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Abstract: The work reported here is to study an unsteady 

hydromagnetic free convection flow and mass transfer of an elastic-

viscous fluid in a rotating porous medium. The elastic-viscous fluid 

model considered here is reported in Oldroyd
1
. The flow analysis is 

made under fluctuating plate temperature which varies harmonically 

with time between limits  w wT T T  as t varies from 0 to 2   

and the species concentration at the free stream is assumed to be 

constant. The analytical expressions for velocity, temperature and 

concentration are derived and flow characteristic have been discussed. 

Keywords: Unsteady, Hydromagnetic, Convection, Temperature, 
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1. Introduction 

 

 Studies on free convection flow and mass transfer find extended 

theoretical and physical interest in view of their varied applications in the 

field of astrophysical, geothermal and geophysical science such as in the 

study of stars and planets, atmospheric and oceanic circulations, space 

flights, nuclear fusion and many other scientific and technical research, 

convection mechanism through porous media has been employed in get 

filtration processes, to maintain the temperature of a body and also render 

the heat insulation of the surface more effective.  

 The effect of free convection on viscous and elastic-viscous fluids 
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 with/without mass transfer has been studied by several workers. Raptis et 

al.2 have analysed the affects of free convection currents on the flow of an 

electrically conducting fluid past an accelerated vertical infinite plate with 

variable suction. Singh and Singh3 studied the MHD flow of an elastic-

viscous fluid past an accelerated plate. Singh4 estimated the effect of free 

convection and magnetic field on the flow of an electrically conducting 

fluid past an accelerated vertical porous plate in a rotating frame. Dash and 

Ojha5 have disscussd the magneto hydrodynamic unsteady free convection 

effect on the flow past an exponentially accelerated vertical plate. Goyal 

and Bansal6 reported the unsteady boundary layer flow of an electrically 

conducting fluid in presence of transverse magnetic field over a flat plate. 

Gholam and Singh7 investigated the combined heat and mass transfer 

effects on unsteady free convection flow of a fluid through a porous 

medium with heat source and sink for low frequency. Hadim and Chen8 

reported the non-Darcy mixed convection in a vertical porous channel.  

 The hydromagnetic flow and heat transfer past a continuously moving 

porous boundary has been studied by Chandran et al.9. In a subsequent 

paper, Chandran et al.10 extended the above problem to unsteady flow with 

heat flux and accelerated boundary motion. Dash and Das11 investigated the 

effect of Hall current of MHD flow along an accelerated vertical porous 

flat plate with mass transfer and internal heat generation. Kim12, Israel-

cookeyet al.13 reported the free convection and mass transfer effects on a 

rotating electrically conducting fluid through a porous medium in presence 

of magnetic field. Makindeet al.14 have discussed the unsteady free 

convection flow with suction on an accelerating porous plate. Panda et al.15 

have estimated the effect of free convection and mass transfer on unsteady 

flow of a rotating elastics-viscous liquid through porous media past a 

vertical porous plate. 

 The work reported here is to study an unsteady hydromagnetic free 

convection flow and mass transfer of an elastic-viscous fluid in a rotating 

porous medium. The elastic-viscous fluid model considered here is 

reported in Oldroyd1. The flow analysis is made under fluctuating plate 

temperature which varies harmonically with time between limits 

 w wT T T  as t varies from 0 to 2   and the species concentration at 

the free stream is assumed to be constant. The analytical expressions for 

velocity, temperature and concentration are derived and flow characteristic 

have been discussed. 

 

 



              

                Unsteady Hydromagnetic Free Convective Flow and Mass Transfer….            467 

  

2. Formulation of the Problem 

 

 Consider the unsteady flow of a rotating elastic viscous electrically 

conducting fluid past a vertical infinite porous plate in presence of uniform  

transverse magnetic field 0B . The fluid under consideration is a very dilute 

solution of non-Newtonian fluid in water. We assume that the liquid has a 

short relaxation time. We shall do this by imposing a general constitute 

relation of  Oldroyd liquid. The temperature and species concentration at 

the free stream are constant. Again we assume that the vertical infinite 

porous plate rotates in unison with an elastic-viscous fluid with a constant 

angular velocity   about an axis which is perpendicular to the vertical 

plane surface. A Cartesian co-ordinate system is chosen such that x  and y -

axis respectively are in the vertical upward and perpendicular directions on 

the plane of the vertical porous surface 0z   while z -axis is normal to it. 

With the above frame of reference and assumptions, the physical variables, 

except the pressure  p , are function of z  and time t only. Thus the 

equation of continuity gives 0W W , 0 0W   is the constant suction 

velocity normal to the plate. Now, taking into account the Boussinesq 

approximation, the equations which govern the problem are 

  

(2.1)    
' 2

13 0
0 *

p B uu u 1
w 2 v g T T g * C C u

t z v z k
 

   
           

   
, 

 

(2.2)  
' 2

23 0
0 *

p B uv v 1
w 2 u v

t z z k

   
     

    
,  

 

(2.3)  
2

0 2

p

T T K T
w

t z C z

  
 

   
, 

 

(2.4)  
2

0 n2

C C C
w D C

t z z

  
  

  
,  

 

along with the boundary conditions  

 

   i t

w 2 wu 0,  v=0, T= T T T e ,C C  at z = 0

    , 

(2.5) 

 *u 0,  v 0,  T T C C  as z      , 
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where the components 13p  and 23p are expressed by the implicit relations  

 

(2.6) 
2 2

'

l 0 13 0 2 0 2

u u u
1 w p w

t z z t z z

        
           

          
, 

 

(2.7) 
2 2

'

l 0 13 0 2 0 2

v u v
1 w p w

t z z t z z

        
           

          
. 

  

 In equation (2.6) and (2.7), 0 , 1  and 2  (which are all positive) 

denote the co-efficient of viscosity, stress relaxation and strain retardation 

time respectively with 1 2  . Also in equations (2.1)-(2.5), the symbols 

have their usual meanings and subscripts w and  mean the condition at 

the porous plane surface and far away from this surface. 

 Eliminating 13p  and 23p  from equations (2.1) and (2.2) with the help of 

equations (2.6) and (2.7) putting U u iv   and introducing the 

dimensionless quantities  

 

 
2 2

0 l 0 2 0
l 2

0

w z w wU
U' , z ' , ,

w v v v

 
      , 

 

   0

2

w 0

kw C C v
T' T T , C' , R

qv C C w






 
   


, 

 

 
  22

w 0
r m4 3 2

0 0 0

vg * C C vg v q
G , G M

kw w w

  
  


, 

 

 
2 n

p 0 n
r c p n2 2

0 w

vc w k cv v
P , S ,  K , K

k D v w C C

 
   


, 

 

Equations (2.1)-(2.4) becomes (dropping the dashes)  

 

(2.8)  
3 3 2

2l
2 2 l l l3 2 2

p

U U U U
1 1 2i R M

z t z z K t

    
          

      
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2 2
2 2l

l l l l2

p p

1 U U U
2iR M U 2 1 2i R M

K t z t K Z

     
             
         

 

 

l m l r l m l m l r

T C C T
G T G C G G G G

Z Z t t

   
       

   
, 

 

(2.9) 
2

r r2

T T T
P P

z z t

  
 

  
,  

 

(2.10) 
2

c c n2

C C C
S S K

z z t

  
  

  
.  

   

Subject to the boundary conditions  

 

 i tU 0,   T = 1 +  e ,   C = 1  at   z = 0  , 

(2.11) 

 U 0, T 0, C 0  as  z    .  

 

3. Solution 

 If 1 2 0    then the equation (2.8) reduces to the unsteady free 

convection flow and mass transfer of an incompressible viscous fluid 

bounded by a vertical porous plate in a rotating system. In order to solve 

the system of equation (2.8)-(2.10) under boundary conditions (2.11), we 

assume the velocity U , the temperature T  and concentration C  near the 

plate as  

      i t

0 lU z, t U z  e U z  , 

 

(3.1)      i t

0 lU z, t T z  e T z  , 

 

      i t

0 lC z, t C z  e C z  . 

 

 Substituting equation (3.1) into system of equations (2.8)-(2.10) and 

equating harmonic and non-harmonic terms, neglecting the coefficients of 
2 we get  

 

(3.2)    " " 2 '

2 0 1 0 l l p l 0U 1 U 1 2i R / K M U          
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  2 ' '

p 0 m 0 l m 0 r 0 l r 02iR 1/ K M U G C G C G T G T 0          , 

(3.3    " " 2 '

2 l l 2 1 l l l p l lU 1 i U 1 2i R 2i / K M U               
 

    2 2

l p l l p li 2R / K M 2R 1/ K M U          
 

 

 

    ' '

l m p m l l l r l r l lG C G 1 i C G T G 1 i  T 0         , 

 

(3.4) " '

0 r 0T P T 0  , 

 

(3.5) " '

1 r l r lT P T Pi T 0    , 

      

(3.6) " '

0 c 0 nC S C K  ,  

       

(3.7) " '

l c 0 c lC S C S i C 0    , 

        

            0 0 0 l l lU 0 0,T 0 1,  C 0 1,U 0 0,T 0 1,C 0 0      , 

(3.8) 

 0 0 0 l l lU ( ) 0,T ( ) 0,C ( ) 0,U ( ) 0,T ( ) 0,C ( ) 0            , 

 

where the primes indicate the differentiation with respect to z .  

 Solving the equations (3.4)-(3.7) under the boundary conditions (3.8), 

we get  

 

(3.9)   Pr z i t zT z, t e  e e    , 

       

where 

 

  
1/2

2

r r r1/ 2 P P 4i P     
  

, 

 

(3.10)   cS z
C z, t e


 . 

         

 Since, the equations (3.2)-(3.3) are of order three, an additional 

boundary condition will be required in order to get a unique solution. But, 

no boundary condition is physically plausible, we impose the requirement 

that the solution of the equation (2.8) reduces to the classical viscous case 
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as l 2, 0.   As will be seen, this enables to determine all the arbitrary 

constants appearing in the solution of equations (3.2)-(3.3).  Now solving 

the differential equations (3.2) along with the boundary conditions of (3.8) 

and considering the limiting case as a viscous fluid, we get  

 

(3.11) cl 2 2 l S zm z m z m z p zl l
0 l 2 3

ll 12

H G
U c e c e c e e e

M M


     ,  

   

where 

 

    l l r r l m l cH P 1  G ,G G 1 S     , 

 

 
2l l

l l

2 p 2

1
a 1 M 2iR

K

  
      

   
, 

 

 
 

R 2l
l l 2

p l

2

2 2

1 2i M
K 1

Q
3 9

 
         

 
 

, 

 

  
 

R 2 2l
l l 3

p p l

l l 2 3

2 2 2

1
1 2i M 2iR M

K K 1
R 1

6 2 27

   
                 

   
  

, 

 

 
 

3
22

ll l
l 2

2 2 p 2 2

1M1
S

3 3 K 3 9

   
     

     

 

 

 
 

22 2 2
l1 1 l l

2 2

2 2 2 p 2 2

14 R M1

3 3 3 K 3 9

    
    

      

 

 

 
 

2

l l l 2l l
l2 2

2 2 2 p

1 R R 1
1 M

3 6 K

      
               

 

 

 
 

2
3

2

3

2 2 2

11

2 2 27

l

p

M

K



  


  


 



 

472                                                      Archana Shukla 

 

 
 

2
22 3 3

ll l l l 1 1
l 3 3

2 p 2 2

12 R M 8 R1
T

3 3K 3 9 27

     
      

    

 

 

    
 l l l 2l l

l2 2

2 2 2 p

1 R R 1
1 M

3 3 K

      
             

 

 

 
 

3
2

3

2 2 2

11
2

27

l

p

M

K



  


  


, 

 

 2 2 2 2

l l 1 1 l 1 1

1 1
Q S S T  S S T

2 2
      , 

 

  
1/3

l lI R Q  , 

 

  
1/3

l lI R Q  , 

 

 l lm I J a / 3   , 

 

   l
2

a1 3
m I J i I J

2 2 3
      , 

 

   l
3

a1 3
m I J i I J

2 2 3
      , 

 

  3 2 2l
ll 2 r l r l l r

p

M P 1 P 1 2iR M P
K

 
          

 
 

 

 

   2

p

1
2iR M

K
   , 

 

  3 2 2l
l2 2 r l 3 l l c

p

M S 1 S 1 2iR M S
K

 
          

 
 

 

 

  2

p

1
2iR M

K
   , 
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In the limit when l 2,   0,   we have  

 

 lm  , 

 

  
1/2

2

2 pm 1/ 2 1/ 2 1 8iR 4 / K 4M      , 

 

and 

  
1/2

2

3 pm 1/ 2 1/ 2 1 8iR 4 / K 4M      . 

 

 It can be seen from the above that’s he roots 2m  and 3m  reduce to the 

classical viscous case, while 1m  is the additional root. Hence we take the 

arbitrary constants 1 0c   in the complementary function. Using the 

boundary condition (3.8), the order two arbitrary constants are obtained and 

the final solution of equation (3.2) can be written as  

 

(3.12)    3 c 3r m z S z m zp zl l
0

ll 12

H G
U e e e e

M M


    . 

   

From equation (3.3) we get  

 

(3.13)  5 64 m z m zm z z

l 4 5 6 l l

3

Gr
U c e c e c e e 1 i

M

        . 

 

With similar argument as above and using the boundary condition (3.8) we 

get,  

 

(3.14)    3m z- z

l 1 l

3

Gr
U 1 i  e e

M

      , 

 

where  
1/2

2

r r r1/ 2 P P 4i P     
  

. 

 

(3.15)  2

5

p

1 4
m 1 1 4M i 4 8r

2 K

 
       

 
 

,   

 



 

474                                                      Archana Shukla 

 

(3.16)  2

6

p

1 4
m 1 1 4M i 4 8r

2 K

 
       

 
 

,   

 

(3.17)    3 2 2l
3 2 1 2 l l

p

M 1 i 1 2i R M
K

 
                

 
 

 

 

    2 2l
l l

p p

1
M 2R i 2R M

K K

   
          

 
   

. 

 

The primary and secondary velocity fields in terms of the fluctuating parts 

are  

 

(3.18)  0 r l

0

u
U N cos t N sin t

w
      , 

 

(3.19)  0 r l

0

v
V N cos t N sin t

w
      , 

    

where 

 

 0 0 0 r i lu iv U  and N i N U    , 

 

 

   
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B B B B B 1 B
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B B

      
 
       




, 

 

 

   
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r

1 6 4 2 6 5 1 l

r 2 2
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G

B B B B B 1 B
N

B B

      
  

       



, 

 

  c l lS z A z A z

0 ll 3 2 4 2u G A e e cosA z A e sin A z
   

 
 

 

      c l lP z A z A z

ll 2 5 6 2H e e cosA z A A e sin A z
   

 
, 

 

  c l lS z A z A z

0 ll 4 2 3 2v G A e e cosA z A e sin A z
    

 
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   c l lP z A z A z

ll 6 2 5 2H A e e cosA z A e sin A z
    

 
, 

 

where 
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  6 l rA 2R 1 P  ,  
 

l
ll 2 2

3 4

G
G

A A



, 

 
l

ll 2 2

5 6

H
H

A A



, 

 

 4 2 2

r rN P 16P   , 
 2

rr
l

N PP 1
B

2 2 2


  , 

 2

r

2

N P1
B

2 2


 , 

 

     2 2 2 2

6 2 l 1 2 l 1 2 l 2 2B B B 3B 1 B B 2B B          
 

                           2 2l
l l l 21

p p

1
B 1 M 2 B R M

K K

 
         

 
 

 



 

476                                                      Archana Shukla 

 

     2

l l l l l

p

2R 2 B R 2R M
K


         , 

 

      2 2 2 2

3 2 2 2 1 l 2 l 2 1 2B B B 3B 2B B 1 B B         
 

         2 2l
21 l l l l l

p p

B 1 M 2 B R 2R M
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  
          

 
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, 

  

 62 B zB z

4 2 3B e cosB z e cosB z  , 

 

 62 B zB z

5 2 3B e SinB z e SinB z  . 

 

4. Results and Discussion 

  

 The problem of hydro magnetic unsteady free convective flow and 

mass transfer of an elastic-viscous fluid past an infinite vertical porous 

plate in a rotating porous medium under fluctuating temperature has been 

studied. An interesting feature of the present study is to discuss case of 

non-conducting flow as a special case of Panda  et al.15. The effects of flow 

parameters on the primary and secondary velocity of the flow field are 

discussed below with the help of figures 1-8.  

 The nature of variation of primary and secondary velocity profiles with 

the change of elastic parameters  1 2,  , porosity parameter  pK  and 

magnetic parameter  M  is as depicted in figures (1) and (2) respectively. 

From curves (5) and (4) of both the figures, it is observed that 1  enhance 

both the components of velocity of the flow field while 2  shows the 

reverse effect. Curves (2) and (3) of both the figures show that the porosity 

parameter  pK  has an accelerating effect (magnitude) on both the 

components of velocity. Further, curves (2) and (6) of both the figures 

report the retarding effect (magnitude) of magnetic parameter  M  on both 

the components of velocity of the flow field. Curves (7) is in good 

agreement with Panda et al.15.  

 Figures (3) and (4) point out the effect of magnetic parameter  M  

separately on the primary and secondary velocity of the flow field 

respectively. The curves of both the figures clearly depict the retarding 
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effect of magnetic parameter  M  on both the components of the velocity 

of the flow field. This retardation of velocity may be attributed to the 

magnetic pull caused by the Lorentz Force on the conducting fluid due to 

the applied magnetic field. It is further observed that the velocity 

components assumes higher values in non-MHD flow (case of Panda et 

al.15) than that in MHD flow.  

 Figures (5) and (6) depict the effect of Grash number for heat transfer 

(Gr) on the primary and secondary velocity profiles respectively under 

different physical situations. It is found from curves (1) and (2) of both the 

figures that the effect of rG  is to enhance the magnitude of both the 

components of velocity of the flow field due to the flow of free convection 

current. Comparing curves (2) and (3) of both the figures, it is observed 

that in presence of constant free  convection current both the components 

of velocity assumes higher values in non-MHD flow  0M   than that of 

MHD flow. Further, under similar physical conditions of rG  and pK  

(curves (2) and (3)), the velocity components assumes higher values in 

non-MHD case.  

 Figures (7) and (8) report the nature of primary and secondary velocity 

profiles respectively due to variations of different parameters ( mG , R , 2 , 

pK , M  and  ). The Grash of number for mass transfer ( mG ) has neglig- 

ible effect on the secondary velocity (curves (4) and (5)). The rotation 

parameter  R  reduces the primary velocity components and enhances the 

secondary  velocity component (curves (1) and (4)).  

 The frequency parameter    has a retarding effect on both the 

components of velocity (curves (3) and (4)). Comparing curve (6) with the 

curve (7) for non-MHD flow, it is observed that magnitude of velocity 

components is higher in non-MHD  flow than its counterpart in MHD flow 

except the case of rotation parameter. In this case the secondary velocity 

possess higher magnitude than its counterpart in non-MHD flow. Here the 

effect of rotation parameter dominates over the effect of magnetic 

parameter. 

  

5. Conclusion 

 

 The above study brings out the following results of physical interest.  

1. The magnetic parameter (M) has a decelerating effect on both the 

components of velocity (primary and secondary) due to the magnetic 
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pull caused by the Lorentz force on the conducting fluid. In comparison 

to MHD flow, the velocity components take higher values in non-MHD 

flow. 

2. The elastic parameter 1  enhance the magnitude of both the components 

of velocity while the other elastic parameter 2  has a retarding effect on 

both the components of velocity. 

3. The porosity parameter has an accelerating effect on both the 

components of velocity. 

4. The porosity parameter has an accelerating effect on both the 

components of velocity. 

5. The Grash of number for mass transfer  mG  has a retarding effect on 

the primary velocity and a very negligible effect on the secondary 

velocity.  

6. The rotation parameter  R  reduces the magnitude of primary velocity 

component and enhances the secondary velocity components. 

7. The angular amplitude    has a retarding effect on both the 

components of velocity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Effect of Elastic Paramenters on Primary velocity profiles when 

Gr = 2,Gm = 2, Pr = 7, Sc = 900. R = 0.4,   = 0.01,   = 5 
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Figure 2. Effect of Elastic Paramenters on Secondary velocity profiles when 

Gr = 2, Gm = 2, Pr = 7, Sc = 900. R = 0.4,  = 0.01,   = 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Effect of Magnetic parameter on primary velocity profile 
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Figure 4. Effect of Magnetic Parameter on Secondary velocity profile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Effect of Gr on Primary velocity profiles when Gm = 2, 

Pr = 7, Sc = 900, R = 0.4,   = 0.01,    = 5 
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Figure 6. Effect of Gr on Secondary velocity profiles when Gm = 2, Pr = 7, 

Sc = 900, R = 0.4,   = 0.01,    = 5   
1  = 0.6,  

2  = 0.6 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 7. Effect of different parameters on Primary velocity profiles 

when Gr = 2, Pr = 7, Sc = 900,   = 0.01 
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Figure 8. Effect of different parameters on Secondary velocity profiles 

when Gr = 2, Pr = 7, Sc = 900,   = 0.01 
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