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Abstract: In this paper, we analyzed the effect of a suction and Soret 

number on heat and mass transfer MHD flow past an exponentially 

stretching sheet with the heat source/sink. Using similarity 

transformation the system of PDEs is changed into a system of non-

linear ODEs, which was then solved numerically by Runga kutta fourth 

order method together with shooting technique. The Numerical results 

are obtained for the skin friction coefficient, Nusselt and Sherwood 

numbers for selected values of the governing parameters, such as the 

suction, magnetic field parameter M , viscous dissipation parameter 

cE , heat generation parameter  , Schmidt number cS , and the 

chemical reaction rate parameter 1K . Besides, it is obtained that the 

concentration profile decreases with an increment of the Schmidt 

number. A comparison was made with a previous study available in the 

literature and we found that it is in a good agreement. 

Keywords: MHD, Boundary layer flow, Suction, stretching sheet. 

 

1. Introduction 

 

       MHD boundary layer flow of heat and mass transmit over a stretching 

sheet has wide applications in industrial and manufacturing process. Some 

of its applications are hot rolling, wire drawing, glass-fiber, and paper 

production, drawing of plastic films, metal and polymer extraction, and 
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metal spinning. In the process of manufacturing the following activities like 

simultaneous heating or cooling and kinematics of stretching has a decisive 

influence on the quantity of the final products (Magayari and Keller1). The 

first person who investigated the similarity solution for laminar boundary 

layer flow and the transfer of heat over a stretching surface was Crane2. 

Later, many researchers have studied on the stretching sheet problems and 

presented a detailed analysis by including different aspects, such as heat 

flux, permeability and unsteadiness characteristics, etc. Carragher and 

Crane3, Dutta4, Grubka and Bobba5, Elbassebeshy6, Elbashabeshy and 

Bazid7, Mahapatra and Gupta8 are among the researchers who studied on it. 

Recently Mukhopahyay9 presented heat transfer and MHD boundary layer 

flow towards an exponentially stretching sheet embedded in a thermally 

stratified medium subject to suction. He has shown that increasing the 

magnetic parameter reduces the fluid velocity. 

       Viscous dissipation has extensive industrial applications: for example, a 

considerable temperature rises are observed in polymer processing flows 

such as injection modeling or extraction at high rates. Aerodynamic heating 

in the thin boundary layer around high-speed aircraft raises the temperature 

of the skin. The processes of converting mechanical energy of downward 

flowing water into thermal and acoustical energy are dissipation. Jena et al.10 

considered the diffusion-thermo (Dufour) and thermal diffusion (Soret) 

impact on MHD viscoelastic fluid flow over a porous vertical stretching 

sheet subject to variable magnetic field embedded in a porous medium in the 

attendance of chemical reaction and heat source/sink. 

       Seini and Makinde11 have examined an MHD boundary layer flow of a 

viscous incompressible steady fluid over an exponentially stretching sheet 

with the impact of a homogeneous chemical reaction and radiation. Their 

result indicated that raising the values of the transverse magnetic field and 

radiation parameter reduce heat transfer rate at the surfaces. Heat and mass 

transfer on a boundary layer of an electrically conducting viscous fluid 

through a porous media over an exponentially stretching sheet with an 

impact of a magnetic field was investigated by Swain et al.12. In their study, 

they also considered the effect heat source/sink and thermal radiation. In the 

context of exothermic and endothermic chemical reactions, heat generation 

is very valuable. Mass transfer effect on MHD flow past an impulsively 

started infinite vertical plate was presented by Shankar and Kishan13. 

Furthermore, flow on an MHD boundary layer, heat and mass transfer of an 

incompressible viscous and radiating fluid due to an exponentially 

stretching sheet were studied by Devi et al.14. 
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       An MHD flow on a boundary layer and the characteristics of heat 

transfer of a non-Newtonian viscoelastic fluid over a flat plate with a linear 

velocity in the attendance of non-uniform heat source and thermal radiation 

were inspected by Abel and Mahesha15. In addition, the MHD flow of a 

Newtonian liquid and the properties of heat and mass transfer over an 

exponentially stretching sheet with radiation effect have been examined by 

Kameswaran et al.16. Their result showed that the Prandtl number and 

radiation parameter have an inverse effect on temperature profile. Moreover, 

Khalili et al.17 examined MHD boundary layer flow past an exponentially 

stretching with chemical reaction, radiation and heat sink. They have 

observed that the reaction rate parameter affected the concentration profiles 

significantly and the concentration thickness of boundary layer decreases 

when the reaction rate parameter increases. 

       A vast body of knowledge encompassing analytical and numerical 

studies explaining various aspects is now available on the stretching flow18-

27. To the best of the author's knowledge, the effect of chemical reaction and 

viscous dissipation on MHD flow past an exponentially stretching sheet 

with a heat sink is not studied adequately in a comprehensive way. Hence, 

this problem is investigated. The aim of this investigation is to discuss such 

a flow problem. Similarity variables have been used to transform the 

governing PDEs equations into a nonlinear ordinary differential equations. 

So as to reveal the impact of various governing parameters on the velocity, a 

temperature, concentration, coefficient of skin friction, Nusselt number and 

Sherwood number a parametric analysis is accomplished and discussed in 

detail. 
 

                   Nomenclature: 

0 0 0, ,V k Q are constants 

0 :B magnetic field strength 

:C concentration of the fluid in the 

     boundary layer 

0 :C reference concentration 

:fC skin friction coefficient 

:pC specific heat at constant  

      Pressure 

 

:hS local Sherwood number 

:T  temperature of the fluid 

T : temperature at the surface of 

the 

      sheet 

T ambient temperature of the 

fluid 

0T : reference temperature 

:U  velocity of the stretching 

surface 
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:C concentration near the surface 

:C concentration far away from 

the 

       surface 

:D mass diffusivity coefficient 

     through temperature gradient 

:cE viscous dissipation parameter 

:f  dimensionless velocity of the  

    fluid 

:j mass flux 

:k thermal conductivity of the fluid 

:L reference length 

:M magnetic field parameter 

:Nu local Nusselt number 

:rP Prandtl number 

:q surface heat flux 

Re :Reynolds number 

:S suction 

:Sc Schmidt number 

1k chemical reaction rate parameter 
 

0 :U characteristic velocity 

                    Greek symbols: 

: density of the fluid 

 dimensionless temperature of 

the 

    fluid 

: wall shear stress 

: dimensionless concentration 

of  

     the fluid 

: similarity variable 

: kinematic viscosity of the 

fluid 

: heat generation parameter 

: electrical conductivity of the  

    fluid 

: coefficient of viscosity 

               Subscripts: 

: condition at the wall 

: condition at infinity 

 
 

 

2 . Mathematical Formulation 
 

       In this article, a laminar, two dimensional steady flow of an 

incompressible viscous, electrically conducting fluid over a continuous 

exponentially stretching surface is considered. The origin of the system is 

positioned at the slit from which the sheet is drawn. In this coordinate the of 

frame the x axis is taken along the path of the continuous stretching plane.  
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Figure 1. Schematics of the problem. 

 

The y axis is measured normal to the surface of the sheet. The sheet 

velocity is supposed to vary as an exponential function of the distance x  
from the slit. The temperature and concentration far away from the fluid as 

displayed in Figure 1 are denoted by T  and C  respectively. The 

concentration differences and ambient temperature sheet are also supposed 

to be exponential functions of the distance x from the slit. A variable 

magnetic field of strength pertained normal to the sheet is denoted by  B x . 

The variable chemical reaction is imagined to be  pk x  and variable heat 

sink parameter  Q x , where 0k  and 0Q  are constants. The parameters wT , 

wC  and 0B  stands for the temperature at the surface of the sheet, 

concentration at the surface of the sheet and magnetic field strength 

respectively. 

       Under the above assumptions, the governing equation of the 

momentum, heat and mass transfer transports subject to viscous dissipation 

and heat generation can be written as: 
   

(2.1)              0
u v

x y

 
 

 
,   

  

(2.2)              
 22

2

σB xu
u

ρy

u u
u v v

x y

  
  

  
, 

 

(2.3)              
 

 
2*2

2
p p p

Q xT T k T u
u v T T

x y c c c yy



  


    
      

    
, 
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(2.4)               
2

2 p

C C C
u v D k C C

x y y


  
   

  
.  

 

The velocity components in the x  and y  axis is symbolized by u and v  

respectively and the kinematic viscosity  , the fluid density  , the 

temperature of the fluid T , the thermal conductivity of the fluid k , the 

specific heat at constant pressure pc , the boundary layer fluid concentration 

C , the mass diffusivity coefficient D , and the chemical reaction rate 

parameter is represented by 1k . 

The boundary conditions associated for the velocity, temperature and 

concentration profiles are 
 

(2.5)              

 0

2
0

2
0

, ,

, 0,

,

x

L

x

L

x

L

u U U e v V x

T T T T e at y

C C C C e

 










  




   



  


 

 

(2.6)              , ,0u T T C C     as y  . 

 

where, U   is the uniform velocity of the sheet and L  is the reference 

length. Introducing the following dimensionless quantities, the mathematical 

analysis of the problem is simplified by establishing the following similarity 

transformations: 
 

(2.7)             

 
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where   is the similarity variable,  f   is the dimensionless stream 

function,     is the dimensionless temperature, and     is the 

dimensionless concentration, u  and v  are also defined using the stream 

function as: 
 

                     u
y





 and v
x





, 

 

which satisfies equation (2.1). Then, by using similarity transformation 

quantities, the governing equations (2.2)-(2.4) are transformed in to the 

ordinary differential equation as follows: 
 

(2.8)             22 0f f f f Mf       , 

 

(2.9)              2 0rP f f Ec f           , 

 

(2.10)            1 0cS f f k         , 

 

with boundary conditions: 
 

(2.11)           
       

     

0 , 0 1, 0 1, 0 1, 0,

0, 0, 0, .

f S f at

f as

  

     

     


    

 

 

The parameters involved in the above equations are the Eckert number cE , 

magnetic parameter M , Prandtl number  rP , heat generation parameter  , 

Schmidt number cS , chemical reaction rate parameter 1k , and the Suction 

parameter S . These parameters are defined by: 
 

(2.12)            

 

2
0 0 0

1

0  00 

2
0

0

2 2
,  , ,

2

2
,  , .c c

p

V B L k L
S M k
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L
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E S

c T T c U D



 











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



   


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       The physical quantities which are involved are the skin friction 

coefficient, the local Nusselt number, and the local Sherwood number. 

These quantities can be defined as 

(2.13)            
2

2
fC

U








 , 

 

(2.14)            
 

x q
Nu

k T T



 




, 

 

(2.15)            
 

h

x j
S

D C C



 




, 

 

where  , q  and j  are the shear stress, heat flux and mass flux at the 

surface respectively, and they are defined by 
 

(2.16)             
3

0 2

0

Re
0

2

x

L

y

Uu
e f

y L



 



 
  

 
, 

 

(2.17)            
 

 2

0

Re
0

2

x

L

y

k T TT
q k e

y L



 




 
  

 
, 

 

(2.18)            
 

 2

0

Re
0

2

x

L

y

D C CC
j D e

y L



 




 
  

 
. 

 

Using equations (2.16)-(2.18), equation (2.13)-(2.15) can be transformed in 

to 
 

(2.19)             

Re

2
0

fC

f
x

L

 , 

 

(2.20)             0
Re

2

Nu

x

L

   , 
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(2.21)             0
Re

2

hS

x

L

  , 

 

where   is the coefficient of viscosity and 
0

Re
U L

v
  is the Reynolds 

number. 

 

3. Solution by OHAM 
 

       The non-linear ordinary differential equations (2.8)-(2.10) which is 

transformed together with boundary conditions (2.11) are solved by Runga-

Kutta fourth order method along with shooting technique.  Based on this 

method on the given problem the following assumptions are made  
 

                    
     

       

1 , 2 , 3 ,

4 , 5 , 6 , 7

f f f f f f

f f f f   

    


    

 

 

and rewriting equations (2.8)-(2.10) with their boundary conditions in the 

form of 
 

(3.1)             22f ff f Mf      , 

 

(3.2)              2
rP f f Ecf          , 

(3.3)              1cS f f k        . 

 

The appropriate boundary conditions are: 
 

(3.4)             
       

     

1 , 2 1, 4 1, 6 1,

2 0, 4 0, 6 0.

a a a a

b b b

f S f f f

f f f

    


  

 

 

The initial and boundary condition points are indicated by a  and b  i.e. 

0a  , b   . It supposed the step size 0.01   and the accuracy 

convergence criteria to be a five decimal value before solving the problem 

by the explained method using Matlab program,. 
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4. Results and Discussions 

 

        The transformed ODEs of momentum, energy and concentration Eqs. 

(2.8)-(2.10) subjected to the boundary conditions (2.11) were analytically 

solved by using Runga Kutta fourth order method along with shooting 

technique. We obtained the graph of velocity, temperature, and  

concentration profile for diverse values of governing parameters. The 

results obtained are displayed through tables and figures. The coefficient 

of skin friction for various values of the magnetic parameter and for a 

fixed value of 1 0c r cS E P k S       is displayed in Table 1. We 

have observed that an increase of the magnetic parameter M  raises the 

skin friction coefficient; as a result of the opposition to the flow caused by 

the induced Lorentz force. The heat transfer coefficients are revealed in 

Table 2 for different Prandtl number rP . It is clear that the Nusselt 

number raises with an increase of Prandtl numbers. In both cases, the 

present result is in a good agreement with the previously published results. 
 

Table 1. A comparison of the skin friction coefficient  0f   for different values of M 

and for fixed values of 1 0c r cS E P k S      . 
 

                                          0f   

M Kameswaran et al.
16

 Sai et al.
28

 Present 

0 1.28181 1.29038 1.281861 

1 1.62918 1.63038 1.629190 

2 1.91262 1.91285 1.912625 

3 2.15874 2.15879 2.158743 

4 2.37937 2.37938 2.379382 

 

Table 2. Values of Nusselt number  0  in comparison between current study and 

previous study for varies values of rP  and for fixed values of 

1 0c cS E M k S      . 

 

                                         0   

Pr Devi et al.
29

 

 

Khalili et al.
17

 Present 

1  0.954811  0.954955  0.954956 

2  1.471454  1.471421  1.471422 

3  1.869609  1.869044  1.869045 

5  2.500128  2.500109  2.500106 
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Fig. 2 displays the suction parameter S  consequence on the velocity profile. 

We observed that the velocity profile decreases with an increase in the 

suction parameter. The impact of the suction parameter on the temperature 

profile is illustrated by Fig. 3. It is watched that the temperature profile is 

reduced with an enhancement of the suction parameter S . The thickness of 

the thermal boundary layer lessened with an increase of the suction 

parameter. The influence of the suction parameter S  on the concentration 

profile is displayed using Fig. 4. Thus, we observed that an increment o the 

suction parameter S  reduces the concentration profile.  

       Fig. 5 shows the influence of a viscous dissipation parameter cE  on the 

temperature field. It is seen that the thickness of the thermal boundary layer 

highers with an enlargement of viscous dissipation parameter cE . Fig. 6 

exemplifies the heat generation parameter   influence on the concentration 

profile. It is watched that the heat generation parameter   reduces the 

concentration profile. The Prandtl number influence on the temperature 

profile is displayed by Fig. 7. Hence, large values of rP  reduces the 

temperature distribution. It is due to the fact that rP  has an inverse 

relationship with the thermal conductivity of a fluid, as a consequence, the 

thermal boundary layer thickness also decreases. The Schmidt number cS  

and chemical reaction 1k  impact on the concentration profile is shown by 

Fig. 8 and Fig. 9, respectively. The result has displayed that, an increment of 

both parameters reduces the concentration profile. In the case of  Schmidt 

number cS , increasing the size of cS  means decreasing the diffusivity of the 

fluid, this causes the fluid less concentrated. The influences of magnetic 

field parameter  M  on the velocity field and temperature profile are shown 

by Fig. 10 and Fig. 11, respectively. It is obtained the temperature profile 

increases while the velocity profile decreases with an increment of M . Since 

a Lorentz force is created due to the occurrence of M  that slows down the 

motion of the fluid, as a result, the distribution of velocity is reduced and the 

thermal boundary layer thickness is increased. 



 

118                                          M. N. Raja Shekar and B. Shankar 
 

 

 

          Figure 2. The influence of s on the            Figure 3. The influence of  s on the 
                         velocity field.                                                    temperature field.                                                              

 
          Figure 4. The influence of s on the               Figure 6. Temperature profile with a  

               concentration distribution                                         change of   

 
       Figure 5.  Temperature profile with                  Figure 7. Temperature profile with 

              an effect of cE                                                               variation of rP  
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         Figure 8. The impact of cS  on the                  Figure 9. The impact of 1k  on the  

                concentration profile.                                             concentration profile.   

 
        Figure 10. The behavior of  velocity              Figure 11. the impact of M on the  

              profile with a variation of M                                         temperature. 
 

5. Conclusions 

 

       In this article, the effect of different flow parameters on the 

dimensionless velocity profile, temperature profile, the concentration profile 

is considered. The governing problem is solved  numerically using RK 

fourth order method along with shooting technique.  It is observed that: 

(i) Increment of S  has a reducing effect on the velocity, temperature 

and concentration profiles. 

(ii) An increase of the viscous dissipation parameter cE  increases the 

temperature profile,  

(iii) Increasing the heat generation parameter   enhances the 

temperature profile. 
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(iv)  As the values of cS  and 1k  increases the concentration profile 

decreases. 

(v) The Prandtl number rP  has a reducing effect on the temperature 

profile.. 
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