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Abstract: In 2009 N. L. Youssef, S. H. Abed and S. G. Elgendi
1
 

introduced generalized β -conformal change. This transformation 

combines both β -change and conformal change in general setting. In 

1985, M. Mastumoto studied the theory of Finslerian hypersurface
2
. In 

the present paper, we obtain the relations for Finsler hypersurface given 

by generalized β-conformal change to be hyperplane of 1
st
 kind , 

hyperplane of 2
nd

 kind and hyperplane of 3
rd

 kind. Further these Finsler 

spaces are Landsberg space, Berwald space and locally Minkowskian 

space. The terminology and notations are referred to the Matsumoto’s 

monograph
3
. 
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1. Introduction 
 

 

 The  conformal  theory  of  Finsler  spaces  has  been  initiated  by  M. S. 

Kneblman
4
  and has  been  deeply  investigated  by  many  authors

5, 6, 7
. In 

1941, G. Randers
8
 has introduced Randers change.  The geometric 

properties of Randers change have been studied by several authors
9
. In 

1974, M. Matsumoto
10

 introduced  β-change  and  this change has been 

studied by many authors like C. Shibata
11

, R. Miron
12

.  

A change generalizing all the above mentioned changes has been 
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introduced by S. H. Abed
13

 in 2006 and named it as conformal β-change. In 

2009 N. L. Youssef, S. H. Abed and S. G. Elgendi
1
 introduced generalized 

β-conformal change.  They have established the relationship between some 

important tensors associated with Finsler space and the corresponding 

tensors associated with Finsler space given by generalized β-conformal 

change.  

In 1985, M. Matsumoto
2
 has studied the theory of Finsler hypersurfaces.  

He treated various types of Finsler hypersurfaces and they are called 

hyperplane of 1
st
 kind, hyperplane of 2

nd
 kind and hyperplane of 3

rd
 kind. 

In this paper we consider Finsler space * *( , )nF M L=  and special 

Finsler hypersurfaces * 1nF −  of * nF . We discuss the different kinds of 

Finsler hypersurfaces under generalized β-conformal change. Further we 

study the geometric properties of Finsler hypersurfaces under some 

conditions.  
 

2. Priliminaries 
 

 

Let nM be an n-dimensional smooth manifold and ),( LMF nn = be an  

n-dimensional  Finsler  space equipped with a fundamental function ),( yxL  

on nM . The metric tensor ijg  and Cartan's C-tensor ijkC  are given by
14

  

                  
2

..

2

1
Lg jiij ∂∂= ,    1)( −= ij

ij
gg , 

                 ijkijk gC
.

2

1
∂= ,    )(

2

1 .

jmk

imi

jk ggC ∂= , 

where 
i

i

y∂

∂
=∂

.

. 

The Berwald connection and the Cartan connection of nF  are given by 

)0,,( i

j

i

jk NGB =Γ  and  ),,( i

jk

i

j

i

jk CNFC =Γ  respectively. 

A hypersurface 1−nM  of the underlying smooth manifold nM  may be 

parametrically represented by the equation  )( αuxx ii = ,  where α
u  are  

Gaussian  co-ordinates  on  1−nM  and  Greek  indices  run from  1  to  n-1.  

Here, we shall assume that the matrix consisting of the projection factors 
α

α uxB
ii ∂∂= /  is of rank (n-1). The following notations are also employed  

βα
αβ uuxB

ii ∂∂∂= /2 ,     ii
BvB αβ

α
β =0 ,     ⋯

⋯

⋯

jiij
BBB βααβ =  

If  the  supporting  element  iy  at  a  point  )( αu  of  1−nM   is assumed to 

be tangential to 1−nM , we may then write α
α vuBy
ii )(= , so that α

v  is 
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thought of as the supporting element of 1−nM . Since the function  

)),(),((),( vuyuxLvuL =  gives rise to a Finsler metric of 1−nM , we get a (n-

1)-dimensional Finsler space )),(,( 11 vuLMF nn −− = . 

At each point )( αu  of 1−nF , the unit normal vector ),( vuN i is defined by 

(2.1)                        0=ji

ij NBg α ,    1=ji

ij NNg .                                        

If ),( ii NB
α  is the inverse matrix of ),( ii

NBα , we have 
β

α
β

α δ=i

i
BB ,     0=i

i
NBα ,    0=α

i

i
BN ,     1=i

i
NN , 

and further  

(2.2)                             i

jj

i

j

i
NNBB δα

α =+ .                                               

Making use of the inverse )( αβg  of )( αβg , we get 

                                   j

iji BggB β
αβα = ,     j

iji NgN = . 

For the induced Cartan connections  ),,( α
βγ

α
βγ

α
β CFNIC =Γ  on 1−nF , the 

second fundamental h-tensor αβH  and the normal curvature tensor αH  are 

given by  

(2.3)                          βααβαβαβ HMBFBNH
jki

jk

i

i ++= )(  ,                                   

                                  )( 0

ji

j

i

i BNBNH ααα +=  ,   

respectively, where kji

ijk NNBCM αα =  and β
βαα vBB
ii =0 . 

Transvecting βαH  by β
v , we get 

(2.4)     α
β

βαα HvHH ==0 .                                                       

Further we put  

(2.5)    kij

ijk NBCM αβαβ = .                                              

The Gauss equation with respect to ΓIC  is written as  

(2.6) )()( βγαδβδαγαβγδδγαβγδαβγδ HHHHNBHBHBPBRR
kijhh

ijkh

ijkh

ijkh −+−+= .            

 

3. Generalized β-conformal  change  Finsler  spaces 
 

Let ),( LMF n =  be an  n-dimensional  Finsler  space  with  fundamental  

function ),( yxLL = . Consider the following change of Finsler structures 

which will be referred to as a generalized β-conformal change:  

(3.1)    )),,(),,((),(),( )(* yxyxLefyxLyxL x βσ=→                               

where  f  is a positive homogeneous function of degree one in Le
σ and β  

where 
i

i yxb )(=β . Assume that ),( ** LMF n =  has the structure of a Finsler 
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space. Entities related to nF*  will be denoted by asterisk symbols.  

N. L. Youssef, S. H. Abed and S. G. Elgendi
1
 defined, 

L

f
f ~1

∂

∂
= ,  

β∂

∂
=

f
f 2 ,  

β∂∂

∂
=

L

f
f ~

2

12 ,…etc., 

where LeL
σ=

~
. We use the following notations

1
  

 

2 1

2

0 22 0 2 0

1 12 1 1 2

2 2 2

2 11 1 2 2

(3.2) , / ,

, ,

/ , / ,

( / ) / , / .

q ff p ff L

q ff p f q

q ff L p q pf f

q f e f f L L p q e p f
σ σ

− − −

− − −

= =

= = +

= = +

= − = +

                       

Note  that  the  subscript  under  the  above  geometric  objects  indicates  the  

degree  of  homogeneity of these objects.  We also use the notations:  

j

iji
bgb = ,     0)/( 2 ≠−= iii yLbm β ,   σσ ii ∂= ,   

β∂

∂
= 0

02

p
p . 

The normalized supporting element, the metric tensor, the angular metric 

tensor of nF*  are given by
3
 

(3.3)   (a) iii bflfel 21

* += σ  

           (b) jiijij mmqpheh 0

* += σ  

 (c) jiijjijiijij yypeybybpebbppgeg 210

* )( −− ++++= σσσ .                      

(d)  ,, ** i

jk

i

jk

i

jk

iii
BGGDGG +=+=  

(e)  i

j

i

j

i

j DNN +=* . 

We use the following lemma which is given by N. L. Youssef, S. H. Abed 

and S. G. Elgendi
1
. 

 

Lemma(3.1). Under a generalized β-conformal change  

),,( )(* βσ LefLL x=→  Consider the following  two  assertions:  

(i)  The covariant vector ib  is parallel with respect to the Cartan  

connection ΓC .  

(ii)  The difference  tensor  
i

jkD  vanishes  identically.  

Then, we have 

(a)  If (i) and  (ii)  hold,  then  σ   is  homothetic.  

(b)  If  σ  is homothetic, then  (i)  and  (ii)  are  equivalent.  

Above lemma leads us to i

j

i

j NN =* . 

We have, 
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Theorem
1
(3.1). Assume that the covariant vector )(xbi  is Cartan 

parallel and σ  is homothetic. If nF  is locally Minkowskian, then so is the 

space nF* . 
 

4.  Finsler Hypersurfaces Given by the Generalized  

β-Conformal Change )1(* −nF  
 

We  now  consider  a  Finsler  hypersurface )),(,( 11 vuLMF nn −− = of  the  

Finsler  space nF  and  another  Finsler  hypersurface  

)),(,(
*11* vuLMF nn −− =  of the Finsler space nF*  given by the generalized 

β-conformal change.  

Let ),( vuN i  be a unit normal vector at each point of the 1−nF and they 

are invariant under the generalized β-conformal change.  Thus we shall 

show that a unit normal vector ),(* vuN i  of 1* −nF is uniquely determined by  

(4.1)                        0** =ji

ij NBg α ,   1*** =ji

ij NNg .                                   

Now transvecting (2.1) by α
v , we get  

(4.2)                          0=i

i Ny                                                         

Further contracting (3.3(c)) by  i
N , j

N  and using (2.1) and (4.2), we have  

                               2

0

* )( i

i

ji

ij NbppeNNg += σ , 

which implies that          

 

provided 0)( 2

0 >+ i

i Nbppe
σ . Therefore we can put 

(4.3)                        
2

0

*

)( i

i

i
i

Nbppe

N
N

+
=

σ
                                               

where we have chosen the sign "+" in order to fix orientation.   

Using (2.1) and (4.2), the first condition of (4.1), gives us  

(4.4)                      0))(( 10 =+ −
i

i

i

i

j

j BypeBbpNb α
σ

α  .                                         

Let 0)( 10 =+ −
i

i

i

i BypeBbp α
σ

α , now contracting this by α
v , we find 

                                    0)( 2

10 =+ − Lpep
σβ . 

By equation (3.2) this equation leads us to 0=βff . Thus we have 0=βf  

because 0≠f . This fact means that )(* LfL = , which is the contradiction to 

,1
)()( 2

0

2

0

* =














+
±















+
±

i

i

j

i

i

i

ij

Nbppe

N

Nbppe

N
g

σσ
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the definition of Generalized β -conformal change of Finsler metric. 

Consequently (4.4), gives us 

( 4.5)                                 0=j

j Nb .                                                       

Therefore (4.3) is rewritten as 

(4.6)                        peNN
ii σ/* = ,               )0( >p                      

now it is clear that i
N

* satisfies (4.1). Summarizing the above, we state that: 
 

Theorem (4.1). For a field of linear frame ),,,,( 121

ii

n

ii
NBBB −⋯  of nF , 

there exists a field of linear frame )/,,,,( *

121 peNNBBB
iii

n

ii σ=−⋯  of the 

nF* , such that (4.1) satisfied along  1* −nF . 

The quantities 
α
iB

* are uniquely defined along  1* −nF  by  

                                    j

iji BggB β
αβα *** = , 

where )(* αβg  is the inverse matrix of  )(*

αβg . 

Let ),( **

ii NB
α  is the inverse matrix of  )( ** ii

NBα  and then we have  

(4.7)             β
α

β
α δ=i

i
BB

* ,    0* =i

i
NBα ,    0** =α

i

i
BN ,    1** =i

i
NN .                   

And further  

       i

jj

i

i

i
NNBB δα

α =+ ***  

We also get j

iji NgN
*** = , i.e., 

(4.8)         ii NpeN
σ=*                                                       

  If each path of a hypersurface 1−nF  with respect to the induced 

connection is also a path of the ambient space nF ,  then 1−nF  is called a 

hyperplane of the 1
st
 kind. A hyperplane of the 1

st
 kind is characterized by 

0=αH . 

From (2.3), we have 

)( **

0

*** ji

j

i

i BNBNH ααα += , 

  From equation (4.8) and lemma 3.1, we get  

α
σ

α HpeH =* . 

Thus we obtain: 

Theorem (4.2). Let σ  be homothetic and covariant vector )(xbi  is 

Cartan parallel on nF . Then a hypersurface  1−nF  is a hyperplane of 1
st
 kind 

if and only if the hypersurface 1* −nF  is a hyper plane of 1
st
 kind. 

  The torsion tensor ijkC
*  of nF*  is given by

1
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(4.9)         kjiikiijkkijijkijk mmm
p

mhmhmhp
e

pCeC
2

)(
2

02

1

* ++++= −

σ
σ ,                     

where   

( 4.10)      iii y
L

bm
2

β
−= .                                                   

Contracting (4.10) by  i
N   and using (4.2) and (4.5), we get  

(4.11)        0=i

i Nm .                                                      

As for the angular metric tensor jiijij llgh −= , (2.1) and (4.2) yield  

(4.12)     0=ji

ij NBh α .                                                     

Transvecting (4.9) by  ij
Bαβ  and paying attention to (4.11) and (4.12), we get 

(4.13)                         ijkijk pCeC
σ=* .                                                   

If each h-path of a hypersurface  1−nF   with respect to the induced 

connection is also h-path of the ambient space nF , then 1−nF  is called a 

hyperplane of 2
nd

 kind. A hyperplane of 2
nd 

kind is characterized by 

0=αβH  . 

 Now from (2.3), (4.13) and lemma 3.1, we get 

                                   αβ
σ

αβ HpeH =* , 

Thus we state the following: 

Theorem (4.3).  Let σ  be homothetic and covariant vector )(xbi  is 

Cartan parallel on nF . Then a hypersurface 1−nF  is a hyperplane of 2
nd

 

kind if and only if the hypersurface 1* −nF  is a hyperplane of  2
nd

 kind. 
 

Using (2.5) and (4.6), the equation (4.13) is rewritten as  

(4.14)     αβ
σ

αβ MpeM =* .                                                

If the unit normal vector of 1−nF  is parallel along each curve of 1−nF , then 
1−nF  is called a hyperplane of 3

rd
 kind. A hyperplane of 3

rd
 kind 

characterized by 0== αβαβ MH . 

Thus, from Theorem 4.3 and equation (4.14), we obtain: 

Theorem (4.4). Let σ  be homothetic and covariant vector )(xbi  is 

Cartan parallel. Then a hypersurface 1−nF  is a hyperplane of 3
rd

 kind if and 

only if the hypersurface 1* −nF  is a hyperplane of  3
rd

 kind. 
 

For hyperplane of 1
st
  kind, the (v)hv-torsion tensor is given by

2
 

(4.15)                                i

i KBP βγ
αα

βγ = ,                                                    
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where  jki

jk

i
BPK βγβγ = . 

Now using (2.2), then (4.15) becomes 

(4.16)                              h

h

iii
KNNPBK βγ

δ
βγδβγ += .                                         

Theorem 3.1 gives us ii
KK βγβλ =*  and then we immediately obtain: 

(4.17)                            i

i KBP βγ
αα

βγ
** =                                                     

On substituting (4.16) in  (4.17) and using (4.6) and (4.7), we get 
α

βγ
α

βγ PP =* . 

Thus we obtain: 

Theorem (4.5). Let σ  is homothetic and covariant vector )(xbi  is 

Cartan parallel on nF . Then a hyperplane 1−nF  of 1
st
 kind is a Landsberg 

space if and only if the hyperplane 1* −nF  of 1
st
 kind is a Landsberg space. 

  For the hyperplane of 1
st
 kind, the Berwald connection coefficients α

βγG  

are given by
2
  

(4.18)       i

i ABG βγ
αα

βγ = ,                                                   

where jki

jk

ii
BGBA βγβγβγ += . 

Now using (2.2), then (4.18) becomes 

(4.19)     h

h

iii
ANNGBA βγ

δ
βγδβγ += .                                        

Since lemma 3.1 leads us to ii
AA βγβγ =* , we immediately get  

(4.20)       i

i ABG βγ
α

βγ
** =∂ .                                                   

On substituting (4.19) in (4.20) and using (4.6) and (4.7), we get  
α
βγ

α
βγ GG =* . 

Thus we obtain: 

Theorem (4.6). Let σ  be homothetic and covariant vector )(xbi  is 

Cartan parallel on nF . Then a hyperplane 1−nF  of 1
st
 kind is a Berwald 

space if and only if the hyperplane 1* −nF  of 1
st
 kind is a Berwald space. 

 

From (2.6), the Gauss equation of hyperplane of 1
st
 kind is rewritten as  

)( βγαδβδαγαβγδαβγδ HHHHBRR
ijkh

ijkh ++=  

Then by Theorem 3.1 and αβ
σ

αβ HpeH =*  gives the following: 

Theorem (4.7). Let σ  be homothetic and covariant vector )(xbi  be 

Cartan parallel. Then the curvature tensor ijkhR  of a hyperplane 1−nF  of  1
st
 

kind with 0=ijkhR  vanishes if and only if the curvature tensor αβγδR
*

 of the 
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hyperplane 1* −nF  of the 1
st
 kind of nF*  with 

* 0Rαβγδ =  vanishes. 
 

Further Theorem 4.6 and Theorem 4.7 immediately gives, 
 

Theorem (4.8). Let σ  be homothetic and covariant vector )(xbi  is 

Cartan parallel. Then a hyperplane 1−nF  of the 1
st
 kind of nF  with 0=ijkhR  

is a locally Minkowskian if and only if the hyperplane 1* −nF  of the 1
st
 kind 

of  nF*  with 0* =ijkhR  is locally Minkowskian. 
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