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Abstract: Various effects of disease JE (Japanese Encephalitis) causing 

death on the host population are studied in an endemic model of SIS type. 

The basic problem discussed in this paper is to describe the spread of an 

infection within a population. Thresholds are identified which determine 

when the population survives and when disease remains endemic. It is 

further assumed that there is no substantial development of immunity and 

that removed infectious are in effect cured of disease. The stability 

criteria for trivial and non-trivial equilibrium are studied. The analysis of 

Singh
1
 and Baily

2
 can be obtained by particularizing the generalized 

parameter. 
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1. Introduction  

There are many infectious diseases in which infection transmission is 

caused by direct contact of susceptibles and infectious, while there are some 

diseases which are also transmitted indirectly by flow of bacteria from 

infectious into the environment. JE is one of them which transmitted to man 

by the bite of infected mosquitoes.  

Among the animal hosts pigs are major vertibrate hosts for JE viruses. 

Cuisine mosquitoes notable C. trilaeniorhynchus, C. vishnui gelidus with 

some anophelines have been incriminated as the vectors of JE. 

In simplest epidemiological models often it is assumed that the total 

population size is constant. Some epidemiological models with varying 

population size assume constant immigration and emigration proportional to 

the size of the population so that population approaches an equilibrium size. 
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When we want to study any given disease in greater depth more realistic 

models are needed. It may be observed that the treatment of two populations 

interacting in host - vector manner i.e. with cross infection between groups 

but non-within groups can be regarded as a special case. 

We shall therefore adopt an intermediate position of confining attention 

in present paper to two populations which are more conveniently thought of 

as representing the human host and mosquito vector. 
 

 

2. Formation of Mathematical model 
 

Let us consider an SIS model in which there are two interacting 

populations, the first representing the human hosts, consists at time t of x 

susceptibles, y  infectious and z recovered or immunized, we shall assume 

total population size to be  x y z n     and second population 

representing the intermediate host or vector are x′, y′ and z′  with  

.     x y z n  

In mosquito population removals involve death only, with no isolation 

or recovery. So the class of removals z′ can be ignored and we can put 

where n′ is constant over the time interval considered. Since 

the female mosquitoes appear unaffected by their parasite load. We assume 

that the death rate operates equally on suscepetibles and infectious. In order 

to maintain constant mosquito population, we must also have a birth rate γ′ 

to balance the death rate. 

 Let us consider for human population: 

       β = infection rate. 

       n = total population size.     

       x = total no. of susceptibles. 

       y = total no. of infected individual. 

       z = total no. of recovered individual. 

       λ = birth rate. 

      μ = rate of infection transferred back to susceptible. 

      ν = rate of removals transferred back to susceptible. 

Let us consider all three human groups viz. susceptibles, infectious and 

removals having same death rate λ, balanced by birth rate λ which produces 

only susceptibles. It follows that basic differential equation describing the 

rate of change of human population is 
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                      ( ) ( )
dx

x y y z
dt

         , 

(2.1)                   ( )
dy

xy y
dt

        ,          

             ( ) .
dz

y z
dt

      

A similar argument for the mosquito population is    

                           ,
dx

x y y
dt

 


      

(2.2)                   .
dy

x y y
dt

 


                   

The linearly independent equations in (2.1) and (2.2) are       

(2.3)                    ( ) ( )
dx

xy y z
dt

           ,          

(2.4)                    ( )
dy

xy y
dt

       , 

(2.5)                    .
dy

x y y
dt

 


                                                        

Let us assume that μ is very small. Then we have 

(2.6)                    ( )
dx

xy y z
dt

         ,                  

(2.7)                    ( )
dy

xy y
dt

     ,      

(2.8)                    .
dy

x y y
dt

 


      

 

3. Stability Analysis 
 

We will employ stability analysis to locate the possible equilibrium 

point and to decide which equilibrium point stable. 
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4. Equilibrium States 
 

The equilibrium points occur where                

               0, 0, 0.
dx dy dy

dt dt dt


    

From (2.6), we have 

                              ( ) 0,xy y z         

i.e.,   

(4.1)                         ( ) .xy y z               

From (2.7),   

                                 ( ) 0 ,xy y      

i.e.,                               

(4.2)                         ( ) .xy y          

From (2.8), we have 

                                 0,x y y                                                                                                           

i.e.,        

(4.3)                         x y y     . 

Substituting  z n x y    in (4.1) and x n y    in (4.3), we obtain 

                                  ( ),xy y n x y          

or                               ( ) ( ) ,xy y n x y             

(4.4)                         ( )( ) .xy n x y           

and 

                                 ( ) ,n y y y        

                                 ,n y y y y          

(4.5)                         ( )n y y y        . 

Eliminating between (4.2) and (4.4), we get 

                                 ( ) ( )( ) ,y n x y          

(4.6)                          ( ) ( ) ( ) .x y n             
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Multiplying corresponding sides of equation (4.2) and (4.5), we find 

                                 ( )( ) ,xn y y y y y             

                                 ( )( ),xn y           

or                              ( ) ( ) ,n x y              

(4.7)                         ( ) ( )n x y             . 

Solving (4.6) and (4.7), for x and y by Cramer’s rule, we obtain 
 

                              

( ) ( )

( ) ( )

( ) ( )

( )

n

x

n

    

     

    

    

  

   


  

   

  

 

and                        

( ) ( )

( )

( ) ( )

( )

n

n
y

n

   

    

    

    

 

  


  

   

 

 

i.e.                         
( )( ) ( )( )

( )( ) ( )

n
x

n

          

         

       


       
         

and                        
( )( ) ( )

( )( ) ( )

n n
y

n

        

         

     


       
, 

(4.8)                       
( ){ ( ) ( )}

{ ( ) ( )( )}

n
x

n

        

        

     


      
,  

     

(4.9)                       
( ){ ( )}

{ ( ) ( )( )}

nn
y

n

     

        

    


      
. 

     

Putting the value of x and y in equation (4.2), we have 
 

                              
( )

,
y

y
x

 




              
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( ){ ( )}

{ ( ) ( )}

nn
y

n

     

       

    
 

    
 ,   

 

(4.10)                     
( ){ ( )}

{ ( ) ( )}

nn
y

n

     

       

    
 

    
 .     

 

 

Thus we see that there are three possible equilibrium points 
 

(4.11)                              

0

0

0

x x

y y

y y

  
 

 
 
    

 

and    

                           
( ){ ( ) ( )}

,
{ ( ) ( )( )}

n
x x

n

        

        

     
 

      
 

 

                           
( ){ ( )}

,
{ ( ) ( ) ( )}

nn
y y

n

     

        

    
 

      
 

 

                           
( ){ ( )}

.
{ ( ) ( )}

nn
y y

n

     

       

    
  

    
  

 

Since all the parameters in the expression for x, y and y′ are positive, it 

follows that 
 

(1) If  ( )nn           then equilibrium point is at   

(2)  If  ( )nn          then both equilibrium points. 
 

 

5. Stability 
 

 Now, we decide whether the solution will move to ( , )y y  or to ( , )y y  

when both are possible. For this, we will linearize the generating equation 

(2.7), (2.8) around the equilibrium at           

                                          ( ) ,
dy

y
dt

            
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                                          .
dy

y
dt




    

Define the matrix quantities                 

                    
( ) 0

,
0

 



    
        

y
x M

y
                  

Rewriting the linearized equation in compact form, we have           

                                         
dy

My
dx

 . 

An ordinary differential equation with constant coefficients always has 

exponential solution. 

Substituting t t
B

y e Ke
A

  
  
 

 in the matrix equation, we have                            

  0tM I K e  . 

Since 0te  , in general, the determinant of coefficient matrix must be 

zero.         

                   
 

( ) 0 0
,

0 0
M I

  


 

    
        

        

                    
( 2 ) 0

.
0 ( )

M I
 


 

  
     

  

Let                 0M I   

 
( 2 ) 0

0
0 ( )

 

 

 
 

 
 

                           

 ( 2 )( ) 0        

 

 22 ( 2 ) 0             
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2( 2 ) ( 2 ) 8

4

     


      
    

2( 2 ) ( 2 )

4

   


    
   

 

( 2 ) ( 2 )

4

   


    
     

, .
2


       

It is apparent that both roots are always real and 

                        1 2) 0, 0 ( ),i if nn                                                                 
 

                        1 2) 0, 0 ( ),ii if nn               

 where the A′s  and   B′s  parameterize the initial distribution from  (0,0). It 

is clear from the nature of roots  and   that (0,0) is a stable equilibrium 

if  ( ),nn           

or,                                       
( )

1
( )

n n  

  

 


 
 

or,                                 
( )

1
( )

n n
R

 

  

 
 

 
 

 

6. Result 
 

If  1R   the origin is asymptotically stable and is in fact the only 

equilibrium points if  ( ),nn          While if 1R    the origin is 

unstable, but the equilibrium point given by (4.11) is asymptotically stable. 

It can also be shown that there are no periodic solutions contained entirely 

relevant region given by   0 , 0 .y n y n      

The control of disease depends upon reducing the basic reproduction           

rate  
( )

( )

n n
R

 

  

 


 
 to below unity. 
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Putting  0z  and 0 ,    we get the result obtained by Singh et.al.
1
.
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