Finsler Hypersurface given by Generalized β -Conformal Change

S. K. Narasimhamurthy, Ajith and C. S. Bagewadi

Department of Mathematics, Kuvempu University Shankaraghatta – 577451, Shimoga, Karnataka, INDIA. E-mail: <u>nmurthysk@gmail.com</u>, <u>ajithrao@gmail.com</u> <u>prof_bagewadi@yahoo.co.in</u>

Pradeep Kumar

Departement of Mathematics, Yagachi Institute of Technology Post Box No 55, Hassan-577451, Karnataka, INDIA Email: pradeepget@gmail.com

(Received June 17, 2010)

Abstract: In 2009 N. L. Youssef, S. H. Abed and S. G. Elgendi¹ introduced generalized β -conformal change. This transformation combines both β -change and conformal change in general setting. In 1985, M. Mastumoto studied the theory of Finslerian hypersurface². In the present paper, we obtain the relations for Finsler hypersurface given by generalized β -conformal change to be hyperplane of 1st kind , hyperplane of 2nd kind and hyperplane of 3rd kind. Further these Finsler spaces are Landsberg space, Berwald space and locally Minkowskian space. The terminology and notations are referred to the Matsumoto's monograph³.

Keywords: Finsler hypersurface, hyperplane of 1^{st} kind, hyperplane of 2^{nd} kind and hyperplane of 3^{rd} kind, Berwald space, Landsberg space locally Minkowskian space.

2000 Mathematics Subject Classification No.: 53B40, 53C60

1. Introduction

The conformal theory of Finsler spaces has been initiated by M. S. Kneblman⁴ and has been deeply investigated by many authors^{5, 6, 7}. In 1941, G. Randers⁸ has introduced Randers change. The geometric properties of Randers change have been studied by several authors⁹. In 1974, M. Matsumoto¹⁰ introduced β -change and this change has been studied by many authors like C. Shibata¹¹, R. Miron¹².

A change generalizing all the above mentioned changes has been

introduced by S. H. Abed¹³ in 2006 and named it as conformal β -change. In 2009 N. L. Youssef, S. H. Abed and S. G. Elgendi¹ introduced generalized β -conformal change. They have established the relationship between some important tensors associated with Finsler space and the corresponding tensors associated with Finsler space given by generalized β -conformal change.

In 1985, M. Matsumoto² has studied the theory of Finsler hypersurfaces. He treated various types of Finsler hypersurfaces and they are called hyperplane of 1^{st} kind, hyperplane of 2^{nd} kind and hyperplane of 3^{rd} kind.

In this paper we consider Finsler space ${}^*F^n = (M, {}^*L)$ and special Finsler hypersurfaces ${}^*F^{n-1}$ of ${}^*F^n$. We discuss the different kinds of Finsler hypersurfaces under generalized β -conformal change. Further we study the geometric properties of Finsler hypersurfaces under some conditions.

2. Priliminaries

Let M^n be an n-dimensional smooth manifold and $F^n = (M^n, L)$ be an n-dimensional Finsler space equipped with a fundamental function L(x, y) on M^n . The metric tensor g_{ii} and Cartan's C-tensor C_{iik} are given by¹⁴

$$g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2, \quad g^{ij} = (g_{ij})^{-1},$$
$$C_{ijk} = \frac{1}{2} \dot{\partial}_k g_{ij}, \quad C^i_{jk} = \frac{1}{2} g^{im} (\dot{\partial}_k g_{jm}),$$
$$\frac{\partial}{\partial v^i}.$$

where $\dot{\partial}_i = \frac{\partial}{\partial y^i}$

The Berwald connection and the Cartan connection of F^n are given by $B\Gamma = (G^i_{jk}, N^i_j, 0)$ and $C\Gamma = (F^i_{jk}, N^i_j, C^i_{jk})$ respectively.

A hypersurface M^{n-1} of the underlying smooth manifold M^n may be parametrically represented by the equation $x^i = x^i(u^{\alpha})$, where u^{α} are Gaussian co-ordinates on M^{n-1} and Greek indices run from 1 to n-1. Here, we shall assume that the matrix consisting of the projection factors $B^i_{\alpha} = \partial x^i / \partial u^{\alpha}$ is of rank (n-1). The following notations are also employed

$$B^{i}_{\alpha\beta} = \partial^{2} x^{i} / \partial u^{\alpha} \partial u^{\beta}, \qquad B^{i}_{0\beta} = v^{\alpha} B^{i}_{\alpha\beta}, \qquad B^{ij\cdots}_{\alpha\beta\cdots} = B^{i}_{\alpha} B^{j}_{\beta} \cdots$$

If the supporting element y^i at a point (u^{α}) of M^{n-1} is assumed to be tangential to M^{n-1} , we may then write $y^i = B^i_{\alpha}(u)v^{\alpha}$, so that v^{α} is thought of as the supporting element of M^{n-1} . Since the function $\underline{L}(u,v) = L(x(u), y(u,v))$ gives rise to a Finsler metric of M^{n-1} , we get a (n-1)-dimensional Finsler space $F^{n-1} = (M^{n-1}, \underline{L}(u,v))$.

At each point (u^{α}) of F^{n-1} , the unit normal vector $N^{i}(u,v)$ is defined by (2.1) $g_{ij}B^{i}_{\alpha}N^{j} = 0$, $g_{ij}N^{i}N^{j} = 1$.

If (B_i^{α}, N_i) is the inverse matrix of (B_{α}^i, N^i) , we have

$$B^{i}_{\alpha}B^{\beta}_{i} = \delta^{\beta}_{\alpha}, \quad B^{i}_{\alpha}N_{i} = 0, \quad N^{i}B^{\alpha}_{i} = 0, \quad N^{i}N_{i} = 1,$$

and further

(2.2) $B^i_{\alpha}B^{\alpha}_j + N^iN_j = \delta^i_j.$

Making use of the inverse $(g^{\alpha\beta})$ of $(g_{\alpha\beta})$, we get

$$B_i^{\alpha} = g^{\alpha\beta} g_{ij} B_{\beta}^j, \quad N_i = g_{ij} N^j.$$

For the induced Cartan connections $IC\Gamma = (N^{\alpha}_{\beta}, F^{\alpha}_{\beta\gamma}, C^{\alpha}_{\beta\gamma})$ on F^{n-1} , the second fundamental h-tensor $H_{\alpha\beta}$ and the normal curvature tensor H_{α} are given by

(2.3)
$$H_{\alpha\beta} = N_i (B^i_{\alpha\beta} + F^i_{jk} B^{jk}_{\alpha\beta}) + M_{\alpha} H_{\beta} ,$$
$$H_{\alpha} = N_i (B^i_{0\alpha} + N^i_j B^j_{\alpha}) ,$$

respectively, where $M_{\alpha} = C_{ijk} B^i_{\alpha} N^j N^k$ and $B^i_{0\alpha} = B^i_{\beta\alpha} v^{\beta}$. Transvecting $H_{\beta\alpha}$ by v^{β} , we get

$$(2.4) H_{0\alpha} = H_{\beta\alpha} v^{\beta} = H_{\alpha}$$

Further we put

(2.5)
$$M_{\alpha\beta} = C_{ijk} B^{ij}_{\alpha\beta} N^k$$

The Gauss equation with respect to *IC* Γ is written as (2.6) $R_{\alpha\beta\gamma\delta} = R_{ijkh}B^{ijkh}_{\alpha\beta\gamma\delta} + P_{ijkh}(B^{h}_{\gamma}H_{\delta} - B^{h}_{\delta}H_{\gamma})B^{ij}_{\alpha\beta}N^{k} + (H_{\alpha\gamma}H_{\beta\delta} - H_{\alpha\delta}H_{\beta\gamma}).$

3. Generalized β -conformal change Finsler spaces

Let $F^n = (M, L)$ be an n-dimensional Finsler space with fundamental function L = L(x, y). Consider the following change of Finsler structures which will be referred to as a generalized β -conformal change:

(3.1)
$$L(x, y) \to {}^*L(x, y) = f(e^{\sigma(x)}L(x, y), \beta(x, y)),$$

where *f* is a positive homogeneous function of degree one in $e^{\sigma}L$ and β where $\beta = b_i(x)y^i$. Assume that ${}^*F^n = (M, {}^*L)$ has the structure of a Finsler space. Entities related to ${}^{*}F^{n}$ will be denoted by asterisk symbols. N. L. Youssef, S. H. Abed and S. G. Elgendi¹ defined,

$$f_1 = \frac{\partial f}{\partial \widetilde{L}}, \quad f_2 = \frac{\partial f}{\partial \beta}, \quad f_{12} = \frac{\partial^2 f}{\partial \widetilde{L} \partial \beta}, \dots \text{etc.},$$

where $\tilde{L} = e^{\sigma}L$. We use the following notations¹

$$(3.2) \quad q = ff_{2}, \qquad p = ff_{1} / L, q_{0} = ff_{22}, \qquad p_{0} = f_{2}^{2} + q_{0}, q_{-1} = ff_{12} / L, \qquad p_{-1} = q_{-1} + pf_{2} / f, q_{-2} = f(e^{\sigma} f_{11} - f_{1} / L) / L^{2}, \qquad p_{-2} = q_{-2} + e^{\sigma} p^{2} / f^{2}$$

Note that the subscript under the above geometric objects indicates the degree of homogeneity of these objects. We also use the notations:

$$b^{i} = g^{ij}b_{j}, \quad m_{i} = b_{i} - (\beta/L^{2})y_{i} \neq 0, \quad \sigma_{i} = \partial_{i}\sigma, \quad p_{02} = \frac{\partial p_{0}}{\partial \beta}.$$

The normalized supporting element, the metric tensor, the angular metric tensor of ${}^{*}F^{n}$ are given by³

(3.3)
(a)
$${}^{*}l_{i} = e^{\sigma} f_{1}l_{i} + f_{2}b_{i}$$

(b) ${}^{*}h_{ij} = e^{\sigma} ph_{ij} + q_{0}m_{i}m_{j}$
(c) ${}^{*}g_{ij} = e^{\sigma} pg_{ij} + p_{0}b_{i}b_{j} + e^{\sigma} p_{-1}(b_{i}y_{j} + b_{j}y_{i}) + e^{\sigma} p_{-2}y_{i}y_{j}$.
(d) ${}^{*}G^{i} = G^{i} + D^{i}, \qquad {}^{*}G^{i}_{jk} = G^{i}_{jk} + B^{i}_{jk},$
(e) ${}^{*}N^{i}_{j} = N^{i}_{j} + D^{i}_{j}$.

We use the following lemma which is given by N. L. Youssef, S. H. Abed and S. G. Elgendi¹.

Lemma(3.1). Under a generalized β -conformal change $L \rightarrow^* L = f(e^{\sigma(x)}L, \beta)$, Consider the following two assertions:

(i) The covariant vector b_i is parallel with respect to the Cartan connection $C\Gamma$.

(ii) The difference tensor D^{i}_{ik} vanishes identically.

Then, we have

(a) If (i) and (ii) hold, then σ is homothetic.

(b) If σ is homothetic, then (i) and (ii) are equivalent.

Above lemma leads us to $N_i^i = N_i^i$.

We have,

Theorem¹(3.1). Assume that the covariant vector $b_i(x)$ is Cartan parallel and σ is homothetic. If F^n is locally Minkowskian, then so is the space ${}^*F^n$.

4. Finsler Hypersurfaces Given by the Generalized β -Conformal Change ${}^*F^{(n-1)}$

We now consider a Finsler hypersurface $F^{n-1} = (M^{n-1}, \underline{L}(u, v))$ of the Finsler space F^n and another Finsler hypersurface ${}^*F^{n-1} = (M^{n-1}, {}^*\underline{L}(u, v))$ of the Finsler space ${}^*F^n$ given by the generalized β -conformal change.

Let $N^{i}(u,v)$ be a unit normal vector at each point of the F^{n-1} and they are invariant under the generalized β -conformal change. Thus we shall show that a unit normal vector $N^{i}(u,v)$ of F^{n-1} is uniquely determined by

(4.1)
$${}^{*}g_{ij}B_{\alpha}^{i}{}^{*}N^{j} = 0, {}^{*}g_{ij}{}^{*}N^{i}{}^{*}N^{j} = 1$$

Now transvecting (2.1) by v^{α} , we get

$$(4.2) y_i N^i = 0$$

Further contracting (3.3(c)) by N^i , N^j and using (2.1) and (4.2), we have ${}^*g_{ij}N^iN^j = e^{\sigma}p + p_0(b_iN^i)^2$,

which implies that

$${}^{*}g_{ij}\left(\pm\frac{N^{i}}{\sqrt{e^{\sigma}p+p_{0}(b_{i}N^{i})^{2}}}\right)\left(\pm\frac{N^{j}}{\sqrt{e^{\sigma}p+p_{0}(b_{i}N^{i})^{2}}}\right)=1,$$

provided $e^{\sigma} p + p_0 (b_i N^i)^2 > 0$. Therefore we can put

(4.3)
$${}^{*}N^{i} = \frac{N^{i}}{\sqrt{e^{\sigma}p + p_{0}(b_{i}N^{i})^{2}}}$$

where we have chosen the sign "+" in order to fix orientation. Using (2.1) and (4.2), the first condition of (4.1), gives us

(4.4)
$$(b_j N^j)(p_0 b_i B^i_{\alpha} + e^{\sigma} p_{-1} y_i B^i_{\alpha}) = 0 .$$

Let $(p_0 b_i B_{\alpha}^i + e^{\sigma} p_{-1} y_i B_{\alpha}^i) = 0$, now contracting this by v^{α} , we find $(p_0 \beta + e^{\sigma} p_{-1} L^2) = 0$.

By equation (3.2) this equation leads us to $ff_{\beta} = 0$. Thus we have $f_{\beta} = 0$ because $f \neq 0$. This fact means that ${}^{*}L = f(L)$, which is the contradiction to the definition of Generalized β -conformal change of Finsler metric. Consequently (4.4), gives us

(4.5) $b_j N^j = 0$. Therefore (4.3) is rewritten as (4.6) $N^i = N^i / \sqrt{e^{\sigma} p}$, (p > 0)

now it is clear that N^{i} satisfies (4.1). Summarizing the above, we state that:

Theorem (4.1). For a field of linear frame $(B_1^i, B_2^i, \dots, B_{n-1}^i, N^i)$ of F^n , there exists a field of linear frame $(B_1^i, B_2^i, \dots, B_{n-1}^i, N^i = N^i / \sqrt{e^{\sigma} p})$ of the ${}^*F^n$, such that (4.1) satisfied along ${}^*F^{n-1}$.

The quantities ${}^{*}B_{i}^{\alpha}$ are uniquely defined along ${}^{*}F^{n-1}$ by

$$^{*}B_{i}^{\alpha}=^{*}g^{\alpha\beta} \,^{*}g_{ij}B_{\beta}^{j},$$

where $({}^{*}g^{\alpha\beta})$ is the inverse matrix of $({}^{*}g_{\alpha\beta})$.

Let $({}^{*}B_{i}^{\alpha}, {}^{*}N_{i})$ is the inverse matrix of $({}^{*}B_{\alpha}^{i} {}^{*}N^{i})$ and then we have (4.7) $B_{\alpha}^{i} {}^{*}B_{i}^{\beta} = \delta_{\alpha}^{\beta}, \quad B_{\alpha}^{i} {}^{*}N_{i} = 0, \quad {}^{*}N^{i} {}^{*}B_{i}^{\alpha} = 0, \quad {}^{*}N^{i} {}^{*}N_{i} = 1.$ And further

$$B_{\alpha}^{i} B_{\alpha}^{\alpha} + N^{i} N_{i} = \delta_{i}^{i}$$

We also get ${}^{*}N_{i} = {}^{*}g_{ij} {}^{*}N^{j}$, i.e.,

$$(4.8) \qquad \qquad ^*N_i = \sqrt{e^{\sigma} p} N_i$$

If each path of a hypersurface F^{n-1} with respect to the induced connection is also a path of the ambient space F^n , then F^{n-1} is called a hyperplane of the 1st kind. A hyperplane of the 1st kind is characterized by $H_{\alpha} = 0$.

From (2.3), we have

$${}^{*}H_{\alpha} = {}^{*}N_{i}({}^{*}B_{0\alpha}^{i} + {}^{*}N_{j}^{i} {}^{*}B_{\alpha}^{j}),$$

From equation (4.8) and lemma 3.1, we get

$$^{*}H_{\alpha} = \sqrt{e^{\sigma} p H_{\alpha}}$$

Thus we obtain:

Theorem (4.2). Let σ be homothetic and covariant vector $b_i(x)$ is Cartan parallel on F^n . Then a hypersurface F^{n-1} is a hyperplane of 1^{st} kind if and only if the hypersurface ${}^*F^{n-1}$ is a hyper plane of 1^{st} kind.

The torsion tensor ${}^{*}C_{iik}$ of ${}^{*}F^{n}$ is given by¹

(4.9)
$${}^{*}C_{ijk} = e^{\sigma} p C_{ijk} + \frac{e^{\sigma}}{2} p_{-1}(h_{ij}m_{k} + h_{jk}m_{i} + h_{ki}m_{i}) + \frac{p_{02}}{2}m_{i}m_{j}m_{k},$$

where

(4.10)
$$m_i = b_i - \frac{\beta}{L^2} y_i.$$

Contracting (4.10) by N^i and using (4.2) and (4.5), we get

(4.11)
$$m_i N^i = 0$$
.

As for the angular metric tensor $h_{ij} = g_{ij} - l_i l_j$, (2.1) and (4.2) yield

(4.12)
$$h_{ij}B^i_{\alpha}N^j = 0.$$

Transvecting (4.9) by $B_{\alpha\beta}^{ij}$ and paying attention to (4.11) and (4.12), we get

(4.13)
$${}^{*}C_{ijk} = e^{\sigma} p C_{ijk}.$$

If each h-path of a hypersurface F^{n-1} with respect to the induced connection is also h-path of the ambient space F^n , then F^{n-1} is called a hyperplane of 2^{nd} kind. A hyperplane of 2^{nd} kind is characterized by $H_{\alpha\beta} = 0$.

Now from (2.3), (4.13) and lemma 3.1, we get

$${}^{*}H_{\alpha\beta} = \sqrt{e^{\sigma} p H_{\alpha\beta}},$$

Thus we state the following:

Theorem (4.3). Let σ be homothetic and covariant vector $b_i(x)$ is Cartan parallel on F^n . Then a hypersurface F^{n-1} is a hyperplane of 2^{nd} kind if and only if the hypersurface ${}^*F^{n-1}$ is a hyperplane of 2^{nd} kind.

Using (2.5) and (4.6), the equation (4.13) is rewritten as

(4.14)
$${}^*M_{\alpha\beta} = \sqrt{e^{\sigma}p}M_{\alpha\beta}.$$

If the unit normal vector of F^{n-1} is parallel along each curve of F^{n-1} , then F^{n-1} is called a hyperplane of 3^{rd} kind. A hyperplane of 3^{rd} kind characterized by $H_{\alpha\beta} = M_{\alpha\beta} = 0$.

Thus, from Theorem 4.3 and equation (4.14), we obtain:

Theorem (4.4). Let σ be homothetic and covariant vector $b_i(x)$ is Cartan parallel. Then a hypersurface F^{n-1} is a hyperplane of 3^{rd} kind if and only if the hypersurface ${}^*F^{n-1}$ is a hyperplane of 3^{rd} kind.

For hyperplane of 1st kind, the (*v*)*hv*-torsion tensor is given by² (4.15) $P^{\alpha}_{\beta\gamma} = B^{\alpha}_{i} K^{i}_{\beta\gamma},$ where $K_{\beta\gamma}^{i} = P_{jk}^{i} B_{\beta\gamma}^{jk}$. Now using (2.2), then (4.15) becomes (4.16) $K_{\beta\gamma}^{i} = B_{\delta}^{i} P_{\beta\gamma}^{\delta} + N^{i} N_{h} K_{\beta\gamma}^{h}$. Theorem 3.1 gives us ${}^{*} K_{\beta\gamma}^{i} = K_{\delta\gamma}^{i}$ and then we immed

Theorem 3.1 gives us ${}^{*}K_{\beta\lambda}^{i} = K_{\beta\gamma}^{i}$ and then we immediately obtain:

$$(4.17) \qquad \qquad {}^{*}P^{\alpha}_{\beta\gamma} = {}^{*}B^{\alpha}_{i}K^{i}_{\beta\gamma}$$

On substituting (4.16) in (4.17) and using (4.6) and (4.7), we get ${}^*P^{\alpha}_{\beta\gamma} = P^{\alpha}_{\beta\gamma}$.

Thus we obtain:

Theorem (4.5). Let σ is homothetic and covariant vector $b_i(x)$ is Cartan parallel on F^n . Then a hyperplane F^{n-1} of 1^{st} kind is a Landsberg space if and only if the hyperplane ${}^*F^{n-1}$ of 1^{st} kind is a Landsberg space.

For the hyperplane of 1st kind, the Berwald connection coefficients $G^{\alpha}_{\beta\gamma}$ are given by²

(4.18)
$$G^{\alpha}_{\beta\gamma} = B^{\alpha}_i A^i_{\beta\gamma}$$

where $A_{\beta\gamma}^{i} = B_{\beta\gamma}^{i} + G_{ik}^{i} B_{\beta\gamma}^{jk}$.

Now using (2.2), then (4.18) becomes

(4.19)
$$A^{i}_{\beta\gamma} = B^{i}_{\delta}G^{\delta}_{\beta\gamma} + N^{i}N_{h}A^{h}_{\beta\gamma}$$

Since lemma 3.1 leads us to ${}^{*}A_{\beta\gamma}^{i} = A_{\beta\gamma}^{i}$, we immediately get

$$(4.20) \qquad \qquad ^{*}G_{\beta\gamma}^{\partial} = ^{*}B_{i}^{\alpha}A_{\beta\gamma}^{i}$$

On substituting (4.19) in (4.20) and using (4.6) and (4.7), we get

$${}^{*}G^{\alpha}_{\beta\gamma} = G^{\alpha}_{\beta\gamma}$$

Thus we obtain:

Theorem (4.6). Let σ be homothetic and covariant vector $b_i(x)$ is Cartan parallel on F^n . Then a hyperplane F^{n-1} of 1^{st} kind is a Berwald space if and only if the hyperplane ${}^*F^{n-1}$ of 1^{st} kind is a Berwald space.

From (2.6), the Gauss equation of hyperplane of 1st kind is rewritten as

$$R_{\alpha\beta\gamma\delta} = R_{ijkh} B^{ijkh}_{\alpha\beta\gamma\delta} + (H_{\alpha\gamma}H_{\beta\delta} + H_{\alpha\delta}H_{\beta\gamma})$$

Then by Theorem 3.1 and ${}^{*}H_{\alpha\beta} = \sqrt{e^{\sigma} p H_{\alpha\beta}}$ gives the following:

Theorem (4.7). Let σ be homothetic and covariant vector $b_i(x)$ be Cartan parallel. Then the curvature tensor R_{ijkh} of a hyperplane F^{n-1} of 1^{st} kind with $R_{ijkh} = 0$ vanishes if and only if the curvature tensor ${}^*R_{\alpha\beta\gamma\delta}$ of the hyperplane ${}^{*}F^{n-1}$ of the I^{st} kind of ${}^{*}F^{n}$ with ${}^{*}R_{\alpha\beta\gamma\delta} = 0$ vanishes.

Further Theorem 4.6 and Theorem 4.7 immediately gives,

Theorem (4.8). Let σ be homothetic and covariant vector $b_i(x)$ is Cartan parallel. Then a hyperplane F^{n-1} of the 1^{st} kind of F^n with $R_{ijkh} = 0$ is a locally Minkowskian if and only if the hyperplane ${}^*F^{n-1}$ of the 1^{st} kind of ${}^*F^n$ with ${}^*R_{iikh} = 0$ is locally Minkowskian.

Acknowledgement

We express our thanks to UGC (University Grant Commission), Govt. of India for providing financial assistance under major research project.

References

- 1. N. L. Youssef, S. H. Abed and S. G. Elgendi, *Generalized* β -conformal change of Finsler metrics, arXiv:math/0906.5369v2 [math.DG], 7 Aug 2009.
- 2. M. Matsumoto, The induced and intrinsic connections of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ, 25(1985) 107-144.
- 3. M. Matsumoto, *Foundations of Finsler geometry and special Finsler spaces*, Kaiseisha prss, Otsu, Saikawa, 1986.
- 4. M. S. Knebelmen, Conformal geometry of generalized metric spaces, *Proc. nat. Acad. Sci. USA*, **15**(1929)33–41 and 376–379.
- 5. M. Hashiguchi, On conformal transformation of Finsler metric, J. Math. Kyoto Univ., 16(1976)25–50.
- 6. H. Izumi, Conformal transformations of Finsler spaces I and II, *Tensor, N.S.*, **31** and **33**(1977 and 1980)33–41 and 337–359.
- 7. M. Kitayama, *Geometry of transformations of Finsler metrics*, Ph. D. Thesis, Hokkaido University of Education, Japan, 2000.
- 8. G. Randers, On the asymmetrical metric in the four- space of general relativity, *Phys. Rev.*, **2**(1941)59, 195–199.
- 9. M. Kitayama, *Indicatrices of Randers change*, 9th. International Conf. of Tensor Society, Sapporo, Japan, Sep. 4–8 (2006).
- 10. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ, 14(1974) 477–498.
- 11. C. Shibata, On invariant tensors of β -changes of Finsler metrics, J. Math. Kyoto Univ., 24(1) (1984) 163–188.
- 12. R. Miron, *General Randers spaces, Lagrange and Finsler Geometry*, Ed. by P.L. Antonelli and Miron, 1996, 123–140.
- 13. S. H. Abed, Conformal β-change in Finsler spaces, *Proc. Math. Phys. Soc. Egypt*, ArXiv: math. DG/0602404 v2, 22 Feb 2006.

- 282 S. K. Narasimhamurthy, Ajith, C. S. Bagewadi and Pradeep Kumar
 - 14. H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin, 1959.
 - 15. M. K. Gupta and P. N. Pandey, Hypersurfaces of Conformally and h-Conformally related Finsler spaces, *Acta Math. Hangar.*, **123(3)** (2009) 257-264.