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Abstract: In this paper, we analyse the non-linear dynamics of the Lü 

system from the view point of Kosambi-Cartan-Chern (KCC) theory. 

We reformulate the Lü system as a set of two second order non-linear 

differential equations and obtain five KCC-invariants which express 

the intrinsic geometric properties. The Jacobi stability of the Lü system 

at equilibrium points are investigated in terms of the eigenvalues of the 

deviation tensor. The equilibrium point 0E  is always Jacobi unstable, 

while the Jacobi stability of other equilibrium points 1E , 2E  depends 

on the parameters values.  

Keywords: Finsler Space, geodesics, KCC-theory, KCC-invariants, Lü 

System.  
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1. Introduction 

 

       The Lyapunov stability is the mathematical concept for describing the 

stability of the solution of the dynamical system. The basic quantity of the 

theory is Lyapunov exponents, which measures exponential deviation from 

the given trajectories, is very difficult to determine analytically. An 

alternative approach which study the properties of dynamical system 

initiated by Kosambi1, Cartan2 and Chern3 in 1940's is known as geometro-

dynamical approach (KCC theory). The KCC theory is based on the basic 

idea that the second order dynamical system and geodesics equation in 

associated Finsler space are topologically equivalent. The KCC theory is a 

differential geometric theory for the deviations of the entire trajectories of 

the variational equations to nearby ones4. The KCC geometrical description 

of the dynamical systems is associated with non-linear connection and 

Berwald type connection to the differential system, and by using these 
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connections the  five geometrical invariants are obtained. The second KCC-

invariant (deviation tensor) will be determine the Jacobi stability of the 

system. Nowadays, the Jacobi stability analysis has been used for the study 

of chaotic dynamical system. The KCC theory has applications to the 

geometric aspects of various systems, such as physical5-11, biological12-17 

cosmology and gravitation18-21 and general phenomena22-27. In the present 

paper, we discuss stability feature of the Lü system28 by formulating the 

equations as a set of two second order differential equation and using KCC 

theory. 

 

 
 

 

Figure 1. Chaotic attractor of system (1.1) for a = 36, b = 3, c = 25 

The Lü system28 is given by 
 

(1.1)             

  ,

,

,

x a y x

y xz cy

z xy bz

  


 
  


 

 

where , ,a b c R  . This system yields a typical chaotic attractor for the 

parameters value 36a  , 3b  , 25c   as shown in figure 1. This system is 

bridge between Lorenz and Chen systems29. The dynamical properties of the 

system (1.1), such as bifurcation, periodic windows and route of chaos have 

been studies in the literature29. The existense of homoclinic orbits of the 

equlibrium ponits is analyze in30. Adaptive synchronization with uncertain 

parameters and chaos synchronization of two identical Lü system were 

analysed theoretically and numerically by the auther's in31-35. In the literature 
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36 shows that Lü system is a particular case of Lorenz system. In37, a 4D 

hyperchaotic Lü system is constucted from 3D Lü system and they studied 

the no-hopf bifurcation, chaos and hyperchaotic behavior. The paper is 

oganised as follows. The first section is introductry. The section two 

presents the basics of KCC theory. In section three we obtain the nonlinear  

connections, Berwald connections, the KCC-invariants and conditions for 

the Jacobi stability at each equilibrium points. The fourth section discuss the 

behavior of deviation vector. 

 

2. KCC-Theory and Jacobi Stability 

 

        Let us recall the basic concept and results of the KCC theory4,7,8,38. 

Consider a real smooth n dimensional manifold M  and its tangents bundle 

TM . Let    1 2, ,.... nx x x x , 
1 2

, ,......
ndx dx dx dx

y
dt dt dt dt

   
    
  

 and t  be 

2 1n  co-ordinates in an open connected subset   of the  2 1n    

dimensional euclidean space 1n nR R R  . We regarded time t  as an 

absolute invariant. Let us consider the system of second order differential 

equation (SODE) of the form 
 

(2.1)              
2

2
2 , , 0, 1,2,.....,

i
id x

G x y t i n
dt

   , 

 

where iG  is C   in a neighbourhood of initial conditions     00 0
, ,x y t  . 

The SODE (2.1) is equivalent to the equation of motion in Finsler space, 

given by the Euler-Lagrange equation, 
 

(2.2)             , 1,2,.....,ii i

d L L
F i n

dt y x

  
   

  
, 

 

where L  and iF  are the Lagrangian and external force respectively. 

        The intrinsic geometric properties of (2.1), under a non-singular 

coordinate transformations 
 

(2.3)             
 1 2, ,...... , 1,2,....,i i nx f x x x i n

t t

  



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are given by the five KCC invariants, named after Kosambi1, Cartan2 and 

Chern3. Under the above non-singular coordinate transformations (2.3), let 

us define KCC-covariant derivative of a contravariant vector field  i x  on 

  by4,39 
 

(2.4)              
i i

i j
j

D d
N

dt dt

 
  , 

 

where 
i

i
j j

G
N

y





 are the coefficients of the non-linear connection. Through-

out the paper the Einstein summation convention is used. 

By putting i iy   and using equation (2.1), the covariant differential 

becomes 
 

(2.5)              2
i

i j i i
j

Dy
N y G

dt
   , 

 

where the contravariant vector field i  is called the first KCC- invariant, 

represents an external force. 

       Let us consider the variation of the trajectories  ix t  of system (2.1) 

according to 
 

(2.6)                   i i ix t x t t   , 

 

where   denotes a parameter, with   small and  i t  are the components 

of contravariants vector defined along the curve  i ix x t . Substituting 

equation (2.6) into equation (2.1) and taking the limit as 0 , yields the 

variational equation, we get4,14,22 
 

(2.7)              
2

2
2 2 0

i j i
i j
j j

d d G
N

dtdt x

 



  


. 

 

Using the KCC-covariant differential (2.4), the above equation (2.7) becom-

es 
 

(2.8)              
2

2

i
i j
j

D
P

dt


 , 
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where 
 

(2.9)              2 2

i ii
j ji l i l i l

j jl l jj l

N NG
P G G y N N

tx x

 
    

 
. 

 

Here 
i
ji

j l l

N
G

y





 is the Berwald connection4,38. The tensor i
jP  is second 

KCC-invariant or deviation tensor of equation (2.1). The equation (2.8) is 

the Jacobi field equation when system  (2.1) describes the geodesic equation 

in either Finsler or Riemannian geometry. The third, fourth and fifth 

invariants of the system (2.1) are defined as4,38 
 

(2.10)           
1

3

i i
ji k

j k k j

P P
P

y y

  
  

   

,   
i

j ki
j k l l

P
P

y





,   
i
j ki

j k l l

G
D

y





. 

 

The third, fourth and fifth invariant are called the torsion tensor, Riemann-

curvature curvature tensor and Douglas curvature tensor respectively. 

Alternatively, we give another definition for the third and fourth invariants  

as38 

 

(2.11)            
i i
ji k

j k k j

N N
B

x x

 

 
  , 

 

(2.12)            
i

k li
j k l i

B
B

y





, 

 

(2.13)            j
ii i j

N
x x y





 
 
 

. 

 

Jacobi stability of dynamical system: Let us consider the trajectories 

 i ix x t  of (2.1) as curves in the Euclidean space  , ., .nR , where .,.  is 

the canonocal inner product of the nR . We assume that the deviation vector 

  satisfies the initial conditions 
 

                      0 0  ,  0 0W   , 
 
 

 

where 0 nR  is the null vector. Let us consider now an adapted inner 

product .,.  to the deviation tensor   by 
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1

, : . ,
,

X Y X Y
W W

 , 

 

for any vectors , nX Y R . Obviously, 2 , 1W W W  . Then, for 0t  , 

the trajectories of (2.1) are14,22,40 

(i) bunching together if and only if the real part of the eigenvalues of  0i
jP  

are strictly negative. 

(ii) dispersing if and only if the real part of eigenvalues of  0i
jP  are strictly 

positive. 

       Now, we define the notion of Jacobi stability for SODE14,22. This kind of 

stability refers to the focusing tendency (in a small vicinity of 0t ) of 

trajectories of (2.1) with respect to the variation (2.6) that satisfy the 

conditions 

       Definition 2.1: The trajectory of (2.1) are called Jacobi stable at 

    0 0,x t x t  if and only if real parts of the eigenvalues of the deviation 

tensor 
0

|i
j tP  are strictly negative, and Jacobi unstable, otherwise. 

        A basic result of the KCC theory is the following41: 

Two systems of the form (2.1) on   can be locally transfered, relative to 

equation (2.3), one into another, if and only if the five KCC-invariants i , 
i

jP , i
j kP , i

j k lP , i
j k lD  are equivalent tensor. In particular, there exist 

coordinates ( x ) for which the  , ,iG x y t  vanish if and only if all KCC-

invariants are zero. 

       The matrix form of the deviation tensor in two dimensional space can 

be written as 
 

(2.14)            
1 1

1 2

2 2
1 2

i
j

P P
P

P P

 
  
  

, 

 

with eigenvalues as 
 

(2.15)             
2

1 2 1 2 1 2
1 2 1 2 2 1

1
4

2
P P P P P P 

 
     

 
. 

 

The eigenvalues are the solution of the quadratic equation 
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(2.16)               2 1 2 1 2 1 2
1 2 1 2 2 1 0P P P P P P      . 

 

Routh-Hurwitz criteria used to obtain the sign of eigenvalues of deviation 

tensor7,42, according to which all the roots of polynomial  P   are negative 

or have negative real parts if 
 

(2.17)            1 2
1 2 0P P  ,       1 2 1 2

1 2 2 1 0P P P P  . 

 

3. Jacobi Stability of the Lü System 

 

       In this section, the Jacobi stability of the Lü system (1.1) is studied by 

using the KCC-theory. Firstly we transform the Lü system (1.1) into a 

system of second-order differential equation. From first equation of system 

(1.1), write y  as 

 

                     
x

y x
a

  . 

 

By substituting y  into the second equation of the system (1.1), we get 

 

(3.1)                1 0x x a c x axz     . 

 

Differentiating third equation of the (1.1) with respect to t , we have 
 

                     z yx xy bz   , 

 

by substituting the value of y  from first equation of system (1.1), we get 

 

                     
x x

z x x x x bz
a a

   
       

   
. 

 

By substituting the value of x  in to above equation from (3.1), we get 
 

(3.2)              
 

2

2 2 0
x c a

z bz xx x z cx
a a

 
      

 
. 

 

Now, Let us change the notation as 1x x , 1x y , 2z x , 2z y , then the 

Lü system (1.1) is equivalent to the following system of second order 

differential equation 
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                      
2 1

1 1 1 2

2
1 0

d x
cy a c x ax x

dt
     , 

(3.3) 

                     
 

   
2

12 2
2 2

2 1 1 1 2 1

2
0

yd x c a
by x y x x c x

a adt

 
      

 
. 

 

3.1 The non-linear connections, Berwald connections and the KCC 

invariants: The system of second order differential equation formulation 

(3.3) can be written as 
 

(3.4)               
2

2
2 , 0, , 1,2

i
i j jd x

G x y i j
dt

   , 

 

where 
 

(3.5)               1 1 1 1 21
1

2
G cy a c x ax x       , 

 

and 
 

(3.6)              
 

   
2

1
2 2

2 2 1 1 1 2 11

2

y c a
G by x y x x c x

a a

 
         

  

. 

 

       Therefore the components of non-linear connection, Berwald 

connectionare given as 
 

                     1
1

2

c
N  , 1

2 0N  ,  
1

2 1
1

2

y c a
N x

a a

 
   

 
,  2

2
2

b
N  . 

 

                     1 1 1 1 2 2 2
11 12 21 22 12 21 22 0G G G G G G G       ,   2

11

1
G

a
 . 

 

The components of the first KCC invariant are given as 
 

                      1 1 1 1 21
2

c
y a c x ax x     , 

 

                        
2 2

2 2 1 2 1 2 1

2 2

b c a
y x y x x c x

a


 
    

 
. 
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       The components of the deviation tensor of the Lü system are obtained 

by equation (2.9), as follows 
 

(3.7)             

 

 

2
1 2

1

1 1
2

2 1 2 1 1 1
1

2

2
2

2 1
2

1 ,
4

,

2

3
1 ,

4 4 4 4

.
4

c
P a c ax

P ax

c b
P x x y x y

a a

bc b c c

a a

b
P x



    






  

  

      
  

  


 

 

The trace and determinants of the deviation tensor, given by 
 

                        
2 2

2
2 1( ) 1

4 4

c b
trace P a c ax x      , 

and 

                        
2 2

2
2 1 1 1 2 1det( ) 1

4 4

c b c
P a c ax x ax x x y

a

   
          

  
 

 

                              
2

1 1 3
1

2 4 4 4 4

b bc b c c
x y

a a a


      


 

 

respectively. 
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Figure 2. Time variation of deviation tensor component  1
1P t ,  1

2P t ,  2
1P t ,  2

2P t , 

  trace P t and   det P t  for parameters value 36a  , 3b  , 25c  . The initial 

conditions for the numerical integration system are  0 1x  ,  0 0.5y  ,  0 10z   

 

       The time variation of the components of deviation tensor, trace and 

determinant of deviation tensor are represented in Figure 2. 

        The third invariant can be interpreted geometrically as a torsion tensor. 

The components of third invariant are obtained by equation (2.10) as 

0i
j kP  . The fourth invariant 

i
j ki

j k l l

P
P

y





 and the fifth invariant 

i
j ki

j k l l

G
D

y





 

are identically zero. 

3.2 The Jacobi stability at the equilibrium point: The system of equation 

(1.1) has equlibria 
 

                      0 0, 0, 0E ,   1 , ,E bc bc c ,  2 , ,E bc bc c  . 

 

In respect of system of equation (3.3) the equilibrium points are 
 

                      0 0, 0E ,   1 ,E bc c   and   2 ,E bc c  
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Now we obtain the KCC invariants at the equilibrium points. At the 

equilibrium points the first KCC invariant are given by 
 

       1 2 2 2
0 0 1 2 0E E E E       ,  1

1E a  ,   1
2E a   . 

       Theorem 3.1: The equilibrium point  0 0, 0E of system is Jacobi 

unstable. 

       Proof: The Jacobi matrix at the equilibrium point 0E  is 

 

(3.8)              
 

2

2

1 0
4

0
4

i
j

c
a c

P
b

 
  

 
 
 
 

, 

 

It characteristics equation is 
 

                        
2 2 2 2

2 1 1 0
4 4 4 4

c b c b
a c a c 
   

          
   

. 

 

This gives the eigenvalues as 
2

4

b
 and  

2

1
4

c
a c   . Since this gives one 

eigenvalue is nonnegative, thus the equilibrium point 0E  is Jacobi unstable. 

       The components of the second KCC invariant (deviation tensor) at the 

equilibrium points 1E  and 2E  are given as 

 

            
2

1
1 1

4

4

c a
P E


 ,                                 1

2 1P E a bc , 

                 2
1 1 4

4

bc
P E a b c b c c

a
     ,      

 2
2 1

4

4

b b c
P E


 , 

            
2

1
1 2

4

4

c a
P E


 ,                                 1

2 2P E a bc , 

                 2
1 2 4

4

bc
P E a b c b c c

a
       ,  

 2
2 2

4

4

b b c
P E


 , 

 

The eigenvalue of the deviation tensor at the equilibrium point are obtained 

by (2.15) and we get 



 

134                                           C. K. Yadav and M. K. Gupta 

 

        
2 2 4 2 3 2

1 1 1 2 2 2 2 3 4 2 2

16 8 96 16 8 81

8 16 2 24 4 4

a ab b abc ab b c ac
E E

abc b c bc c a b bc c
 

      
   
        
 

 

 

         
2 2 4 2 3 2

2 2 2 1 2 2 2 3 4 2 2

16 8 96 16 8 81

8 16 2 24 4 4

a ab b abc ab b c ac
E E

abc b c bc c a b bc c
 

      
  
        
 

. 

 

The eigenvalue of the second KCC invariant (deviation tensor) are the 

solution of the equation 
 

                     
 

 
22 2

2 2
44 4

4
4 16

c ab c a bc
a b bc

a
 

    
   
  

 

 

                      24 0bc a ab ac bc c      . 

 

By using Routh-Hurwitz criteria we obtain the following result: 

       Theorem 3.2: If the constant parameters 0a  , 0b  , 0c   and 
2 4 0c a   and satisfy simultaneously the constraints  2 2 4b c a bc    

and    2 24 4a b bc bc a ab ac bc c      respectively, then the equilibriu- 

m point 1E  and 2E   are Jacobi stable and Jacobi unstable, otherwise. 

 

4. Dynamics of Deviation Vector 

 

       The behaviour of the deviation vector i , 1,2i  , giving the trajectories 

behaviour of the dynamical system near a fixed point is described by 

equation (2.7) are as 
 

                       
2 1 1

2 1 1 2

2
1 0

d d
c a c ax ax

dtdt

 
       , 

(4.1) 

                     
  1 12 2 2 1

2

2c a x yd d d
b

dt a dtdt

    
   

 
 

 

                      
2

1 2 1 1 1 22 2 1 0
c

x x cx x
a

 
  

      
  

. 

 

The deviation vector obtained from its components, is given as 
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                         
2 2

1 2t t t           

 

The instability exponents analogy with the Lyapunov exponent is defined 

as7 

                      
 

0

1
lim ln , 1,2

i

i
t

i

t
E i

t





  , 

and 

                     
 

10

1
lim ln
t

t
E

t





 . 

 

Now, we investigate the behaviour of the system (4.1) near the equilibrium 

points of the Lü system. 

(A) Dynamics of the deviation vector near 0E : The dynamics of the 

deviation vector near point 0E  describes by the differential equations 

 

                      
2 1 1

1

2
1 0

d d
c a c

dtdt

 
    , 

 

                     
2 2 2

2
0

d d
b

dtdt

 
  . 

 

Solving above system of equation, we get 
 

                      
   2 21 1

4 4 4 4
1 2 2

102

1

4 4

c c a ac t c c a ac t

t e e
c a ac

 
      

  
    

, 

 

                      
 

2
20

1 bte
t

b
 


 , 

 

where the initial conditions are  1 0 0  ,  1
100  ,  2 0 0  , 

 2
200  . The time behavior of the component  2 t  of deviation vector 

is depend only on the coefficient b . The deviation vector will be 
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                     

   

 

 

2 2

1
2 21 1

4 4 4 4
2 2 2

2 2
10 202 2

2

1

4 4

c c a ac t c c a ac t

bte e
e

t
bc a ac

  

     



  
  
    

  
  
 
  

. 

 

The behavior of deviation vector and instability exponent over time 

variation are shown in the figure 3. 

 

 

 
 

 
 

Figure 3. Time variation of  1 t ,  2 t  and  0E  respectively for parameters value 

36a  , 3b  and 13c   (solid, red), 18c   (dotted, Blue), 23c   ( dashed, Green), 

28c   (long dashed, Black), 29.35c   (ultra long dashed, Magenta). The initial 

conditions for the numerical integration system are    1 20 0 0   ,  1 100 10  , 

 2 90 10   
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(B) Dynamics of the deviation vector near 1E : The dynamics of the 

deviation vector near point 1E  describes by the differential equations 

 

                     
2 1 1

1 2

2
0

d d
c a a bc

dtdt

 
     , 

 

                     
 2 2 2 1

2

2
0

a c bcd d d
b bc

dt a dtdt

  



    . 

 

The behaviour of the components of deviation vector and instability 

exponent over time variation are shown in the figure 4. 

 

 
 

 
 

Figure 4. Time variation of  1 t ,  2 t  and  1E  respectively for parameters value 

36a  , 3b   and 13c  (solid, red), 18c  (dotted, Blue) 23c   ( dashed, Green), 

28c   (long dashed, Black), 29.35c   (ultra long dashed, Magenta). The initial 

conditions for the numerical integration system are    1 20 0 0   ,  1 100 10  , 

 2 90 10   
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(C) Dynamics of the deviation vector near 2E : The dynamics of the 

deviation vector near point 2E  describes by the differential equations 

 

                     
2 1 1

1 2

2
0

d d
c a a bc

dtdt

 
     , 

 

                     
 2 2 2 1

2

2
0

a c bcd d d
b bc

dt a dtdt

  



    . 

 

The behaviour of the components of deviation vector and instability 

exponent over time variation are shown in the figure 5. 

 

5. Conclusion 

 

       In this paper, some geometric properties of Lü system have been 

investigated by using KCC theory. First we have formulate the Lü system 

equivalent to a set of two second order nonlinear differential equation. We 

obtain the components the nonlinear connection, Berwald connection and 

five KCC invariant. The components of  first KCC invariants vanish except  
1  at the equilibrium points 1E  and 2E . The components of deviation tensor 

is obtained and the time variation is shown in figure 2. We have also shown 

the time variation of trace and determinant of deviation tensor. We find the 

Jacobi stability condition at the equilibrium points. The equilibrium point 

0E  is Jacobi unstable. When the parameters 0a  , 0b  , 0c   and 

2 4 0c a   and satify the contraints  2 2 4b c a bc   and  2 4a b bc   

 24bc a ab ac bc c    , the equilibrium point 1E , 2E are Jacobi stable.  

At lastly we discuss the beahavior of deviation vector near the equilibrium 

points. 
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Figure 5. Time variation of   1 t ,  2 t and  2E  respectively for parameters value 

36a  , 3b  and 13c   (solid, red), 18c   (dotted, Blue), 23c   ( dashed, Green), 

28c   (long dashed, Black), 29.35c   (ultra long dashed, Magenta). The initial 

conditions for the numerical integration system    1 20 0 0   ,  1 100 10  , 

 2 90 10   

 

The contraints  2 2 4b c a bc   and   2 4 4a b bc bc a ab ac bc      

2c , the equilibrium points 1E , 2E  are Jacobi stable. At lastly we discuss 

the beahavior of deviation vector near the equilibrium points. 
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