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Abstract: In 2009 N. L. Youssef, S. H. Abed and S. G. Elgendi1
introduced generalized /3 -conformal change. This transformation

combines both ,B -change and conformal change in general setting. In
1985, M. Mastumoto studied the theory of Finslerian hypersurfacez. In
the present paper, we obtain the relations for Finsler hypersurface given
by generalized pS-conformal change to be hyperplane of 1% kind ,
hyperplane of 2" kind and hyperplane of 3™ kind. Further these Finsler
spaces are Landsberg space, Berwald space and locally Minkowskian
space. The terminology and notations are referred to the Matsumoto’s
monograph®.
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1. Introduction

The conformal theory of Finsler spaces has been initiated by M. S.
Kneblman® and has been deeply investigated by many authors™ % 7. In
1941, G. Randers® has introduced Randers change. The geometric
properties of Randers change have been studied by several authors’. In
1974, M. Matsumoto' introduced p-change and this change has been
studied by many authors like C. Shibata', R. Miron'%.

A change generalizing all the above mentioned changes has been
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introduced by S. H. Abed" in 2006 and named it as conformal f-change. In
2009 N. L. Youssef, S. H. Abed and S. G. Elgendi' introduced generalized
S-conformal change. They have established the relationship between some
important tensors associated with Finsler space and the corresponding
tensors associated with Finsler space given by generalized S-conformal
change.

In 1985, M. Matsumoto has studied the theory of Finsler hypersurfaces.
He treated various types of Finsler hypersurfaces and they are called
hyperplane of 1* kind, hyperplane of 2™ kind and hyperplane of 3™ kind.

In this paper we consider Finsler space "F"=(M, L) and special
Finsler hypersurfaces ~F"" of "F". We discuss the different kinds of
Finsler hypersurfaces under generalized f-conformal change. Further we

study the geometric properties of Finsler hypersurfaces under some
conditions.

2. Priliminaries

Let M "be an n-dimensional smooth manifold and F" =(M",L)be an
n-dimensional Finsler space equipped with a fundamental function L(x, y)

on M" . The metric tensor g, and Cartan's C-tensor C,;, are given by**

1. - ; B

gUZEaiajLz, g’ =g,
_18 i _1 ima

Cijk_E k8iis Cjk_Eg ( kgjm),

J

where 9; = — .
dy'
The Berwald connection and the Cartan connection of F" are given by
Bl = (Gj.k,N; ,0)and CT' = (F;}C,N;,Cj.k) respectively.

A hypersurface M " of the underlying smooth manifold M" may be
parametrically represented by the equation x' =x'(u”), where u“ are
Gaussian co-ordinates on M " and Greek indices run from 1 to n-I.
Here, we shall assume that the matrix consisting of the projection factors

B! =0x' /du” is of rank (n-1). The following notations are also employed
B,y =0°x'/ou“ou’, Bi,=v"B.,, BY =B,Bj--

If the supporting element y' at a point (%) of M"" isassumed to

be tangential to M "', we may then write y' =B’ (u)v*, so that v* is
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thought of as the supporting element of M""'. Since the function
L(u,v) = L(x(u), y(u,v)) gives rise to a Finsler metric of M "™, we get a (n-
1)-dimensional Finsler space F""' = (M "™, L(u,v)).

At each point (1) of F"', the unit normal vector N'(u,v)is defined by
2.1 g;B,N’ =0, g.N'N’=1.
If (B,N,) is the inverse matrix of (B;,Ni) , we have

B B’ =67, B!N,=0, N'B*=0, N'N,=1,
and further
22 B,Bf +N'N,=0.
Making use of the inverse (g%) of ( 85) > We get
B =g%g,Bj, N, =g;,N'.

For the induced Cartan connections ICT =(N;’,F ﬁa

y,C;’y) on F"' the

second fundamental h-tensor H ,; and the normal curvature tensor H, are
given by
(2.3) H, =N,B,,+F,Bj,)+M,H,
H,=N,(Bj, + N)B) .
respectively, where M, =C,, B,N’N" and By, = By v".
Transvecting H 4, by vP | we get

(2.4) Hy,=Hgz’ =H,.
Further we put

_ i ATk
(2.5) M,z =Cy BN

The Gauss equation with respect to ICI" is written as

(2.6)R R, Blss + Py (ByH s —BsH )BY,N" +(H, H gz —H ;H,).

s = % as ' gy

3. Generalized S-conformal change Finsler spaces

Let F* =(M,L) be an n-dimensional Finsler space with fundamental
function L= L(x,y). Consider the following change of Finsler structures
which will be referred to as a generalized f-conformal change:

3.1 L(x,y) = 'L(x,y) = f(e”L(x, y), B(x, ),
where f is a positive homogeneous function of degree one in ¢ L and
where 8 =b.(x)y". Assume that “"F" = (M, L) has the structure of a Finsler
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space. Entities related to " F" will be denoted by asterisk symbols.
N. L. Youssef, S. H. Abed and S. G. Elgendi1 defined,

of of 9’ f
fi==—=, f,==—=, fi,=—="—,...etc,,
VAL P 9Bt ™ dLoB
where L =e®L. We use the following notations'
32 q=1f,, p=ff,/L,
9o = Mfn> p0:f22+%’
9., = Ifi. /L, pPa=q,+phH!f,

q_2=f(eaf11—f1/L)/L2, p_ZZQ—z'i'eapz/fz-
Note that the subscript under the above geometric objects indicates the
degree of homogeneity of these objects. We also use the notations:

bi:gijbj’ m; =b,—(B/L*)y, #0, 0,=0,0, p02:%~

The normalized supporting element, the metric tensor, the angular metric
tensor of “F" are given by’
(3.3) @ 'l =€’ fil; + fb,
(b) *hij = e’ ph; +q,m;m,
(©) g, =e"pg; + b, +e p by, +b;y)+e pyyy,;.
(d 'G'=G'+D’, G, =G, + B,
() N,=N,+D..
We use the following lemma which is given by N. L. Youssef, S. H. Abed
and S. G. Elgendil.
Lemma(3.1). Under a  generalized  [-conformal  change
L—"L= f(e°YL, ), Consider the following two assertions:
(i) The covariant vector b, is parallel with respect to the Cartan
connection CI .
(ii) The difference tensor Dj.k vanishes identically.

Then, we have

(a) If (i) and (ii) hold, then © is homothetic.

(b) If o is homothetic, then (i) and (ii) are equivalent.
Above lemma leads us to' N, = N

We have,
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Theoreml(3.1). Assume that the covariant vector b,(x) is Cartan

parallel and o is homothetic. If F" is locally Minkowskian, then so is the
space "F".

4. Finsler Hypersurfaces Given by the Generalized
S-Conformal Change "F "™

We now consider a Finsler hypersurface F"™' = (M "™, L(u,v)) of the
Finsler space F" and another Finsler hypersurface
"F"'=(M"", L(u,v)) of the Finsler space “F" given by the generalized
S-conformal change.

Let N'(u,v) be a unit normal vector at each point of the F"'and they
are invariant under the generalized S-conformal change. Thus we shall
show that a unit normal vector “N'(u,v) of “F"'is uniquely determined by

4.1) *gijB;*Nj=0, *g,;j*Ni*N‘j=1.
Now transvecting (2.1) by v, we get
4.2) WN =0

Further contracting (3.3(c)) by N', N’ and using (2.1) and (4.2), we have
"g;N'N' =e’p+p,(bN')*,

which implies that

. N' N’

gij i o iN2 i o iN2 - 1’
\/e p+p,(b,N") \/e p+p,(b,N")
provided e p+ p,(b,N')*> > 0. Therefore we can put
N = N '
\/e"p+ po(b;N')?

where we have chosen the sign "+" in order to fix orientation.
Using (2.1) and (4.2), the first condition of (4.1), gives us

4.4) (b;N')(pob;B, +ep_y.B,)=0.

Let (p,b,B. +e°p_ y,B.) =0, now contracting this by v*, we find
(pO,B+e"p_1L2):O.

By equation (3.2) this equation leads us to ff; =0. Thus we have f; =0

4.3)

because f # 0. This fact means that L = f(L), which is the contradiction to
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the definition of Generalized /-conformal change of Finsler metric.
Consequently (4.4), gives us

(4.5) ijf =0.
Therefore (4.3) is rewritten as
(4.6) ‘N'=N'/4e’p, (p>0)

now it is clear that “N'satisfies (4.1). Summarizing the above, we state that:
Theorem (4.1). For a field of linear frame (B|,B,,---,B. ,N') of F",

there exists a field of linear frame (B],B),---,B._,,N'=N' /\/E) of the
"F", such that (4.1) satisfied along "F"™".
The quantities ~ B/ are uniquely defined along “F"' by
‘Bf="g”"g,Bj},
where (‘g %) is the inverse matrix of (*gaﬁ) .
Let (*Bi"’,*N .) 1s the inverse matrix of (*B; "N') and then we have
4.7 B.'B’ =6, B.'N,=0, 'N''B*=0, 'N''N, =1.
And further
B,'Bf+N''N, =0,
Wealso get 'N,=g,. N’,ie.,

(4.8) ‘N, =4e’pN,

If each path of a hypersurface F""' with respect to the induced
connection is also a path of the ambient space F", then F""' is called a
hyperplane of the 1% kind. A hyperplane of the 1* kind is characterized by
H,=0.

From (2.3), we have
"H,='N.(By,+ N."B}),
From equation (4.8) and lemma 3.1, we get
"H, =+e°pH,.
Thus we obtain:

Theorem (4.2). Let o be homothetic and covariant vector b,(x) is
Cartan parallel on F". Then a hypersurface F"' is a hyperplane of 1* kind
if and only if the hypersurface "F"" is a hyper plane of 1*" kind.

The torsion tensor "C,, of "F" is given by
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o

* - e
(4.9) Cpu =" pCoy+ Py, +hym, + hkimi)+%m,m m,,
where
B
(4.10) mizbi—?yi,
Contracting (4.10) by N’ and using (4.2) and (4.5), we get
(4.11) mN' =0.
As for the angular metric tensor i, = g, —/,/;, (2.1) and (4.2) yield
(4.12) h.B:N’ =0.

i~
Transvecting (4.9) by Bgﬁ and paying attention to (4.11) and (4.12), we get
(4.13) Cy =e’pCy .

If each h-path of a hypersurface F""' with respect to the induced
connection is also h-path of the ambient space F", then F""' is called a

hyperplane of 2™ kind. A hyperplane of 2™ kind is characterized by
Haﬁ = O .
Now from (2.3), (4.13) and lemma 3.1, we get
*Haﬁ = eapHaﬁ,
Thus we state the following:

Theorem (4.3). Let o be homothetic and covariant vector b,(x) is
Cartan parallel on F". Then a hypersurface F""' is a hyperplane of 2
kind if and only if the hypersurface "F"™" is a hyperplane of 2" kind.

Using (2.5) and (4.6), the equation (4.13) is rewritten as
(4.14) M, =\’ pM .

If the unit normal vector of F"' is parallel along each curve of F"', then

F""' is called a hyperplane of 3™ kind. A hyperplane of 3™ kind
characterized by H,; =M ,; =0.

Thus, from Theorem 4.3 and equation (4.14), we obtain:

Theorem (4.4). Let o be homothetic and covariant vector b,(x) is
Cartan parallel. Then a hypersurface F"™ is a hyperplane of 3" kind if and
only if the hypersurface "F"™ is a hyperplane of 3™ kind.

For hyperplane of 1** kind, the (v)hv-torsion tensor is given by?

(4.15) Py =BK}
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where sz =P, Bé’;
Now using (2.2), then (4.15) becomes
(4.16) Ky =BsPy +N'N,Kj .
Theorem 3.1 gives us 'K 21 =K ;J,y and then we immediately obtain:
(4.17) "Py=B’K,,
On substituting (4.16) in (4.17) and using (4.6) and (4.7), we get
P;; = Pﬁ”;.

Thus we obtain:

Theorem (4.5). Let o is homothetic and covariant vector b,(x) is

Cartan parallel on F". Then a hyperplane F" of 1" kind is a Landsberg
space if and only if the hyperplane "F"™ of 1" kind is a Landsberg space.
For the hyperplane of 1* kind, the Berwald connection coefficients G;’y
are given by2
(4.18) Gy, =B Ay,
where A;V = Bzy + G;kBg;.
Now using (2.2), then (4.18) becomes
(4.19) Ay, =B5G, +N'N,Aj .
Since lemma 3.1 leads us to" Ay, = A, we immediately get
(4.20) 'Gy,='BIA,, .
On substituting (4.19) in (4.20) and using (4.6) and (4.7), we get
Gp, =Gy,
Thus we obtain:

Theorem (4.6). Let o be homothetic and covariant vector b,(x) is
Cartan parallel on F". Then a hyperplane F"" of 1° kind is a Berwald
space if and only if the hyperplane "F"™" of I' kind is a Berwald space.

From (2.6), the Gauss equation of hyperplane of 1* kind is rewritten as

R s = Ry, BZZI;J +(H, Hgs +H,;Hp,)
Then by Theorem 3.1 and "H o = e’ pH o5 gives the following:

Theorem (4.7). Let o be homothetic and covariant vector b,(x) be
Cartan parallel. Then the curvature tensor R, of a hyperplane F "of 1"

kind with R, =0 vanishes if and only if the curvature tensor *Raﬁyg of the
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hyperplane “F"™" of the 1" kind of "F" with *Raﬁys =0 vanishes.

Further Theorem 4.6 and Theorem 4.7 immediately gives,

Theorem (4.8). Let o be homothetic and covariant vector b,(x) is
Cartan parallel. Then a hyperplane F"" of the 1* kind of F" with Ry, =0

is a locally Minkowskian if and only if the hyperplane "F"™ of the 1" kind
of "F" with *Rijkh =0 is locally Minkowskian.
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