Riemannian Manifold with a Special Type of Semi-symmetric Non-metric Connection

B. B. Chaturvedi and P. N. Pandey

Department of Mathematics, University of Allahabad, Allahabad, India E-mail: braj_bhushan25@rediffmail.com; pnpiaps@rediffmail.com

(Received January 10, 2009)

Abstract: In the present paper, we obtain certain results for a Riemannian manifold equipped with a special type of semi-symmetric non-metric connection. We also obtain the expressions for the curvature tensor, Ricci tensor and scalar curvature, and certain results related to them.

Keywords: Semi-symmetric non-metric connection, Riemannian manifold.

2000 Mathematics Subject Classification: 53B25

1. Introduction

The Riemannian manifold equipped with a semi-symmetric metric connection has been studied by O. C. Andonie¹, M. C. Chaki and A. Konar², U. C. De³ etc., while a special type of semi-symmetric metric connection on a weakly symmetric Riemannian manifold has been studied by U. C. De and Joydeep Sengupta⁴. P. N. Pandey and S. K. Dubey⁵ discussed an almost Grayan manifold admitting a semi-symmetric metric connection while a Kähler manifold equipped with a semi-symmetric metric connection and a semi-symmetric non-metric connection, and an almost Hermitian manifold with a semi-symmetric recurrent connection have been studied by P. N. Pandey and B. B. Chaturvedi^{6,7,8}. Nirmala S. Agashe and Mangala R. Chafle⁹ have studied semi-symmetric non-metric connection on a Riemannian manifold in 1992.

Let (M^n, g) (n>2) be an n-dimensional Riemannian manifold and D be the Riemannian connection. We define another linear connection ∇ for two arbitrary vector fields X and Y such that

(1.1)
$$\nabla_{X} Y = D_{X} Y + a\omega(X) Y + b\omega(Y) X,$$

where ω is a 1- form associated with a vector field ρ by $\omega(X) = g(X, \rho)$, and a, b are non-zero real or complex numbers such that $a \neq b$.

Putting g(Y,Z) in place of Y in (1.1), we have

$$(1.2) \qquad (\nabla_X g)(Y, Z) = -a\omega(X)g(Y, Z) - b\omega(Y)g(X, Z) - b\omega(Z)g(X, Y),$$

which shows that the connection ∇ is non-metric.

The connection ∇ is said to be a special type of semi-symmetric nonmetric connection if the torsion tensor T and the curvature tensor \tilde{R} of the connection ∇ satisfy the following conditions:

(1.3)
$$(\nabla_X T)(Y, Z) = \omega(X)T(Y, Z),$$

and

(1.4)
$$\tilde{R}(X,Y)Z = 0.$$

From (1.1), the torsion tensor T of the connection is given by

(1.5)
$$T(X,Y) = (a-b)[\omega(X)Y - \omega(Y)X].$$

From (1.5), we have

(1.6)
$$(C_1^1 T)(Y) = -(a-b)(n-1)\omega(Y),$$

where C_1^1 denotes the operator of contraction.

Operating (1.6) by ∇_X , we get

$$(1.7) \qquad (\nabla_X C_1^1 T)(Y) = -(a-b)(n-1)(\nabla_X \omega(Y)).$$

Contracting (1.3), we get

(1.8)
$$(\nabla_{Y} C_{1}^{1} T)(Y) = \omega(X)(C_{1}^{1} T)(Y).$$

In view of (1.6), (1.8) becomes

$$(1.9) \qquad (\nabla_X C_1^1 T)(Y) = -(a-b)(n-1)\omega(X)\,\omega(Y).$$

From (1.7) and (1.9), we have

(1.10)
$$(\nabla_X \omega)(Y) = \omega(X) \omega(Y).$$

2. Certain Results

Putting $\omega(Y)$ in place of Y in (1.1) and using $\omega(X) = g(X, \rho)$, we get

(2.1)
$$(\nabla_{\mathbf{x}}\omega)(Y) = (D_{\mathbf{x}}\omega)(Y) - b\omega(X)\omega(Y).$$

Using (1.10) in (2.1), we get

$$(2.2) (D_X \omega)(Y) = (b+1)\omega(X)\omega(Y).$$

Now, we propose:

Theorem 2.1. In a Riemannian manifold equipped with the special type of semi-symmetric non-metric connection ∇ , we have

- (i) $(D_v \omega)(Y) = 0$, for all values of a if and only if b = -1,
- (ii) ω is closed with respect to the special type of semi-symmetric non-metric connection ∇ , i.e.

$$\tilde{d}\omega(X,Y) = (\nabla_{Y}\omega)(Y) - (\nabla_{Y}\omega)(X) = 0,$$

(iii) ω is also closed with respect to the Riemannian connection D, i.e. $d\omega(X,Y) = (D_{Y}\omega)(Y) - (D_{V}\omega)(X) = 0.$

Proof. In view of (2.2), we find that $(D_X \omega)(Y) = 0$ if and only if b = -1.

Now from (1.9), we have

(2.3)
$$(\nabla_{\mathbf{v}}\omega)(Y) - (\nabla_{\mathbf{v}}\omega)(X) = 0.$$

which implies

(2.4)
$$\tilde{d}\omega(X,Y)=0.$$

Hence ω is closed with respect to the special type of semi-symmetric non-metric connection.

Now interchanging X and Y in (2.1), we get

(2.5)
$$(\nabla_{Y}\omega)(X) = (D_{Y}\omega)(X) - b\omega(Y)\omega(X).$$

Subtracting equation (2.5) from (2.1), we have

(2.6)
$$\tilde{d}\omega(X,Y) = d\omega(X,Y).$$

Using (2.4) in (2.6), we have

$$(2.7) d\omega(X,Y)=0.$$

Hence ω is also closed with respect to Riemannian connection.

3. Curvature tensor

From (1.1), we have

(3.1)
$$\nabla_{\mathbf{v}} Z = D_{\mathbf{v}} Z + a\omega(Y) Z + b\omega(Z) Y.$$

Replacing Y for $\nabla_{y}Z$ in equation (1.1), we have

(3.2)
$$\nabla_{\mathbf{y}}\nabla_{\mathbf{y}}Z = D_{\mathbf{y}}\nabla_{\mathbf{y}}Z + a\omega(X)\nabla_{\mathbf{y}}Z + b\omega(\nabla_{\mathbf{y}}Z)X.$$

Using (1.1) in (3.2), we have

$$(3.3) \qquad \nabla_{X}\nabla_{Y}Z = D_{X}D_{Y}Z + a(D_{X}\omega)(Y)Z + a\omega(D_{X}Y)Z + a\omega(Y)D_{X}Z$$

$$+b(D_{X}\omega)(Z)Y + b\omega(D_{X}Z)Y + b\omega(Z)D_{X}Y$$

$$+a\omega(X)D_{Y}Z + a^{2}\omega(X)\omega(Y)Z + ab\omega(X)\omega(Z)Y$$

$$+b\omega(D_{Y}Z)X + ab\omega(Y)\omega(Z)X + b^{2}\omega(Y)\omega(Z)X.$$

Interchanging X and Y in the above equation, we get

(3.4)
$$\nabla_{Y}\nabla_{X}Z = D_{Y}D_{X}Z + a(D_{Y}\omega)(X)Z + a\omega(D_{Y}X)Z + a\omega(X)D_{Y}Z$$
$$+b(D_{Y}\omega)(Z)X + b\omega(D_{Y}Z)X + b\omega(Z)D_{Y}X$$
$$+a\omega(Y)D_{X}Z + a^{2}\omega(Y)\omega(X)Z + ab\omega(Y)\omega(Z)X$$
$$+b\omega(D_{Y}Z)Y + ab\omega(X)\omega(Z)Y + b^{2}\omega(X)\omega(Z)Y.$$

From equation (1.1), we may write

$$\nabla_{(X,Y)}Z = D_{(X,Y)}Z + a\omega([X,Y])Z + b\omega(Z)[X,Y].$$

Subtracting (3.4) and (3.5) from (3.3), we have

(3.6)
$$\tilde{R}(X,Y)Z = R(X,Y)Z + b[\omega(X)Y - \omega(Y)X]\omega(Z).$$

Now, we propose

Theorem 3.1. The Riemannian manifold equipped with the special type of semi-symmetric non-metric connection ∇ has the following relation between curvature tensor R and torsion tensor T

(3.7)
$$R(X,Y)Z = -\frac{b}{(a-b)}T(X,Y)\omega(Z).$$

Proof. From (1.4) and (3.6), we have

(3.8)
$$R(X,Y)Z = b[\omega(Y)X - \omega(X)Y]\omega(Z).$$

Using (1.5) in (3.8), we have (3.7).

Now, we propose

Theorem 3.2. In a Riemannian manifold equipped with the special type of semi-symmetric non-metric connection ∇ , the following relations hold

$$(3.9) S(Y,Z) = b(n-1)(\nabla_{Y}\omega)(Z),$$

$$(3.10) r = b(n-1)\omega(\rho),$$

$$(3.11) S(Y, \rho) = r \omega(Y),$$

where S and r are Ricci and scalar curvature respectively.

Proof. Contracting equation (3.8), we get

$$(3.12) S(Y,Z) = b(n-1)\omega(Y)\omega(Z).$$

Using (1.10) in (3.12), we have (3.9). Contracting (3.12), we get (3.10). Now putting $Z = \rho$ in (3.12), we have

(3.13)
$$S(Y, \rho) = b(n-1)\omega(Y)\omega(\rho).$$

Using (3.10) in (3.13), we have (3.11). Now from (3.12), we can write

$$(3.14) \qquad (\nabla_X S)(Y,Z) + S(\nabla_X Y,Z) + S(Y,\nabla_X Z) = b(n-1)[(\nabla_X \omega)(Y)\omega(Z) + \omega(\nabla_Y Y)\omega(Z) + (\nabla_Y \omega)(Z)\omega(Y) + \omega(\nabla_Y Z)\omega(Y)].$$

Using (1.10) and (3.12) in (3.14), we have

$$(3.15) \qquad (\nabla_{X}S)(Y,Z) = 2b(n-1)\omega(X)\omega(Y)\omega(Z).$$

Again from (3.12), we may write

(3.16)
$$(D_X S)(Y,Z) + S(D_X Y,Z) + S(Y,D_X Z) = b(n-1)[(D_X \omega)(Y) \omega(Z) + \omega(D_X Y) \omega(Z) + (D_X \omega)(Z) \omega(Y) + \omega(D_X Z) \omega(Y)].$$

In view of (2.2) and (3.12), (3.16) becomes

$$(3.17) (D_x S)(Y, Z) = 2b(b+1)(n-1)\omega(X)\omega(Y)\omega(Z).$$

Now, we propose:

Theorem 3.3. In a Riemannian manifold equipped with the special type of semi-symmetric non-metric connection ∇ , the Ricci tensor S satisfies the following

$$(3.18) \qquad (\nabla_{\mathbf{y}} S)(Y, Z) = (\nabla_{\mathbf{y}} S)(Z, X) = (\nabla_{\mathbf{z}} S)(X, Y),$$

$$(3.19) (D_{Y}S)(Y,Z) = (D_{Y}S)(Z,X) = (D_{Z}S)(X,Y),$$

(3.20)
$$(D_x S)(Y, Z) = 0 \text{ if and only if } b = -1 \text{ or } (\nabla_x \omega)(Y) = 0,$$

(3.21)
$$(divW)(X,Y,Z) = 0,$$

where W denotes the projective curvature tensor defined by

(3.22)
$$W(X,Y,Z) = R(X,Y,Z) - \frac{1}{(n-1)} [S(Y,Z)X - S(X,Z)Y]$$

and 'div' denotes the divergence.

Proof. Interchanging X, Y, Z, in cyclic order in (3.15), we have (3.18). Interchanging X, Y, Z, in cyclic order in (3.17), we get (3.19). In view of (1.10), (3.17) becomes

$$(3.23) (D_{Y}S)(Y,Z) = 2b(n-1)(b+1)(\nabla_{Y}\omega)(Y).$$

From (3.23), we can easily get (3.20).

It is known that in an n-dimensional Riemannian manifold (n>2)

(3.24)
$$(divW)(X,Y,Z) = \left(\frac{n-2}{n-1}\right)[(D_XS)(Y,Z) - (D_YS)(X,Z)].$$

Using (2.2) in (3.24), we have (3.21).

Acknowledgement

The first author is financially supported by UGC, Government of India.

References

- 1. O. C. Andonie, Sur une connexion Semi-symmétrique qui laisse invariant le tenseur de Bochner, *Ann. Fac. Sci. univ. Nat. Zaïre (Kinshasa) Sect. Math.-Phys.*, **2(2)** (1976)247-253.
- 2. M. C. Chaki and Arabinda Konar, On a Type of Semisymmetric connection on a Riemannian manifold, *J. Pure Math.*, **1**(1981)77-80.
- 3. U. C. De, On a type of semi-symmetric metric connection on a Riemannian manifold, *An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat.*, **37(1)** (1991)105-108.
- 4. U. C. De and Joydeep Sengupta, On a weakly symmetric Riemannian manifold admitting a special type of semi-symmetric metric connection, *Novi Sad J. Math.*, **29(3)** (1999)89-95.
- 5. P. N. Pandey and S. K. Dubey, Almost Grayan manifold admitting semi-symmetric metric connection, *Tensor N. S.*, **65**(2004)144-152.
- 6. P. N. Pandey and B. B. Chaturvedi, Semi-symmetric metric connection on a Kähler manifold, Bull. *Alld. Math. Soc.*, **22**(2007)51-57.
- 7. B. B. Chaturvedi and P. N. Pandey, Semi-symmetric non-metric connection on a Kähler manifold, *Differential Geometry –Dynamical Systems*, **10** (2008)86-90.
- 8. P. N. Pandey and B. B. Chaturvedi, Almost Hermitian manifold with semi-symmetric recurrent connection, *J. Internat. Acad. Phy. Sci.*, **10**(2006)69-74.
- 9. Nirmala S. Agashe and Mangala R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, *Indian J. Pure Appli. Math.*, **23(6)** (1992)399-409.