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Abstract: Aim of the paper is to investigate the hydromagnetic unsteady
flow of a viscous incompressible electrically conducting fluid in a
channel with slip at the permeable non-conducting boundaries. The
expressions for velocity and temperature distributions are obtained using
regular perturbation technique, discussed numerically and shown through
graphs. The expressions of skin-friction and Nusselt number at the
boundaries are derived, discussed numerically and their numerical values
for various values of physical parameters are shown through graphs.
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1. Introduction

The study of flow of an electrically conducting fluid through a channel
with permeable walls not only possesses a theoretical importance but also
applicable to many biological and engineering problems such as MHD
generators, plasma studies, nuclear reactors, geothermal energy extraction,
the boundary layer control in the field of aerodynamics, blood flow
problems etc. For almost a hundred years, Scientists and Engineers have
applied the no-slip boundary condition to fluid flow over a solid surface.
While the well accepted no-slip boundary condition has been validated
experimentally for a number of macroscopic flows, it remains an
assumption not based on physical principles.

Navier' proposed a more general boundary condition, which includes the

possibility of fluid slip. An extensive theoretical work on hydromagnetic
fluid flow in a channel under various situations has been presented by
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Hartmann®, Borkakati and Pop3 etc. Ruckenstein and Rajora4 investigated
fluid slip in glass capillaries with surfaces made repellent to the flowing
liquid. Pal et al.® investigated the effect of slip on longitudinal dispersion of
tracer particles in a channel bounded by porous media. Makinde® studied the
problem of laminar flow in channels of slowly varying width permeable
boundaries. Barrat and Bocquet’ discussed significant slip in nanoporous
medium when the liquid is sufficiently non-wetting, which increases the
effective permeability of the nanoporous medium. The closed form solution
for steady periodic and transient velocity field under slip condition have
been studied by Khaled and Vafai®. The effect of slip condition on MHD
steady flow in a channel with peremeable boundaries has been discussed by
Makinde and Osalusi’.

Aim of the paper is to investigate the effect of magnetic field on slip
velocity and heat transfer through unsteady flow of an electrically
conducting fluid in a non-conducting channel of uniform width.

2. Formulation of the Problem

Consider the unsteady flow of an incompressible viscous electrically
conducting fluid in a channel with slip at the peremeable boundaries under
the influence of a transverse uniform magnetic field. It is assumed that the
fluid has small electrical conductivity and the electro-magnetic force
produced is also very small. Cartesian coordinate system is taken such that
where x* lies along the centre of the channel and y* is the distance
measured in the normal section such that y* = h is the channel’s half width.
Let u* and v* be the velocity components in of x*- and y*-directions,
respectively. The governing equations of continuity, momentum and energy
are given by
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Ox* oy* 2\ op* oOx*
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where V2 = +——=, p the fluid pressure , p the fluid density,
Ox *2 6y*2

v(=u/ p) the kinematic viscosity, o the electrical conductivity,
By = u,H, the electromagnetic induction, g, the magnetic permeability,

C, specific heat at constant pressure, x thermal conductivity and H, the
intensity of magnetic field.

The corresponding boundary conditions are

%k %k %
y*zO:au :O,v*zo,aT*=O, y*:h:uau*:—ﬂu*,
(2.5) oy* oy Oy
VvE@E) =V {l+cexp(io* t*)}, T* =T {1+ cexp(io*t*),

where u is the dynamic viscosity coefficient, 8 the coefficient of sliding
friction, V' the mean suction velocity and 7 the static temperature.
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Fig. 1: Physical Model
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3. Method of Solution

Intoducing the following dimensionless quantities

x* y* Vt* ho* u* v p*h
x:_ay:_at:_aa): s U=—"7, V=", D= P
h h h 14 V V pvV
3.1
2_p2 2 C
Re Vh M2 = MA,L_,U Ec = 4 ’pr:h,
1% Y7, hp’ C,To K
into the equations (2.1) to (2.4), we get
(3.2) ou 8v _o,
o 6y
ou  ou  ou|_ op, o%u az )
(3.3) Re| —+u—+v—|= —ReM~“u
o e |T e o 8y2
2 2
3.4) Re @+ @+v@ = 8p v +ﬂ,
ot ox 6y Gy ax ayz
2 2 2
PrRe %Jru%ﬂz% =2PrEc (a—u) + o +1 au+av
ot ox oy ox oy 2\ 0y Ox
(3.5)
2 2
a—f+a—§++M2PrEcu2+Q,
ox~ Oy

where Re is the cross-flow Reynolds number (with Re > 0 indicating suction
and Re < 0 is for injection ), M the Hartmann number, Pr the Prandtl
number, Ec the Eckert number and L is the slip parameter.

The corresponding boundary conditions in dimensionless form are
y=0: ou _ =0,v=0, 2 =0,
y A
(3.6)

y=lu= —L%,v =l+¢eexp(iot),d =1+ cexp(iot).

Equations (3.2) to (3.5) show that their solutions are not easily tractible.
Therefore perturbation method is a global approach to find the solution of
such differential equations.
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Evidently, the parameter € is assumed to be small such that 0 < ¢ < 1,
therefore assuming

(3.7) fOap,0) = foxy)+&fi(x ),

where f stands for u, v, p or 6. Using equation (3.7) into the equations (3.2)
to (3.5) and equating the coefficients of O(g), we get

Zeroth-order equations

Oug Vo _

3.8
(3-8) ox Oy

0,

2 2
(3.9) Re|ug 20 4y Jo|__%Po U0 Oy po g2,
ox oy ox ol ayz

2 2
(3.10) Re{uo 5(;’O+VO avo}:_apua Vo+8 o
X

qy oy ox? 8y2 ’
2 2
PrRe| u, %% +vp 0 |0 O | pp2 Pr Ecuy’ +Q
Ox oy ox? 8y2

(3.11) , , , ,
v (%) (20) g{(%) o(2) H%](%)
ox oy 2\ oy ox oy )\ ox

First-order equations

(3.12) Gm oy,
ox Oy
2
(3.13) Ox Ox y oy ox  ax® oy

0 2 2
(3.14) Re ia)vl+ul‘zﬁ+uo%+waﬁ+v@%}—a"1 Lo o
X X

(315) Re 1606’1 +u1 860 +1/l0 601 +V1 +V0
ox ox
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+4PrEc (%j(%j+ Xo [Ny o pr ge| | P09
ox )\ Ox oy J\ oy oy Oy
+(%%H%j o |, (v (avlj-kMzuoul
ox Ox ox J\ Oy oy )\ ox

Now the corresponding boundary conditions are

y=0:20 _o_ % gy % -9
oy oy oy oy
(3.16)
Ouyy ouy

y:l:uoz—K—,ul =—K—,v0=1=v1,00=1=91.
y

Eliminating py and p; between the equations (3.9) and (3.10), and (3.13) and
(3.14) respectively and introducing stream-function y and vorticity ® as
given below

G17) ug= V0 o e (a vo , awo}

oy ox ox? 8y2
and
oy oy 52% 52%
(3.18) y=—"", Vy=—"-—, =
oy Ox ox? ay

Using equations (3.17) and (3.18) into the equations (3.8) to (3.11) and
(3.12) to (3.15) respectively; we get

2
(3.19) Vza)O:Relzm—MZM:l, wy =~V

a(x,y) oy?
and
2
a(xa J’) ayz ’

The corresponding boundary conditions are
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Vo _ _151//1 :_K52W1 oy _ 1L
oy 8y2 ox oy ayz ox

Following Berman'’, substituting
(322)  yo=xi(»), @ =xGo(y), v =xF (), & = xGy(y);

into the equations (3.19) and (3.20), and equating the coefficients of O(x),
we get

2
F,
(3.23) 4"Go _pe God—O—FO@+M2GO ,
dy? dy dy
2
F,
(3.24) Gy =— d 20 :
dy
2
F,
(325 90 _ge ReiwG, + G, dh o 4G +G dFy ~F, 46, +M3G, |,
dy? dy dy dy dy
2
(3.26) G, = —d—fl.
dy
The corresponding boundary conditions are reduced to
2 2
F,
y=0 d—z‘):o,F0 =0,“’—’§1_0,F1 =0,
dy ly
(3.27)
2 2
F, F,
y= @__Kd_z(),Fo __l,dFl __Kd }271 JF=-1
y dy dy dy

Equations (3.23) to (3.26) are coupled non-linear differential equations with
the boundary conditions (32). Since Re is very small, therefore Fy, F;, Gy
and G, can be expanded in the power of Re, as given below

(3.28) H = Hy+ReH; +O(Re?),

where H stands for Fy, F;, Gy or G;. Substituting (3.28) into the equations
(3.23) to (3.26) and equating the coefficients of like powers of Re, we get
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2 2
(3.29) d GZOO 0, Gyo=-12 Fgo,
d d
Y 'y
2 2
' F
(3.30) d G201 {Good 0 _ Fy 4Gy +M2GOO}, Go, __ 4 o,
dy dy dy dy
2 2
(3.31) d G201 0, Gy=-2Tlo @0,
d d
Y Y
a’G, [ dFyo dGoo dFyo Gy .2
=liwGy+ G - F +G - F +M*“Gy |,
. e 1wt + Goo dy 10 10 dy 00 &y 10
d*F
G =-——".
dy

The corresponding boundary conditions are

2 2 2 2
 dhy _d7Ry _d'hy _d°H,

y=0 2 2 2 2 =0, Fyo =Fo; =Fo=F1 =0,
dy dy dy dy
2 2 2
(333) yei: %o _ g dFn  din_ g dFn  dFo_ . d"Fi
& dy a2 dy 0
2
iy __pd F11, Foo=Fo=-1, Fy=F=0.
2
dy dy

Equations (3.29) to (3.32) are ordinary second order differential equations
and solved under the boundary conditions (3.33). Through straight forward

calculations, the solutions of Gy, (y), Fyy(¥), Goi(»), Fo(»), Gio(»),
F,(»), G,;(y) and F,(y) are known and given by

(3.34) Goo(¥) = a1y =Gy,
(3.35) Foo(y) = a2y3 +azy = Fy,
(3.36) Gy (¥) = alOyS +a11y3 +a,),

(3.37) Fy () =agy’ +a,y° +agy’ ++ayy,
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2

(3.38) Gn(y)=alsa2 y5+M6a1 ¥ +Coy+Cyy +i%y3,
(3.39) F(y)=F (V) +iF (),

where

(3.40) Fir(y)= a23y7 +a22y5 "“124J’3 tay),

and

(3.41) Fy()= a21y5 +a25y3 +ayy;

where a; to a,;, C, to C,, are constants and their expressions are given in
Appendix.

Following Verma and Bansal'!, 6y and 6, can be expanded in the powers of
X, as given below

(3.42) Oy =y +x°C, and 6 =g, +x°C,.

Substituting (3.42) into the equations (3.11) and (3.15), and equating the
coefficients of like powers of x, we get

(343) ¢y =PrRe(2Fy ¢y~ Foly )~ PrEci(Fy Y + M2 (Fy )%,
(3.44) by +2(, =—PrReFyd, —4PrEc(F, )’ -0,
¢1 =PrRe(iod| +2F ¢\ +2F, {) - Fygy —F<y)
(3.45)
—2PrEc(Fy F;, +M°F, F),

(3.46) ¢ +2¢, =PrRe(iog - Fyby — Fdy )—8Pr EcF, F, .

The corresponding boundary conditions are reduced to

y=0:—"= =
(3.47) dy dy dy dy
v=ligy=1=¢,{,=0=¢,.

Since Re is small, therefore ¢,, ¢, ¢, and &, can be expanded in the
powers of Re as given below
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(3.48) $ =Y Re ¢y, $o =2 Re' &y
i=0 i=0

(3.49) é = Re' g, & =Y Re' &y,
i=0 i=0

Substituting (3.48) and (3.49) into the equations (3.43) to (3.46) and
equating the coefficients of like powers of Re, we get

(3.50) Coo =—PrEc(Fy ) +M*(Fyy ),
(3.51) $oo +2C00 = —4Pr Ec(Fy, )2 -0,

(3.52) Cor =Pr[2Fy Coo = Fooloo 1-2Pr Ec[Fyy Fyy +M*Fyo Fy; 1,

(3.53) Por +2601 =—PrFyodog —8PrEcFy, Fy
(3.54) é’lO” = _2 PI‘ EC[FOOHFiO” +M2FOO’F10,]’
(3.55) o +2C10 =—8Pr EcFyy Fy

S =Prliodyy +2(F o Soo + Foo S10) — (Fo0S10 + FloSo0o )

—2PrEcFyy F, +Fy Fy +M2(F01Flo + Foo F11))s

(3.56)

G5 ¢ +26,, = Prliog, — (Foodo + Frodoo )-8 Pr Ec[Fy Fyg +Foo £y ]
The corresponding boundary conditions are reduced to
y=0:Cp =0=0y.C01 =0=0.¢10 =0=¢.¢1 =0=4¢,,

J’:lié’oo :0a¢00 =1,4’01 :O=¢01,§10 :O,¢10 :laéyn :O:¢11.

The equations (3.50) to (3.57) are ordinary coupled differential equations
and solved under the boundary conditions (3.58). Through straight forward
calculations, the solutions of Joo(¥), @(¥), So1(¥): P0i(¥)s S1o (W),

$ho(»). &11(v) and ¢, (y) are known and given by

(3.59) 400()’)2176)’6"'57)’4"'58)’2+b5,

(3.58)
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(3.60) Bo0 (1) = byy 3" +brgy® +brgy* +b3oy* + by,

(3.61) $o1(0) = biey'” +bi7)" +bgy® +bigy” +by5)” +bys,

(3.62) Po1(¥) = 1739)’12 + 1740)’10 "‘b41)’8 "‘1742)’6 + b43y4 "‘1744)’2 +bsg,
(3.63) $10(0) = bsgy® + b5y +b5y 3% + by,

(3.64) B0(¥) = bsoy® +boy” + by +bgyy* +bsg,

(3.65) i) =Cur+igi; (),

(3.66) $1 (V) =d1r(V) +idh (D),

where

(3.67) $iir(Y) = bogy"” +byoy® + gy +bg y* + by y® + s,

(3.68) $111(0) = by y® +by5y° + by +by7y° + by,

(3.69) dr(¥)= 17103)’12 "‘[7104)’10 "‘17105)’8 "‘17106J’6 +b107y4 "‘17108)’2 + D95
and
(3.70) A1 (1) =bogy'” +bogy® +byg01° + by y* + b0 + by

where b, to by, are constants and their expressions are given in Appendix.

Hence ¢ and ¢ are obtained as given below

(3.71) @ =@y, + Redy, + ¢y, cos wt + & Re(@,p cos ot — @, sin wr),
(3.72) & =Gy +Redy +&6,cosaxt +eRe(S)z cosmt — &, sin o).

Finally, the expressions of u(x, y,t), v(x,y,t) and 8(x, y,t) are known and
given by

u(x,y,1) = x(Fyy +Re Fy)
(3.73)
+ gx[Flo' cos wt + Re(F},, coswt —F,,; sin cot)},
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v(x, y,1) =—(Fy +Re Fyy;)
(3.74)
—S[FIO coswt +Re(F g coswt — Fjy; sina)t)],

(3.75) O(x,y,t) = ¢(y,0) + x°C (,1).

4. Skin-friction Coefficient

Skin-friction coefficient at upper plate is given by

(4.1) (Cp) _h :(le ,
u V) et
(6u* av*J
where 7= u T o .
oy* Ox Vi

Hence the expression of skin-friction coefficient at upper plate is given by

(Cph = x(Fy +Reky; )
(4.2)

”n

14 ”
+5x[FlO coswt +Re(Fjp coswt—F; sina)t)}.

5. Nusselt number

The rate of heat transfer in terms of Nusselt number at upper plate is
given by

5.1) (V) =%=—%} ,
y=1

where g = —« " .
ay y¥=h

Hence, the expression of the Nusselt number at upper plate is given by

(5.2) (Nu), = —(% +x° ﬁ} :
ly Yl

dy
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6. Results and discussion
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Fig. 2 Variation of axial velocity versus y when © =5, ot =n/6, € = 0.5

It is observed from Fig. 2 that axial velocity of fluid increases near the
lower plate due to increase in the cross-flow Reynolds number, slip

parameter or magnetic field intensity, while different behaviour is noted at
the upper plate.

It is noted from Fig. 3 that transverse velocity of fluid decreases due to

increase in the cross-flow Reynolds number, slip parameter or magnetic
field intensity.

Fig. 4 depicts that fluid temperature increases near the lower plate due to
increase in the Prandtl number, the cross-flow Reynolds number, the Eckert
number, magnetic field intensity or volumetric rate of heat generation
parameter, while it decreases due to increase in slip parameter.

It is noted from Fig. 5 that skin-friction coefficient at the upper plate
increases due to increase in the magnetic field intensity or cross-flow
Reynolds number, while it decreases due to increase in slip parameter; but it

decreases due to increase in the cross-flow Reynolds number in the absence
of magnetic field intensity.
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Fig. 3 Variation of transverse velocity v versus y when o = 5,0t = /6, € = 0.5
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Fig. 4 Temperature distribution versus y when € = 0.5, ® = 5, ot = /3
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Fig. 6 Nusslet number at upper plate versus Re when ¢ =0.5, ® =5, ot =n/3
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It is noted from Fig. 6 that the Nusselt number at the upper plate
decreases due to increase in slip parameter, while it increases due to
increase in the Eckert number, the Prandtl number,the magnetic field
intensity, cross-flow Reynolds number or volumetric rate of heat generation
parameter .

10.

11.
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Appendix
Cl: - ’ C3:_m’ alzcla az:—ﬂ’ a3_C3a
3k +1 203k +1)
aa Hza a.a Hza
420 120 60 4
3 C a.a H2a
Cs (as —ay), C7:?5—a4, a6:_1_2 __ 1

T 3k+1

s a7 - s
420 120
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C a.a Hza
aSZ_?Sa ag =C;,, 010:11_02’ a; = 6 L a4y =G;,
5 2
aa, H<q wa, alaz Ha
577900 120 44T o BT g CFTD T (D
_3as—a 3(a;. —a a
ag wa, Hza a,a, a7

azoz?—ama dy = 120° azz—ﬁa a3 = 210° g = 6

a
— 18 _ _ _ 2 2

b, = —Pr Ec(6H?a,a; +36a,?), b, =—PrEcH?a,®, by =—(bs+b; +by),

b6:_’ b7:%’ b8 :%, b9 :—42PI‘ECCZ2€I6H2,

by = Pr(2a,b, —4ashy) — 504 Pr Eca,a, —30Pr Eca,a; H* —14Pr EcayagH?,
by, = Pr(4a,bs — 2asb;) — 240 Pr Eca,a; —18Pr Eca,agH* —10Pr Ecaya, H?,
by, = 6Pra,bs — 72 Pr Eca,aq — 6 Pr EcayagH* — 6 Pr EcazagH?,

by = 2Prashs —2Pr EcazagH?*, b5 = —(bys + by +byg +bjg +byy),

by, = —2b, —36Pr Eca,’, by, =—2by —24Pr Eca,a;,

by, =—2bs—4PrEca;’ —Q, byg=1—(by; +byg+byy+by), by = %

2
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b
=2, byg :ﬁ’ by :%a by, ==2bys —8Prayb,;,

by, =-2b; —6Pra,byq —8Prazb,; —168 Pr Eca,a,

byy ==2b,g —4Pra,b,g —6Prasb,g —120Pr Eca,a, —56 Pr Ecayay,
byy =—-2bg —2Pra,by, —4Prasb,g — 72 Pr Eca,ag —40Pr Ecasa,,
bys = —2b,5 —2Prasby, — 24 Pr Eca,ay — 24 Pr Ecasag,

b36 = _2b15 —SPI' Eca3a8, b38 = _(b39 +b40 +b41 +b42 +b43 +b44),

b b b b b b
by=2L po o= o O3 Daop O, D6
9 130 40 =90 47 e 2730 4377, 4=
b,s =—18PrEcH?a,*, by, =—2Pr Ec(36a,” + 6H a,a;),

2 2 bys byg
by; ==2PrEcH"ay", by =—bsy—bs;—bs;, bsg=—=, bsy=—>,
30 12

b47 2
b52 :7, b53 = _2b50, b54 = _2b51 _72 Pr Ecaz N
b55 = _2b52 - 48 Pr Eca2a3, b56 = _2b49 —8PI‘ Eca32,

b b b b
b =1—beg —beg —bey —bey, beg=—2, bo=—2, b, =—> b, =25
58 59 ~ D60 D61 ~ D62 59~ 56 50 =307 %6171, 62 =

by, = Pr wbs, —240Pr EcH*a,, —18Pr EcH aya,5 —10Pr EcH aya,,,
bgs = Pr wbs, — 72 Pr Ecaya,s — 6 Pr EcH?aya,, — 6 Pr EcH aya,s,
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-30Pr EcH2a2 (a; +ay,)—14Pr EcH2a3(a6 +a,3),

—18Pr EcH* (ag + a,,) —10Pr EcH a;(a, + a5, ),

b70 = 6PI‘ az (bS + b49) - 72 PI‘ Ecaz (ag + a24) - 6 PI‘ ECH2a2 (a9 + a26)

2 b63 b64
b b b b b b
by=-9_  p =206 p =T p 68 p -9 p =0
76 12 77 > 78 90 79 36 30 30 31 12
b
b, = %, bgy =—(bsg + g +byy +bgy +bgy), bgy =—(bg4 +bys5 +Dbig +by7),

byy = bgy +ibgy, bys =—2byy —Prabsy,

bgg = —2b;5 — Prwbgy —120 Pr Ecasa,,,

bg; = —2b,s —Prwby, — 72 Pr Eca,a,s —40Pr Ecasa,,,

bgg = —2bs; — Prwbg, —24 Pr Eca,, — 24 Pr Ecasa,;s,

bgg = —2bgy — Pr wbsg —8Pr Ecaza,,, byy = —2b,5 +8Pray(by, +bsg),

byy =—2bgy +4Pray(byy +bg; ) +6Pray (b +byy)

—120Pr Eca,(a; + a,,) =56 Pr Ecas (ag + a,3),

byy =—2bg, +2Pra,(byy +bsy) +4Pray(byy + b))

—72Pr Eca,(ag + a,, ) —40Pr Eca;(a; + ay,),
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b b b

bys = —2bgy —8Pr Ecay(ag + ayg), bog =—>, byy =2, by ==L,
95 ]3 s(ag +ay), bog 90" 0 T 567 M0 T3

b b b b b b
b= p Doy o g Puog P, D
101=75 D2 =57 P03 =500 Pa T Plos =5 Plos =5

b b
by :_1924 ) byog :_;5 ) bigg = —(broz + Do + bios + bios + bio7 +biog)

bi1g = —(bog +bgg +bygg +byg1 + D), by7 =byge +ibyyg,



