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Abstract: Aim of the present paper is to investigate the radiation effects 

on unsteady megenetohydrodynamic free convective flow with Hall 

current and mass transfer through a viscous incompressible electrically 

conducting fluid past an infinite vertical porous flat plate immersed in 

porous medium in the presence of a heat source/sink. The velocity, 

temperature and concentration distributions are derived, discussed 

numerically and their profiles for various values of physical parameters 

are shown through graphs. The coefficient of skin-friction and Nusselt 

number at the plate is derived discussed numerically and their numerical 

values for various values of physical parameters are presented through the 

tables. 
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1. Introduction 
 

Process involving coupled heat and mass transfers occur frequently in 

nature. It occurs not only due to temperature difference, but also due to 

concentration difference or the combination of these two in different 

geophysical cases etc. In many processes of industries, such as extrusion of 

plastics in the manufacture of Rayon and Nylon, purification of crude oil, 

pulp, paper industry, textile industry, the cooling of threads or sheet of some 

polymer materials have importance in the production line. The rate of 

cooling can be controlled effectively to achieve final products of desired 
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characteristics by drawing threads. The fabrication of microelectronic 

devices, micro lithography, creating efficient means of heat and mass 

transfer in micro scale devices, nuclear and aerospace applications are 

practical usages of such results.  

 The thermal radiation effects on free convection flow are important in 

context of space technology and in certain applications involving heat 

storage in aquifiers and gasification of oil and in the case of gasification 

large temperature gradient exist in the neighborhood of the combustion from 

the radiation. These types of problems are also extended in the case of 

magneto-hydrodynamics and if the strength of magnetic field is strong, then 

the effect of Hall-current cannot be neglected. Many researchers have 

studied radiative heat transfer in fluid flow through porous media. 

In space technology, radiation effect at higher operating temperatures is 

quite complicated. Many aspects of its effect on free convention or 

combined convection with radiation and mass transfer have not been studied 

in recent years. However, Cogley et al
1
 worked out that, in the optically thin 

limit for a gray gas near equilibrium, the following relation holds: 
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T is the temperature of the fluid, Tw is the wall temperature, rq  is the 

radiative heat flux, wλk  is the absorption coefficient, and λbe
 
is Plank’s 

function. Grief et al
2 

showed that for an optically thin limit, the fluid does 

not absorb its own emitted radiation this means that there is no self-

absorption, but the fluid absorbs radiation emitted by the boundaries. 

 Free convection flow along a vertical flat plate embedded in a porous 

medium with   application to heat transfer was discussed by Cheng and 

Minkowycz
3
. Bharali and Borkakati

4
 analyzed the effects of   Hall currents 

MHD flow and heat transfer between two parallel porous plates. Singh
5 

investigated the Hall effects on MHD free convection flow past an 

accelerated vertical porous plate. The role of magnetic field on transient 

forced and free convection flow past an infinite vertical porous plate through 

porous medium with   heat source was presented by Jha
6
. Chamkha

7
 studied 

the MHD free convection from a vertical plate embedded in  a thermally 

stratified porous medium with Hall current. The magnetic field effects on 
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the free convection flow through porous medium due to an infinite vertical 

plate with uniform suction and constant heat flux was studied by Bodosa 

and Borkakati
8
. The mass transfer effect on unsteady three-dimensional flow 

and heat transfer along an infinite vertical porous surface bounded by porous 

medium was analyzed by Sharma and Mishra
9
. Badruddin et al

10 

investigated the free convection and radiation characteristics for a vertical 

plate embedded in a porous medium. The unsteady flow and heat transfer 

along a porous vertical surface bounded by porous medium was studied by 

Sharma and Mishra
11

. The MHD flow past a steadily moving infinite 

vertical porous plate with mass transfer and constant heat flux was discussed 

by Raptis and Soundalgekar
12

. Mbeledogu et al
13

 presented the unsteady  

MHD  free convective  flow of  a compressible fluid past a moving vertical 

plate in the presence of  radiative  heat transfer. The Hall effect on MHD 

mixed convection flow of a viscous incompressible fluid past a vertical 

porous plate immersed in porous medium with heat source/sink was studied 

by Sharma et al
14

. The heat and mass transfer of an unsteady MHD natural 

convection flow of a rotating fluid past a vertical porous plate in the 

presence of radiative heat transfer was presented by Mbeledogu and 

Ogulu
15

. Effect of oscillatory suction and heat source on heat and mass 

transfer in MHD flow along a vertical moving porous plate bounded by 

porous medium was studied by Sharma and Sharma
14

. 
 

  The aim of the present paper is to investigate the radiation effects on 

unsteady free convective flow with Hall current and mass transfer through a 

viscous incompressible electrically conducting fluid past an infinite vertical 

porous non-conducting flat plate immersed in porous medium, in the 

presence of transverse magnetic field with heat source/sink.  

 

2. Mathematical Formulation 
 

Consider the unsteady free convection flow of a viscous incompressible 

and electrically conducting fluid past an infinite vertical porous, plate 

coinciding with the plane y
*
= 0. The x

*
-axis is taken along the plate and y

*
-

axis normal to it and z
*
-axis normal to x

*
y

*_
plane. A uniform magnetic field 

of intensity B0 is assumed to be applied in the direction of y
*
-axis, and the 

plate is taken as electrically non-conducting and this porous plate is 

immersed in porous medium. 
 

 The magnetic field H


has components ( Hx*,  Hy*, Hz*) and the solenoidal 

relation or divergence equation of magnetic field 0H. 


(From Maxwell’s 

electromagnetic field equation)  gives, 
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(2.1)                                       0
y

H

*

y*





.                                                                                                      

The induced magnetic field of the flow is negligible in comparison with the 

applied one which corresponds to very small magnetic Reynolds number. 

Hence  

(2.2)                     Hx* =   Hz* = 0            and               Hy*  =  B0 (constant) .                         

Now using the equation of conservation of electric charge 0J. 


 for the 

current density  *** zyx
J,J,JJ 


; we get  

(2.3)                               Jy* = constant. 

Since the plate is non-conducting, Jy* = 0 at the plate hence, it is zero every- 

where in the flow. 

Now, neglecting the polarization effect, we get 

(2.4)   0E


 .                                                                                                         

Now, the Hall effect is taken into account, the generalized Ohm’s law is 

given by 

 (2.5)                ,p
ηe

1
HVEσHJ

B

τω
J e

e0

ee














                                                        

where  *** w,v,uV 


 is velocity vector, eω electron frequency , eτ  

electron collision time, e electron charge, eη  number density of electron, ep  

electron pressure, σ  electrical conductivity, E


 electric field, H


 magnetic 

field vector and J


 is the current density vector. 

Under the usual assumptions that the electron pressure ep (for weak ionized 

gas), the thermo-electric pressure, the polarization effect and the ion slip are 

negligible. Further, it is also assumed that  0τω ee   and 1τω ii  , where 

iω  is the frequency of   ions and  iτ   the collision time of  ions. 

Now, the equation (2.5) gives 
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(2.6)         **

2
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x
wum
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
  ,                         

where ee τωm   is the Hall parameter.  

The temperature in the fluid flowing is governed by the energy conservation 

equation involving radiative heat transfer with heat source/sink. Within the 

framework of these assumptions, the equations which govern the free 

convection flow of an electrically conducting fluid with radiation effects 

under usual Boussinesq approximation are 
 

Equations of continuity  
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 (constant),                                                                                          
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Equation of Energy                                  
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Heat Flux Equation 
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Equation of Concentration 
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where  g is the acceleration due to gravity, C
*
 the species concentration,  

the fluid density,  the kinemetic viscosity,  the thermal conductivity, Cp 

the specific heat at constant pressure, D the chemical and molecular 

diffusivity, K
*
 the permeability of porous medium, S

*
 the heat source/sink 

parameter, q
*
 the radiative heat flux. T

*
 the temperature at equilibrium and 

t
*
 is the time. 

Now  from  the equation (12) and (13), we get 
 

 (2.13)  
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 In the energy equation, the viscous dissipation and Ohmic dissipation are 

neglected and in the concentration equation, the term due to chemical 

reactions assumed to be absent.  

Now using,   

      )t,y(θT)t,y(T ****** 
    and   )t,y(CC)t,y(C ******   , 
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Introducing the following non-dimensional quantities  
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into the equations (2.8), (2.9), (2.12) and (2.13), we have 

(2.16)  
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where    is the frequency of vibration of the fluid particle, M the Hartmann 

number, Gr the Grashof number for heat transfer, Gc the Grashof number 

for mass transfer, N the radiation parameter, Pr the Prandtl number and Sc  

the Schmidt number. 

The initial and boundary  conditions are given by 

                        when  t 0 :    0, 0, 0u w C    ;     η , 

(2.20)              when  t 0 :    0η   : 0wu  , tωieθ  , tωieC  ; 

                                               η : 0, 0u w  , 0θ , 0C  .                                            
[[ 

 

3. Method of Solution 
 

 

On combining the equations (2.16)and (2.17) and using the complex 

variable,       wiuψ  , 

We have 

 
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2 2

1 1 1 1 1
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Now the corresponding boundary conditions (2.20) are converted to 

(3.2)                     0η    : 0ψ  , tωieθ  , tωieC  ; 

                             η : 0ψ , 0θ 0C  .                                                                              
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Substituting     ηfet,ηθ tωi  and    ηget,ηC tωi  into the equations 

(2.18) and (2.19), respectively, we get 

(3.3)        
Pr Pr

Pr 0
4 4

i
f f S N f
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
      .                                                                                             

Hence, the corresponding boundary conditions are reduced to 

(3.5)                   0η    :   1η f ,   1η g ;                                                                                                 

                           η :   0η f ,   0η g . 

 

 Equations (3.3) and (3.4) are linear ordinary differential equations with 

constant coefficients and solved by usual method using boundary conditions 

(3.5). Through straight forward algebra, the solutions of f() and g( are 

known and given  by  
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Hence  t,ηθ  and  t,ηC are known, finally their expressions are obtained 

in the form given below  
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Substituting 

 (3.9)    , i tt e F   ,        

into equation (3.1), we have 
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The corresponding boundary conditions (3.2) are reduced to 

 (3.11)                     0η    :   0η F , 

                                η :   0η F .                                                                                                              
 

Equations (3.10) is a linear ordinary differential equation with constant 

coefficients and solved by usual method under the boundary conditions 

(3.11). Hence solving the equation (3.10) with the use of (3.8), we have 
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where  
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4. Skin-Friction Coefficient 
 

 

The coefficient of the skin-friction at the plate along the x-axis is given by 
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And the coefficient of the skin-friction at the plate along the z-axis is given 

by 

                    

  

  

 

 

 

 

2 21 22

0

2 21 22

7 15 9 10

8 15 9 10

18 11 13 14

18 12 13 14

(4.2) sin cos

cos sin

sin 3 cos3

cos 3 sin 3

sin 3 cos3

cos3 sin 3 .



  


  

 

 

 

 



 
     

 

   

 

  

 

  

fz r

i

w
C A t A t

A t A t

A A A t A t

A A A t A t

A A A t A t

A A A t A t

                              

Table- 1.  Numerical values  of coefficient of skin-friction at plate  along  the  x-axis and            

                 z-axis when N=1, M=1, K=1, =10, t= /6, and S=1. 
 

 Pr Gr Gc Sc m    C f x  C f z  

I 0.71 5 5 0.78 0.5 0.558861 0.670311 

II 7.0 5 5 0.78 0.5 0.321004 0.462168 

III 0.71 10 5 0.78 0.5 0.844143 1.009675 

IV 0.71 5 10 0.78 0.5 0.832441 1.001259 

V 0.71 5 5 2.62 0.5 0.416167 0.559361 

VI 0.71 5 5 0.78 1.0 0.566389 0.669505 

 

 

 

Table- 2.  Numerical values   of coefficient of skin-friction at plate  along  the  x-axis and            

                 z-axis when N=1, M=1, K=1, =10, t= /6, and S = -1. 

 

 Pr Gr Gc Sc m C f x  C f z  

I 0.71 5 5 0.78 0.5 0.540616 0.679850 

II 7.0 5 5 0.78 0.5 0.315988 0.469695 

III 0.71 10 5 0.78 0.5 0.807652 1.028753 

IV 0.71 5 10 0.78 0.5 0.814196 1.010799 

V 0.71 5 5 2.62 0.5 0.397921 0.568900 

VI 0.71 5 5 0.78 1.0 0.548100 0.679403 

 
 

 

5. Nusselt Number 
 

 The rate of heat transfer in terms of Nusselt number at the  vertical,  

porous  plate is given by 
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(5.1)
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Table-3. Numerical values of Nusselt  number at  the plate for various values of physical  

               Parameters  

 
 Pr N  t Nu (S = 1) Nu (S = -

1) 
I 0.71 1 10 /6 0.69904 0.829036 

II 7.0 1 10 /6 5.517515 5.886100 

III 0.71 3 10 /6 0.829036 0.957460 

IV 0.71 1 20 /6 0.828658 0.920403 

V 0.71 1 10 /3 -0.119958 0.004383 

 
 

 

6. Results and Discussion 
 

 A study of the velocity field, variations of temperature, skin-friction 

coefficient at the plate in unsteady MHD free convective flow with Hall 

current and mass transfer through a viscous incompressible electrically 

conducting fluid in the presence of thermal radiation and heat source/sink is 

carried out in the present paper. Approximate solutions of velocity and 

temperature distributions are obtained for viscous flow parameters. In order 

to set physical insight of the flow into the problem, the velocity, 

temperature, skin-friction coefficient at the plate are discussed by assigning 

numerical values of the Hall parameter m, Grashof number for heat transfer 

Gr, modified Grashof number for mass transfer Gm, Prandtl number Pr, 

Schmidt number Sc, Radiation parameter N and  Hartmann number M. The 

values of Pr are taken 0.71 and 7.0 of the fluid for air and water 

respectively. The values of Sc are taken 0.78 and 2.62 for NH3 and propel 

benzene in air, respectively. The positive and negative values of S represent 

heat source and sink, respectively. 
 

       Fig.1 shows that the axial fluid velocity increases with the increase of 

Hall parameter, modified Grashof number or Grashof number, while it 

decreases with the increase of Schmidt number or Prandtl number in the 

presence of heat source. Fig.2 depicts that the axial fluid velocity increases 
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with the increase of Hall parameter, modified Grashof number or Grashof 

number, while it decreases with the increase of Schmidt number or Prandtl 

number in the presence of heat sink. 
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        Fig.1.  Axial velocity  distribution versus   when N =1, M =1, K = 1, = 10, t = /6  and S =1.
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Fig.3 reflects that the axial fluid velocity increases with the increase of 

Hall parameter or the permeability of porous medium, while it decreases 

with the increase of radiation parameter, Hartmann number or frequency of 

vibration of the fluid particles in the presence of heat source. Further, the 

axial velocity of the fluid decreases near the plate and then increases due to 

increase in the phase angle.Fig.4 depicts that axial fluid velocity increases 

with the increase of Hall parameter or the permeability of porous medium, 

while it decreases with the increase of radiation parameter, Hartman number 

or frequency of vibration of fluid particles in the presence of heat sink. 

Further, the axial velocity of the fluid decreases near the plate and then 

increases due to the increase in the phase angle. 
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   Fig.2.  Axial velocity  distribution  versus   when  N =1, M =1,  K = 1,  = 10,  t = /6  and S = -1.
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Fig.3. Axial  velocity  distribution versus  when Pr = 7.0, Gr = 5, Gc = 5, Sc =0.78  and  S = 1.
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 Fig.4. Axial velocity distribution  versus  w hen Pr = 7.0, Gr = 5, Gc = 5, Sc =0.78 and S = -1.
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     Fig.5 shows that the normal fluid velocity increases with the increase 

of  modified Grashof number or Grashof number, while it decreases with the 

increase  of  Hall parameter, Schmidt number or Prandtl number in the 

presence of heat source. Fig.6 depicts that normal fluid velocity increases 

with the increase of  modified Grashof number or Grashof number, while it 

decreases due to  increase of Hall parameter, Schmidt number  or Prandtl 

number in the presence of heat sink. 
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Fig.5  Normal velocity  distribution  versus  w hen N =1, M =1, K = 1, = 10, t = /6 and S =1.
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Fig.6. Normal velocity  distribution versus w hen N =1, M =1, K = 1,  = 10, t = /6 and S = -1.
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 Fig.7. Normal velocity  distribution versus  when Pr = 7.0, Gr = 5, Gc = 5, Sc =0.78 and S =1.
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      Fig.8.Normal velocity  distribution versus  when Pr = 7.0, Gr = 5, Gc = 5, Sc =0.78 and S = -1.
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       Fig.9. Temperature  distribution versus    when  S = 1. 
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  Fig.10. Temperature distribution versus when S = -1. 
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 It is observed from Fig.7 that the normal fluid velocity increases near the 

plate with the increase of Hartman number, while it decreases with the 

increase of radiation parameter, Hall parameter, permeability of porous 

medium or frequency of vibration of the fluid particles in the presence of 

heat source. Also sudden increase in magnitude of fluid velocity is noticed 

with an increase of phase angle. Fig.8 depicts that normal fluid velocity 

increases with the increase of Hartman number or phase angle, while it 

decreases with the increase of radiation parameter, Hall parameter 

permeability of porous medium or frequency of vibration of the fluid 

particles in the presence of heat sink. 
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                    Fig.11.  Concentration distribution versus  .
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It is observed from Fig.9 that the fluid temperature decreases with the 

increase of radiation parameter, frequency of vibration of the fluid particles 

or Prandtl number. It is also noticed that the phase angle plays an important 

role to decrease or increase the fluid temperature near or away the plate in 
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temperature decreases with the increase of radiation parameter, frequency of 

vibration of the fluid particles or Prandtl number and it behaves differently 

as phase angle increases in the presence of heat sink. 

It is observed from Fig. 11 that the fluid concentration decreases with an 

increase of frequency of vibration of the fluid particles or Schmidt number. 

The phase angle plays an important role to decrease or increase the fluid 

concentration near or away from the plate.   

The numerical values of the coefficient of skin-friction at plate along the 

x-axis and z-axis in the presence of heat source or sink are shown in Table-1 

and Table-2, respectively. Table-1 shows that coefficient of skin-friction at 

plate along the x-axis increases with the increase of the  Grashof number, 

modified Grashof number or Hall parameter, while it decreases due to 

increase of Prandtl number or Schmidt number in the presence of heat 

source. Further the coefficient of skin-friction at plate along the z-axis 

increases with the increase of Grashof number or modified Grashof number, 

while it decreases with an increase of Prandtl number, Schmidt number or 

Hall- parameter in the presence of heat source. 

 It is noticed from Table-2 that coefficient of skin-friction at plate along 

the x-axis increases with the increase of the Grashof number, modified 

Grashof number or Hall parameter, while it decreases with an increase of 

Prandtl number and Schmidt number in the presence of heat sink. Further, 

the coefficient of skin-friction at plate along the z-axis increases with the 

increase of Grashof number or modified Grashof number while it decreases 

with the increase of Prandtl number, Schmidt number or Hall- parameter in 

the presence of heat sink. 

 The numerical values of the Nusselt number at plate in the presence of 

heat source or sink are shown in Table-3. It shows the Nusselt number at the 

plate increases with the increase of Prandtl number, frequency of vibration 

of the fluid particles and radiation parameter, while it decreases due to 

increase of phase angle in the presence of heat source. Further the Nusselt 

number at the plate increases with the increase of Prandtl number, frequency 

of vibration of the fluid particles and radiation parameter, while it decreases 

with the increase of phase angle in the presence of heat sink. 

 

7. Conclusions 
 

 

(i) Axial fluid velocity decreases with an increase of radiative heat or 

intensity of magnetic field, while it increases due to increase in buoyancy 

force parameter or the modified Grashof number. 
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(ii) The magnitude of fluid velocity as well as of temperature for air is more 

in comparison to water. 

(iii) The phase angle plays an important role in axial velocity and 

temperature profiles. On increase of phase angle, the magnitude of axial 

velocity and temperature of the fluid near the plate decreases, while adverse 

behavior is observed far away from the plate.  

(iv) The temperature and concentration of the fluid at the plate is maximum 

and approach towards boundary conditions. 
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