meher, A Finsler space with special concircular projective motion, Tensor, N. S., 24(1972) 288-292.
6. P. N. Pandey, Certain types of projective motion in a Finsler manifold II, Atti Accad. Sci.Torino, 120(1986) 168-178.
7. P. N. Pandey, Certain types of projective motions in a Finsler manifold, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Math. Nathur., 60(1983) 287-300.
8. P. N. Pandey, Projective motion in a symmetric and projectively symmetric Finsler manifold, Proc. Nat. Acad. Sci. (India), 54(3) (1984) 274-278.
9. P. N. Pandey and V. J. Dwivedi, Projective motion in an RNP-Finsler space, Tamkang J. Math., 17(1) (1986) 87-98.
10. R. B. Misra and C. K. Mishra, Torse-forming infinitesimal transformations in a Finsler space, Tensor, N. S., 65(2004) 1-7.
11. K. Takano, Affine motion in non-Riemannian $\mathrm{K}^{*}$ - spaces I, II, III (with M. Okumura) IV, V Tensor, N. S., 11 (1961) 137-143, 161-173, 174-181, 245-253, 270-278.
12. H. Rund, The differential geometry in a Finsler space, Springer- Verlag, 1959.
13. K. Yano, The theory of Lie-derivatives and its application, North Holland Publishing Co., Amsterdam, 1957.

[^0]:    * The results of this manuscript were presented in the International Conference on "Differential Geometry and Physics" held during August 29-September 02, 2005 at Department of Geometry, Faculty of Science, Lorand Eolvos University, Budapest, Hungary.

