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Abstract: The studies of a Projective Finsler space have been carried out 

by Misra and Meher
1
. Special types of projective motions have been 

introduced using a contra, a concurrent, a special concircular and torse-

forming transformations in a recurrent Finsler space and Finsler space in 

detail by Misra
2-4

, Misra and Meher
5
, Pandey

6-9
, Misra and Mishra

10
. 

Takano
11

 studied the existence of affine motion in a non-Riemannian K* 

space and obtained several significant results. He also studied the 

existence of projective motion in a Riemannian space of birecurrent 

curvature. The purpose of the present paper is to study special types of 

projective motions in a projective Finsler space. 

 Key words: Projective Finsler space, Projective motion, Special 

transformations. 
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1. Introduction 
 

Let Fn be an n-dimensional Finsler space equipped with Berwald’s 

connection parameters ( , )i

jkG x x . These parameters are homogeneous 

functions of degree zero in their directional arguments. Hence, from the 

Euler’s theorem, following relations hold 
 

(1.1)      0,i j

jkhG x   

where 
i i

jkh j khG G  .  

 
* The results of this manuscript were presented in the International Conference on 

“Differential Geometry and Physics” held during August 29-September 02, 2005 at 

Department of Geometry, Faculty of Science, Lorand Eolvos University, Budapest, 

Hungary.   
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The covariant derivative of a vector field ( , )iX x x  is defined by  
 

 (1.2)                       ( ) ,i i i j j i

k k j k jkX X X G X GB  
 

where k kx
 and   k kx

. 

 

The projective connection parameters are defined by Misra and Meher
1
 as 

 

(1.3)                          
1

( ),
1

i i i r i r i r

jk jk j kr k jr jkrG G G x G
n

  

 

where i

jk is symmetric in its lower indices and is homogeneous of degree 

zero in its directional arguments . 

The connection parameters i

jk  satisfy the following contractions: 
 

(1.4)  

( ) 0,

( ) 0,

( ) 0,

i i

ij ji

i

i

i i i

ikh khi kih

a

b

c

 

where    

1
( ).

1

i i

jkh j kh

i i r i r i r i r

jkh k jhr h jkr j khr jkhrG G G G x G
n

 

Furthermore, the projective connection parameters also satisfy  
 

(1.6)   0,i j i k i h

jkh jkh jkhx x x  
 

The entities 
i

jkh  are positively homogeneous of degree -1 in their 

directional arguments. The entities i

jkh constitute a tensor and are 

symmetric in all of its lower indices.     

Transvecting (1.3) by kx , we get  
 

(1.7)   

1
( ) ( ),

1

2
( ) 2 ,

1

i k i i i r i r

jk j j j r rj

i j i i i r

j r

a x G G x G
n

b x G x G
n
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The projective covariant derivative of a vector field ( , )iX x x  is defined by 

Misra
3
  

 

(1.8)       ( ) .i i i m p m i

j j m pj mjX X X x XP  
 

The projective covariant derivative gives rise to the commutation formula  
 

(1.9)       ( ) ,) i i m i m p

j k k j mjk m pjkX Q X X Q x(P P P P  
 

where 
 

(1.10)        [ ] [ ] [ ]( , ) 2( ),i i s i r i r

jkh j k h r k j hs r j k hQ x x x  
 

which are analogous to a curvature tensor. The entities i

jkhQ  are homogeneous 

functions of degree zero in
 
their

 
directional arguments. It may be noted that 

i

jkhQ  are equal to i

hjkQ  this will mean that i

jkhQ is symmetric in their lower 

indices j  and h , and i

jkhQ  is skew-symmetric in its lower indices j  and k  
 

(1.11)    ( , ) ( , ).i i

jkh kjhQ x x Q x x  
 

The contraction of indices in i

jkhQ yields 
 

 (1.12)      

.

( ) 0,

( ) ,

( ) ,

( )

i

jki

i

ikh kh

i i

jih ijh jh

i

ik k

a Q

b Q Q

c Q Q Q

d Q Q

  

 

On the other hand the contraction with respect to i , j  yields the quantities 
 

 (1.13)   ,i i r s i i r

ikh kh i kh ri khs rk ihQ Q x   
 

which are analogous to Ricci tensor of Riemannian geometry. The 

contracted quantities khQ
 
are symmetric in their indices. Applying the 

definition of projective covariant derivative, khQ
 
may also be written as 

 

 (1.14)   .i i r

kh i kh rk ihQ P  
 

The following homogeneous properties of entities 
i

jkhQ  are given by 
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(1.15)   
[ ] [ ]( ) 2( ),

( ) .

i h i i i i

jkh jk j k r j k

h

kh k

a Q x Q

b Q x Q
    

 

Definition 1.1: A Finsler space equipped with the entities ,i

jk

i

jkhQ etc. 

is called a projective Finsler space and is denoted by  P-Fn . 

Let us consider an infinitesimal point transformation 
 

(1.16)        ,i i ix x v  
 

where iv  denotes the components of a contravariant vector field, 

independent of the directional arguments and ε is an infinitesimal constant. 

The Lie-derivative of a vector ( , )iX x x  with respect to (1.16) is expressed 

by  
 

(1.17)   £ ( )( ) ,i s i s i i s m

s s s mX v X X v X v xP P P  
 

where £  stands for  the Lie-derivative. The Lie-derivative of the entities 
i

jkhQ  and the connection parameters i

jk are given by 
 

 (1.18)        
£

( )( ) ,

i s i s i i s i s

jkh j skh jkh s skh j jsh k

i s i s m

jks h s jkh m

Q v Q Q v Q v Q v

Q v Q v x

P P P P

P P
 

and 
 

1
(1.19)    £ ) ( ),

1

i i h i i h r i r i r

jk j k hjk jkh r j k r k j rv v Q v x v v
n

(P P P

respectively. The processes of Lie-derivative and projective covariant 

derivative are connected by 
 

(1.20)   £ £ £ (£ ) (£ ) .i i i i s r i s r

j kh k jh jkh hsj kr hsk jrQ x xP P  
 

If a projective Finsler space admits a projective motion then the Lie-

derivatives of the projective connection 
i

jk  and curvature tensor type 

entites 
i

jkhQ  satisfy  
 

(1.21)                              £ 0,i

jk   
 

and 
 

 

(1.22)       £ 0.i

jkhQ  



                       Special Types of Projective Motions in a Projective Finsler Space             283 

 
 

Let us now consider an infinitesimal transformation of the type (1.16). 

As indicated by Takano
11

 the projective covariant derivative of the vector iv  

appearing in (1.16) may assume a number of values which are being 

respectively given as 
 

(1.23)  

( ) 0,

( ) , c being a non-zeroconstant

( ) ( , ) , constant

( ) ( , ) , 0

( ) ( , ) ( , ) , 0

( ) ( , ) ( , ) ,

i

j

i i

j j

i i

j j

i i

j j

i i i

j j j j k k j

i i i

j j j

a v

b v c

c v x x

d v x x v

e v x x x x v

f v x x x x v

P

P

P

P

P P P

P

 

  

The vector iv  appearing in (1.23) assumes different names like contra 

vector field / concurrent vector field / special concircular vector field / 

recurrent vector field / concircular vector field and torse-forming vector 

field respectively. The transformations with such  

different iv  are respectively named as contra / concurrent / special 

concircular / recurrent / concircular and torse-forming transformations. 

The functions j  are positively homogeneous of degree zero in directional 

arguments and satisfy
10

  
 

 (1.24)   .k k

k kx x  
 

 

2. Contra Transformation Defining Projective Motion  
 

The Lie-derivative of  the connection coefficient with respect to an 

infinitesimal transformation (1.16) is given by (1.19). Thus, if contra 

transformation defines a projective motion, we have from (1.19), (1.21) and 

(1.23a) the following after a little simplification 
 

 (2.1)    
1

( ).
1

h i i r i r

hjk j k r k j rv Q v v
n

  

 

The contraction of (2.1) with respect to the indices i  and k  gives 
 

(2.2)   0.r

j rv  
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where we have taken (1.12a) into account. Using the equation (2.2) in (2.1), 

we get 
 

 

(2.3)   0.h i

hjkv Q  
 

We, therefore, have 
 

Theorem 2.1: A P-Fn admitting a projective motion of the type (1.23a) 

satisfies (2.3). 
 

 

3. Concurrent Transformation Defining Projective Motion  
 

In this section, we consider the case when a concurrent transformation 

defines a projective motion. With the help of the equations (1.19), (1.21) 

and (1.23b), we get  
 

(3.1) 
1

( ) 0.
1

h i i h i r i r

hjk jkh j k r k j rv Q c x v v
n

 

 

Using the equation (1.5) in (3.1), we get 
 

 (3.2)            
1

( ).
1

h i i r i r

hjk j k r k j rv Q v v
n

 

 

The contraction of (3.2) with respect to the indices i , k  and using equation 

(1.12a) thereafter, we obtain 
 

(3.3)  0.r

j rv  
 

Using equation (3.3) in (3.2), we get  
 

(3.4)                0.h i

hjkv Q  
 

 Therefore, we have 
 

Theorem 3.1: A P-Fn admitting a projective motion of the type (1.23b) 

satisfies (3.4).  
 

Using the equations (1.22), and (1.23b) in (1.18), we get 
 

(3.5)            2 0.s i i

j skh jkhv Q cQP  

 

Thus, we have  
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Theorem 3.2: If the concurrent transformation (1.16) defines a 

projective motion in P-Fn, then the relation (3.5) holds.
 

 

4. Special Concircular Transformation Defining Projective Motion  
 

In this section, we consider the case when a special concircular 

transformation defines a projective motion. With the help of the equations 

(1.19), (1.21) and (1.23c), we get  
 

1
(4.1) ( ),

1

i h i i h i r i r

j k hjk jkh j k r k j rv Q x v v
n

 

 

where .j jP  
 

Using equation (1.6) in (4.1), we get 
 

(4.2)                    
1

( ).
1

i h i i r i r

j k hjk j k r k j rv Q v v
n

 

 

Contracting (4.2) with respect to the indices i  and k  and using (1.12a) 

thereafter, we obtain 
 

(4.3) .r

j r jv n  
 

Similarly, if equation (4.2) is contracted with respect to the indices i  and j  

then (4.1) in view of the equation (1.12c), yields 
 

(4.4) .h r

k hk k rv Q v  
 

Thus eliminating r

j rv  from (4.3) and (4.4), we get 
 

(4.5) ( 1) 0.h

hj jv Q n  
 

We, therefore have   
 

Theorem 4.1: If the special concircular transformation (1.16) defines a 

projective motion in projective Finsler space then (4.5) necessarily holds. 

Using the equations (1.15c), (1.22) and (1.23c) in (1.18), we get 
 

(4.6) 2 0.s i i

j skh jkhv Q QP  
 

Thus, we have  
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Theorem 4.2: If the special concircular transformation (1.16) defines a 

projective motion  in  projective  Finsler  space  then  the  relation (4.7) 

necessarily holds. 

 

5. Recurrent Transformation Defining Projective Motion  
 

 In this section, we consider the case when a recurrent transformation 

defines a projective motion. With the help of the equations (1.19), (1.21), 

(1.23d) and (1.24) we get 
 

1
(5.1) ( ) ( ).

1

i h i i h i r i r

j k j k hjk jkh j k r k j rv v Q v v v
n

P

 

Contracting (5.1) with respect to the indices ,i  j  and using (1.12c), (1.4c) 

together with the skew-symmetric property of i

jkhQ , we deduce  
 

(5.2) ( ) .i h r

i k i k hk k rv v Q vP  
 

Similarly, if (5.1) is contracted with respect to the indices i  and k  then in 

view of the equation (1.12a) and (1.4c), we obtain  
 

(5.3) ( ) .i r

j i j i j rv vP  
 

Eliminating r

j rv  from (5.2) and (5.3), we have 
 

(5.4) ( ) 0.h

hj j h h jQ vP P  
 

Thus, we have  

Theorem 5.1: If the recurrent transformation (1.16) defines a projective 

motion in  P-Fn,
 
 then the relation (5.4) holds. 

 Theorem 5.2: The invariance property of j  under the projective 

covariant operator iP  implies that the projective motion in projective 

Finsler space satisfies the relations 

 

(5.5)  
( ) 0,

( ) 0.

h

hj

r i

k r i k

a v Q

b v v
 

 

Proof : As  l   is a  projective  covariant  constant (5.5a) can  be easily 

found out from (5.4). In view of (5.5a) and (5.2), we have (5.5b).   

Using the equations (1.15c), (1.22), and (1.23d) in (1.18), we get 
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(5.6) ( ) .i i i i i m s s i

j skh skh j jsh k jks h s jkh m jkh sQ Q Q Q Q x v Q v
 

 

Contracting (5.6) with respect to the indices i  and j  and using the 

equations (1.12b) and (1.24), we get 
 

 (5.7)            ( ) .s i s s s

i skh sh k ks h s khv Q Q v Q v Q vP   
 

Similarly, if contracting (5.6) with respect to the indices ,i  k  and using 

(1.12c), we get  
 

(5.8)               ( ) .s s s s

j sh sh j js h s jhv Q Q v Q v Q vP  
 

Thus eliminating ( ) s

s jhQ v from (5.7) and (5.8), we get  
 

(5.9)   ) 0s i

i sjh j shv Q Q(P P . 
 

Thus, we have 
 

Theorem 5.3: If the recurrent transformation (1.16) defines a projective 

motion in P-Fn, then the relation (5.9) holds.  

 

6. Concircular Transformation Defining Projective Motion  
 

In this section, we consider the case when a concircular transformation 

defines a projective motion. With the help of the equations (1.19), (1.21), 

and (1.23e), we get  

(6.1)    

( )

1
( ),

1

i i h i i h i h r

k j j k hjk jkh jkh r

i r i r

j k r k j r

v v Q x v x

v v
n

+P
 

 

where .j jP  
 

Using the equations (1.5), (1.23e) and (1.24) in (6.1), we obtain 
 

(6.2)  

)

1
( ).

1

i i i i h i h i

k j j k j k j k hjk jkh

i r i r

j k r k j r

v v v Q v

v v
n

+ (P
 

Contracting (6.2) with respect to the indices ,i  j  and using (1.4c) and 

(1.12c) together with the skew-symmetric property of ,i

jkhQ  we deduce  
 



C. K. Mishra, D. D. S. Yadav and Gautam Lodhi  

 
288 

(6.3) ( ) .i h r

k i k i k k hk k rv n v Q vP  
 

Similarly contracting (6.2) with respect to the indices i  and k , in view of 

the equations (1.4c) and (1.12a), we obtain from (6.2) 
 

(6.4) ( ) .i r

j j i i j j j rn v vP  
 

Thus eliminating ( )r

j rv  from (6.3) and (6.4) and using (1.23), we have 
 

(6.5) ( 1)( ) 0.h

hj j jv Q n  
 

We, therefore have  
 

Theorem 6.1: If the concircular transformation (1.16) defines a 

projective motion in P-Fn then the relation
   

(6.5) holds.  

Imposing further conditions on the functions   and l ,  we have  

Theorem 6.2: The invariance property of  and ,i  under the 

projective covariant operator mP  implies that the projective motion in 

projective Finsler space satisfies the relations 
 

 (6.6) 
( ) ( 1) ,

( ) 0.

h

hj j

h i r

hk k i k k r

a v Q n

b v Q n v v
 

 

Proof: As  l   and  are projective covariant constants, (6.6a) can be easily  

found out  from (6.5) . Using (6.6) in (6.3), we can see the truth of the 

theorem. 

Using the equations (1.15c), (1.22)  and (1.23e) in (1.18), we obtain  
 

(6.7) 2

( ) .

s i i s i i s i s i s

j skh jkh jkh s skh j jsh k jks h

i s

s jkh

v Q Q Q v Q v Q v Q v

Q v

P

 

Contracting (6.7) with respect to the indices i  and j  and using (1.12b), we 

get 
 

(6.8)   2 ( ) .s i s s s

i skh kh sh k ks h s khv Q Q Q v Q v Q vP  
 

Similarly, contracting (6.7) with respect to the indices i , k  and using the 

equation (1.12c), we obtain  

(6.9)       2 ( ) .s s s s

j sh jh sh j js h s jhv Q Q Q v Q v Q vP  
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Thus eliminating ( ) s

s jhQ v  in (6.8) and (6.9), we get  
 

(6.10) ) 0.s i

i sjh j shv Q Q(P P  
 

Thus, we have  
 

Theorem 6.3: If the concircular transformation (1.16) defines a 

projective motion in P-Fn, then the relation (6.10) holds. 

 

7. Torse-forming Transformation Defining Projective Motion  
 

In this section, we consider the case when a torse-forming 

transformation defines a projective motion. With the help of the equations 

(1.5), (1.16), (1.19), (1.21) and (1.23f), we get  
 

1
(7.1) ) (

1

).

i i i i h i h i i r

k j j k j k j k hjk jkh j k r

i r

k j r

v v v Q v v
n

v

+ (P

where .j jP  
 

Contracting (7.1) with respect to the indices i  and j  and using (1.4c), 

(1.12c), together with the skew-symmetric property of  i

jkhQ , we deduce  
 

(7.2)                      ) .i h r

k i k i k k hk k rv n v Q v+ (P  
 

Similarly, if contracting (7.1) with respect to the indices i and k , then in 

view of the equations (1.4c) and (1.12a), we obtain from (7.1) 
 

(7.3)                        ) .i r

j j i i j j j rn v v+ (P  
 

Thus eliminating ( )r

j rv from (7.2) and (7.3), we have 
 

(7.4) ( 1)( ) 0.r i

hj j j j i i jv Q n v- ) + (P P  
 

We, therefore have  
 

Theorem 7.1: If the torse-forming transformation (1.16) defines a  

projective  motion   in   projective   Finsler   space  then   the   relation  

(7.4) necessarily holds . 

Imposing further conditions on the functions  and l ,  we have 
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Theorem 7.2: The invariance property of  and l under the projective 

covariant  operator  Pm  implies  that  the  projective  motion  in  projective 

Finsler space satisfies the relations 

 

(7.5) 
( ) ( 1)

( ) 0.

h

hj j

h i r

hk k i k k r

a v Q n

b v Q n v v

,
 

 

Proof : As l  and  are projective covariant constants, (7.5a) can be 

easily found  out  from (7.4). Using (7.5a) in (7.2), we can see the truth of 

the theorem.  

Using equations (1.15c), (1.16), (1.22), (1.23f) and (1.24) in (1.18), we 

get 
 

(7.6)   
2

( ) .

s i i s i i s i s

j skh jkh jkh s skh j jsh k

i s i s

jks h s jkh

v Q Q Q v Q v Q v

Q v Q v

P
 

 

Contracting (7.6) with respect to the indices i  and j  and using (1.12b), we 

get 
 

(7.7) 2 ( ) .s i s s s

i skh kh sh k ks h s khv Q Q Q v Q v Q vP   
 

Similarly, contracting (7.6) with respect to the indices i  and k  and using 

the equation (1.12c), we get 
 

(7.8) 2 ( ) .s s s s

j sh jh sh j js h s jhv Q Q Q v Q v Q vP  
 

Thus eliminating ( ) s

s jhQ v from (7.7) and (7.8), we get 

(7.9)  ) 0.s i

i sjh j shv Q Q(P P  
 

Thus, we have  
 

Theorem 7.3: If the torse-forming transformation (1.16) defines a 

projective motion in  P-Fn , then the relation (7.9) necessarily holds . 
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