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Abstract: We treat our universe as a homogeneous and isotropic 

system which is filled up by exotic matter popularly named as dark 

energy. Different dark energy models have been considered. The 

equation of continuity and the time - scale factor relations for different 

EoS-s of different dark energy models have been studied. Time vs scale 

factor relations are plotted for different dark energy models. We know 

that different dark energy models  show different properties while 

occurrences of future singularities are considered. Those properties can 

be supported by the graphical analysis of their cosmic time-scale factor 

studies. 
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1. Introduction 

 

       Einstein’s famous field equation 
4

8 G
G T

c
 


  relates the space-time 

curvature with the stress energy which originates from the presence of the 

matter in the concerned space-time. In earlier studies, models of our 

universe were taken as a homogeneous and isotropic system on a large 

scale. Firstly, the solution of this equation predicted that our universe is 

expanding but to support Einstein’s belief that our universe is not static, he 

forcefully added a constant term   to the left hand side of the equation, i.e., 

with the geometric part of this equation to keep Einstein’s model of universe 

static. Then 
4

8 G
G g T

c
  


     can be treated as a modification of 

gravity. When the constant term is taken with stress energy part, i.e., at the 
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right hand side of the equation, 
4

8 G
G T g

c
  


    can be treated as an 

introduction of exotic matter in cosmological studies.  

       After a short interval of time from Einstein’s proposition of general 

relativity and proposal of Friedmann equations, Hubble’s discovery showed 

that distant galaxies are moving away from us. This observation shows that 

our universe is expanding. Einstein aborted the constant term   from his 

equation. But to justify recent day observation of late time 

cosmicacceleration1, constant term 1   is treated as the best supported 

cosmological model till date for such accelerated expansion2. 

      When Friedmann-Lemaitre-Robertson-Walker (FLRW) metric for our 

universe described as homogeneous and isotropic, the derivation of 

Einstein’s equation for the metric allows the violation of strong energy 

condition i.e.,  3 0p    and weak energy condition 0p   , i.e., to 

justify the late time cosmic acceleration  where   is the energy density and 

p  is the pressure respectively. Satisfying all these scenarios we will choose 

such equation of state (EoS) of an exotic fluid which is homogeneously 

distributed all over the universe  and endeavors negative pressure as p  . 

This equation indicates the radiation era ( 1 3  ), pressureless dust era 

( 0  ), quintessence era ( 1 1 3    ) and phantom era ( 1   )  

accordingly as we change the value of the EoS parameter  . As we can 

treat p ,   and   as a function of redshift z  different redshift 

parameterizations of EoS parameters can be proposed. 

      Two recognized families of redshift parameterizations are following : 

(i) Family   0 1:
1

n
z

I z
z

  
 

   
 

and  

(ii) Family  
 

0 1:
1

n

z
II z

z
   


 , 

where 0  and 1  are two unresolved parameters, n N , the set of natural 

numbers. We will discuss particular redshift parameterizations (some of 

them satisfying the above mentioned families) in the next section. The best 

homogeneous and isotropic cosmological model is depicted by FLRW 

metric the form of which is given below,  1c   
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(1.1)              
 2

2 2 2 2 2 2 2 2

2
2

0

sin

1
4

a t
dS dr r d r d dt

k r
       

 
  

 

. 

 

Here 0 0, 1, 1k    indicate that the universe is flat, closed and open 

respectively. Now the field equations and the continuity equation are 

respectively3 : 
 

(1.2)              

 

2

0

2

2

0

2

2
,

3 ,

3 0.

a ka
kp

a a

a k
k

a

a
p

a



 

 
   


  

     
  

   


 

 

Combining we obtain, 
 

(1.3)              
2

024

2 3 6 2

ka
a

  
   
 

. 

 

Equation (1.3) is the conservation equation of the total energy of the 

universe, where 2 2a  is the kinetic energy and  24

3 6
a

  
 

 
 is the 

gravitational potential energy. From equations (1.1), (1.2) and (1.3) we 

obtain the general solution of the system. We define a function 
 

(1.4)                exp 0
d

M
p






 
  

 
 , 

 

or 
 

                     
   

0
dM M

d p

 

 
 


, 

 

                       3

0M a m   
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 ,[ 0m  is constant] by the help of the equation of continuity. We will apply 

the above theoretical basement and the mathematical constructions for 

different dark energy models in the next section. 

 

2. Mathematical Construction of Different Redshift Parameterization 

Models of Dark Energy to Analyse Corresponding  

Physical Properties 

 

       Model I: For 0n   of family II, we get the EoS of Linear paramete- 

rization4, i.e., 
 

(2.1)                   0 1p z z z    .  

 

Now from (1.3) and (1.4), we get the result for Linear Parameterization as 

follows, 
 

(2.2)               
 0 11

2 3 2

0 0

4
2

3 6

z

a m a a k
   

  
   

 
. 

 

Solving t  for  a t  we get, 

 

(2.3)               
 0 1

1

21
3 2

0 0 0

4
2

3 6

z

t t m a a k da
 


 

  
     

  
 . 

 

To find an analytic solution of the equation (2.3), here we assume 0 1  , 

1 0  , 0 1m   and we have the solutions : 

 

(2.4)              0 0k  ,    
3

ln
8 1

t a a


 
  

 
, 

 

 (2.5)             0 1k  ,    
 28 1 8 1 33

ln
8 1 8 1 8 4

a a
t a

a

 

  

    
  

    
, 

 

(2.6)              0 1k  ,    1 13 8 1 8 1
sinh sinh

8 1 3 3
t a a

 



 
      

                 
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Now we are going to plot t  vs  a t  graph for 0 0, 1k   and 1  for the 

equation (2.3) numerically in figures 1a, 1b and 1c respectively.  

 

 
 

Figure 1a-1c. Plots of t w. r. t.  a t for linear parametrization for 0 0k   and 1, -1 

respectively 

 

       We see the scale factor is steeply increasing as time increases. Keeping 

0 1   fix, if we increase the value of  1 , scale factor blows up quickly 

for lower values of t . As time increases, z  and  0 1 z   both go to the 

negative zone. This increases the negativity in the pressure via the increment 

in scale factor’s value. 

       Model II : For 1n   in family I and II, we get the EoS of Chevallier 

and Polarski (CPL) parameterization, i.e. 
 

(2.7)                 1

0
1

z
p z z

z


 
 

  
 

. 

 

This ansatz was first introduced by Chevallier and Polarski5 and later 

discussed by Linder6. For SNeIa data set the best fit values for CPL are 

0 1.58   and 1 3.29  . 

       For CPL, we get similar result from equations  (1.3) and (1.4) as 

follows, 
 

                      
1

01
2 3 21

0 0

4
2

3 6

z

za m a a k




 
     

  
   

  

, 
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(2.8)               
1

0

1

2
1

3 21
0 0 0

4
2

3 6

z

zt t m a a k da





 
     

   
     
    
 . 

 

again we will plot t  vs  a t  for the equation (2.8) keeping 0 1   always 

in figures 2a, 2b and 2c for 0 0, 1k   and -1 respectively.  

 
 

Figure 2a-2c. Plots of t w. r. t.  a t for CPL parametrization for 0 0k   and 1, -1 

respectively 

 

       We have plotted the  t a t  graphs for different 1  in the case of flat 

universe, i.e., 0 0k  , the time graph is high for small values of  a t  or we 

can say as  a t  increases, the rate of increment of t  decreases. The rate is 

decreasing of t  is high for higher values of 1 . In the case of closed 

universe, we have plotted three 1  cases, i.e., 1 0, 5  and 10. Here we can 

see the time increases rapidly accordingly to the value of  a t . For lower 

values of  a t , the time graph is noticeably different. But for the higher 

value of  a t , the  t a t  graphs are almost the same. In the region 

10.145 0.12    , time increment goes strictly high   0.9a t  . In the 

case of the open universe, similar phenomena happen, but the time region 

changes. For figure 2(c) we have chosen all the values same as above. We 

can see only the time region is different here.  

       Model III : For 2n  , it gives the EoS of Jassal-Bangla-Padmanabhan 

(JBP) Parameterization7, i.e.,  
 

(2.9)               
 

 1

0 2
1

z
p z z

z


 
  

  
  

 . 

 



              

           Evolution of  Scale Factor with Cosmic Time while a Homogeneous Universe… 149 

  

 

Same as above two models we will solve for t  using equation (1.3) and 

(1.4) we get, 

                        

1

0 2
1

2 3 2
1

0 0

4
2

3 6

z

za m a a k




 
  

   

  
   

  

, 

 

(2.10)               

1

0 2

1

2
1

3 2
1

0 0 0

4
2

3 6

z

zt t m a a k da





 
  

   

        
    
 . 

 

Similarly as previous, we will plot  t a t  graphs using equation (2.10) in 

figures 3a, 3b and 3c for 0 0, 1k   and -1 respectively.    

 

 
 

Figure 3a-3c. Plots of t w. r. t.  a t for JPB parametrization for 0 0k   and 1, -1 

respectively 

 

       For all the graphs fixing, 0  as 1  and have plotted the graphs for 

0 0, 1k   and 1 . In fig 3a, we can see for higher values of 1 , time graph is 

decreasing and tends to almost parallel to  a t  axis. In fig 3b and 3c, i.e., in 

the case of a closed and open universe we can notice that same phenomena 

happen. The time graph increases then it becomes constant in a region and 

finally decreases for the ascending values of 1 . For both the cases the time 

region of the remaining constant is the same. 

Model IV : The EoS takes the form as8
, 

 

(2.11)                  0 1 ln 1p z z z     . 

 

We will call it Efstathiou parameterization.  
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Proceeding as similar manner solving for t  from equation (1.3) and (1.4) we 

get, 
 

                      
  0 11 ln 1

2 3 2

0 0

4
2

3 6

z

a m a a k
    

  
   

 
, 

 

(2.12)              
  0 1

1

21 ln 1
3 2

0 0 0

4
2

3 6

z

t t m a a k da
 


  

  
     

  
 . 

            

Now we will plot the similar graphs in figures 4a, 4b and 4c for 0 0, 1k   and 

1  respectively.  

 
Figure 4a-4c. Plots of t w. r. t.  a t for Logarithmic parametrization for 0 0k   and 1, -1 

respectively 

 

       In fig 4a, keeping 0 1   , we can see that atfirst t  starts from 

negative, then it remains the same for all values of 1  and after that its 

negativity decreases and it enters on a positive scale. Here we can notice the 

region range for t  is 0.08 0.05t    for  0.9 1.2a t   In fig 4b, keeping 

0 1   , the increment of time was quite different and it increases according 

to the higher values of 1 . As we increase the value of t  and 1 , the  a t  

graph is also increasing.  In fig 4c, the same phenomenon like fig 4a 

happens. In the range of 0.9 1.15t  , the time increment is same for all 

values of 1 . 

      Model V : The EoS is given as9,10, 
 

(2.13)             
   

   
 1 2

2

0 1 2

2 11
1

3 2 1 1

A A zz
p z z

A A z A z


   
   

     

. 
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This redshift parameterization is exactly the cosmological constant for 

1 2 0A A   and DE models when 
2

3
   for 0 0A A   and 

1

3
   for 

0 1 0A A  . For SNeIa gold data set the best fit values of 1A  and 2A  are 

4.16  and 1.67  respectively. We will call this parameterization as Alam-

Sahni-Saini-Starobinski (ASSS) parameterization.  

      Then using equations (1.3) and (1.4) and equation from (2.13) we will 

solve for t  and get, 

 

                        

   

 

2

0 1 2

1 2

2 1 13
2 3 21 2 1

0 0

4
2

3 6

A A z A z

z A A za m a a k


   

   

  
   

  

, 

(2.14)               

   

 

2

0 1 2

1 2

1

22 1 13
3 21 2 1

0 0 0

4
2

3 6

A A z A z

z A A zt t m a a k da



   

   

        
    
  

Again we will plot  t a t  graph using equation (2.14) in figures 4a, 4b and 

4c for 0 0, 1k   and 1  respectively.  

 
 

Figure 5a-5c. Plots of t w. r. t.  a t for ASSS parametrization for 0 0k   and 1, -1 

respectively 

 

       In this parameterization all the cases are nearly the same. The increment 

of time graph is strictly high and constant, when   0.95a t  . For lower 

values of 1A  and 2A , (i.e., which may show similar phenomenon to the  

 CDM case) , the slope of  t a t  is high. But for higher values of 1A , 

2A  and lower values of  a t , we get time graph almost parallel to  a t  

axis. Increasing the values of 1A  and 2A , the graph are more parallel to 
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 a t  axis for low  a t . For confinely we can conclude for low t , i.e., the 

early universe has grown older,  a t  converging to a finite value. This 

model disobeys the Big Rip theory. For 0 1k  , 0 1k    we can find similar 

nature as 0 0k   case 

      Model VI : We introduce another redshift parameterization which also 

contains an adjustable initial parameter  . We will discuss her about 

Generalised Cosmic Chaplygin Gas (GCCG)11 model whose EoS takes the 

form as  
 

(2.15)             1p C C


  


    
  

. 

 

Similar way, using equations (1.3) and (1.4) we get from equation (2.15) we 

get, 

                      
   

1
1 1

1 1 12 3 2

0 0

4
2 1

3 6
a m a C a k


  


  

 
  
      
   

 

, 

 

(2.16)         
   

1

1 2
1 1

1 1 13 2

0 0 0

4
2 1

3 6
t t m a C a k da


  




  

  
   
        
    

   

 . 

 

Again proceeding the similar manner as above we will solve the equation 

(2.16) numerically for finding  t t  graphs.  

 

 
 

Figure 6a-6c. Plots of t w. r. t.  a t for GCCG parametrization for 0 0k   and 1, -1 

respectively 
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       In the case of GCCG, we can notice that three cases are almost same 

except their time range for   and  . When 0   , i.e., for  CDM 

case, we see the time graph is increasing. For low  a t , t  goes slowly and 

then it increases rapidly and diverges to finite  a t . This means, scale factor 

does not blow to infinity and always stays finite. The slope of  t a t  curve 

decreases for higher values of    and  . But we will find finite  a t  for 

finite domain t . The same trend is carried for an enclosed and open 

universe. This redshift parameterization does not allow a future singularity 

and the graphs also support the pre established result.  

 

3. Brief Discussions and Conclusions 

 

       In this article we have studied the evolution of time t  and scalar factor 

 a t when our present day universe is experiencing a late time cosmic 

acceleration. To justify the effect of negative pressure employed by the 

exotic fluids filled in all over the universe is taken as homogeneous and 

isotropic, we have chosen different EoSs which are depending on redshift z  

and some arbitrary redshift parameters. In every case, we have fixed 0  as 

1 , then varied all other parameters accordingly the significant changes. At 

first, we have discussed the simplest method, i.e., linear redshift 

parameterization where we can see  for three cases of 0k  if we choose 

smaller 0  and 1 , the slope of  t a t  the curve is higher. This shows that 

linear parameterization supports strong cosmic acceleration and this may 

tend to a future singularity i.e., Big Rip. For CPL parameterization, the 

tendency of  t a t  the curve is the same as linear parameterization. If we 

increase t , the rate of  a t  is not high as the linear parameterization case. 

The power of negative pressure is less comparable to linear 

parameterization. It speculates that the flat universe, i.e., for 0 0k  , CPL 

behaves like highly negative pressure exerting gas. Otherwise we can say 

that CPL is more controllable than linear parameterization. For closed and 

open universe, i.e., for 0 1, 1k   the previous scenario changes completely. 

We see that  t a t  curves are almost constant for low  a t  and it increases 

with increment of   a t . For low t  and low 1 , high  a t   is observed. For 

closed and open universe, the Big Rip does not occur in the future. In the 

case of JBP, the curves are finitely similar with linear parameterization. So 
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JBP is good to describe a future as well as a past singular singularity 

together. For Efstathiou parameterization, the same trends like JBP carry on. 

For ASSS parameterzation, we see the appropriate curves are available for 

past time only. For GCCG all these phenomena do not occur. For low   

and  , as we increase  a t , we can notice t  blowing up. Even this says 

about an infinite time to find a finite scale factor. Increasing   , we observe 

the curves to increase but it never goes parallel to the  a t  axis. For high t , 

 a t must converge to some finite values. This means  no future singularity 

is allowed in the GCCG model.  
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