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Abstract: A model for disease transmission in a predator-prey system has 
been proposed and analyzed in this paper. From infected prey, the disease is 
spreading to susceptible prey and consequently to predator species. The 
disease does not cause immunity in the prey and predator species. 
Therefore, SIS (Susceptible-Infected-Susceptible) models are considered 
for both the species. Conditions for the existence and stability of disease 
free prey predator system are obtained. The next generation approach is 

used to obtain the epidemiological threshold quantities 0R , 1R  for the 

model system. Conditions for endemic disease in prey species are 
discussed. The predator may become extinct due to disease in prey. Disease 
is not found to be endemic in both the prey and predator species. 
Keywords: Predator, prey, Equilibrium point, carrying capacity, Basic 
reproduction number, Stability 
Mathematics Subject Classification (2000): 35B35 - 92C05 - 92D30 -          
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1. Introduction 
   

In natural ecosystem, regulatory mechanisms for evolution of biological 
species are provided by the predator-prey interactions. Not only the disease in 
the system affects the dynamics of prey predator population, but the prey 
predator interactions also affect the dynamics of disease1-4. Some previous 
studies of infectious diseases in animal populations focused on the effects of 
disease-induced mortality or disease-reduced reproduction in the regulation of 
natural populations (in their natural habitats) 1, 3-5 Reduced population sizes 
and destabilization of equilibrium into oscillations are caused by the presence 
of infectious disease in one or both of the populations. 

The fact that predators take a disproportionate number of infected preys has 
been confirmed by earlier studies 1, 3, 6. Infected prey is more vulnerable to 
predation on account of the fact that the disease may impair their ability 
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 to protect themselves and expose them to predators7. This enhanced 
vulnerability of infected prey may lead to persistence of the predator (which 
would otherwise be starved and become extinct). Further, predation of the 
infected prey may lead to the disappearance of disease which may otherwise 
be endemic in prey population4. Together with no reproduction in infected 
prey, as predation on infected prey increases, the infection tends to destabilize 
prey-predator interactions 1.  

Most of the eco-epidemiological studies are restricted to the situations 
where only prey species can get infection. Few investigations 1, 6, 8 consider 
the spread of disease from prey to predator through predation of infected 
prey. For the purpose of eliminating either the disease from predator- prey 
system or eliminating the menace of the predator by controlling disease in 
prey, a simplified eco- epidemiological four species prey predator SI model 8 
is shown to be useful. 

This paper proposes a predator- prey model. The disease is spreading 
from infected prey to susceptible prey and consequently to the predator 
species. Both, the prey and the predator species are compartmentalized into 
susceptible and infected classes. The disease does not cause immunity to the 
prey and the predator species. Consequently, SIS model is considered for both 
the prey and the predator.  

 
2. Mathematical Model 

 

     Let  1 1 1N t S I   and  2 2 2N t S I   be the density of prey and predator 

species respectively where iS , iI denote the density of susceptible and infected 

population of specific population. It is assumed that only susceptible prey is 
capable of reproducing logistically. The infected prey are weakened due to 
disease and become easier to catch, while susceptible prey can easily escape 
the predation. The infected prey and predator do not reproduce but still 
continue to consume resources. The susceptible predator gets food from 
infected prey for its survival. It may become infected due to interaction with 
infected prey. Mortality rate of infected predator is higher than that of 
susceptible predator. These assumptions lead to the following mathematical 
model:  

 

(1.1)               1 1 1
1 1 1 2 2 1 1 1 1 1

1

1- - ( ) - ,
dS S I

rS a S S I c S I I
dt K


 

   
 

           

(1.2)               1
1 1 1 2 1 2 2 1 1 1 1- ( ) - - ,

dI
c S I a I S I d I I

dt
                                         
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(1.3)               2
2 2 1 2 1 1 2 2 2- (- ) ,

dS
a S I d ka S S I

dt
          

(1.4)               2
2 2 1 3 2 2 2- ,

dI
a S I d I I

dt
         

Various positive parameters in the model are described as 

1a , 2a : Predation rate on the susceptible and infected prey respectively                                  

( 2 1a a ) 

        :k  Feeding efficiency of predator  

  :r  Intrinsic growth rate constant of susceptible prey  

      1 :K Carrying capacity of environment with respect to prey species  

 1 :c
 Disease incidence rate 

 1 2, :   The recovery rate of infected prey and predator to susceptible   

respectively 

 1 :d
 Net death rate of infected prey  

  2 3, :d d  Death rate of susceptible and infected predator respectively 

( 3 2d d ) 

Initial conditions associated with the system are: 

1 2 1(0) 0, (0) 0, (0) 0S S I    and 2 (0) 0.I 
 

 
Mathematical Analysis: 

Theorem 2.1 All the solutions of the system (1) which initiate in 4R are 

uniformly bounded. 

 Proof: By theorems of Nagumo 9, it can be easily proved that 1S , 1I , 2S  

and 2I remain positive. 

Let 1 1 1W S I   

Add (1.1) and (1.2) and its simplification gives 

1 1 1
1 1 1

1

( )
1- - .

d S I S
rS d I

dt K

  
  

 
 

For arbitrarily chosen 1 , this simplifies to 

 

2
1 1 1

1 1 1 1 1 1 1 1
1

( )
( ) ( ) - - ( ) ,

d S I rS
S I r S d I

dt K
  


    
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2 2 2
21 1 1 1 1 1

1 1 1 1 1 1 1 12
1

( ) ( )
( ) - ( ) ,

4 4

dW K r K K rr
W S r S d I

dt r K r r

 
  

  
       

 
 

 

22
1 1 1 1

1 1 1 1 1 1 1

1

( )
( ) - ( ) ,

4 2

dW K r Kr
W S r d I

dt r K r


  

  
      

 
 

 Choosing 1 d 
  and applying the results of (Birkhoff and Rota, 1982 10), 

yields   

1 11
1 1 1 1 1 1

1

0 ( ( ), ( )) (1 ) ( (0), (0)) ,t tL
W S t I t e W S I e 


      

as t  , it gives 

1
1 1

1

0
L

S I


   ,   Where 
2

1 1
1

( )
,

4

K r
L

r


  

  1 1 1W S I  is bounded. 

 From positivity of 1S  and 1I , 1
1

1

0
L

S


  1
1

1

;0 .
L

I


   

Simillarly defining another positive definite function W as 

1 1 2 2.W S I S I     

Proceeding in the similar manner and choosing 1 2 3min( , , )d d d   yields 

1
1 1 2 2 1 1 2 2

1

( )
0 ( , , . ) (1 ) ( (0), (0), (0), (0)) .t tL r

W S I S I e W S I S I e 


 

     

As t  , it gives 

1

1

( )
0

L r
W L






   , where 1

1

( )
.

L r
L






  

  1 1 2 2W S I S I     is bounded. 

 Hence all solutions of (2.1) that initiate in 4R  are confined in the region 

   4
1 1 2 2( , , , ) : ; ; 1, 2 , i iB S I S I R S L I L i                               

The following equilibrium points exist for the system (1): 

The trivial equilibrium point 0 (0,0,0,0)E and the axial equilibrium point 

1 1( ,0,0,0)E K  always exist. 

The planar equilibrium point ' '
2 1 1( , , 0,0)E S I in 1 1S I plane is obtained as                        

' 1 1
1

1

d
S

c


 , 1 1 1 1 1

1

1 1 1 1 1

( )

( )

  
 

 

rS c K d
I

c d K rd r




 , ' '

1 1 1.S I K   

The equilibrium point ' '
2 1 1( , , 0,0)E S I exists provided  
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(2.1)                            1 1 1 1( ) 0.c K d                                                    
    

In this case, the predator species is eliminated and the disease persists in the 
prey species.  

Another disease free planar equilibrium point 3 1 2
ˆ ˆ( ,0, ,0)E S S  on 1 2S S  

plane exists provided  

(2.2)                           2
1

1

.
d

K
ka

  

The equilibrium level densities of susceptible prey and predator are 

              " 2
1

1

d
S

ka
  and, " 1 1 2

2 2
1 1

( )
.

r ka K d
S

ka K


   

For non-zero equilibrium point * * * * *
1 1 2 2( , , , )E S I S I  of the system (1), *

1S is given 

by the positive root of the quadratic 

(2.3a)                     ( )f s AS -BS+C= , 2 0                                                                        

2 3 1 1 3 1 1 3 2 1 1

2 3 1 1 1 3 1 1 3 2 1 1 2 1 1 1

1 2 1 3 2

where       ( )( ) 0,

[ ( ) ( ){( ) }],

( ),

A ra d a c d K ka d r c K

B ra d K a K d d d r c K d ka K

C d K d



  

 

     

      

 

 

A, B and C being positive, the quadratic has two positive roots if B 4AC2 . 
Also  

(2.3b)                     
* "

* 1 3 2 1 1
1

2 3

( )( )
,

ka d S S
I

a d

 
                

(2.3c)                     
* '

* 1 3 1 1
2 * "

2 3 1 1 1

( )
,

( ( ) )

c d S S
S

a d S S ka




       
 

(2.3d)                     
* " *

* 1 1 1 2
2

3

( )ka S S S
I

d




       
 

It is clear from (2.3b) and (2.3c) that . Further, * *
1 1 1S I K  , 

which implies that Hence,  where 

2 1 1

1 1

max ,
d d

S
ka c

 
  

   

and 1 2 3 3 2 2

2 3 3 2 1

( )ˆ .
( )

K a d d d
S

a d d ka





 


 
 

Further, the root  of 

the quadratic is  unique provided ˆ( ) ( ) 0.f S f S  This will also ensure the 

uniqueness of positive equilibrium point * * * * *
1 1 2 2( , , , )E S I S I .  
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The Basic Reproduction Number is defined as the average number of 
secondary cases when one infective is introduced into a completely 

susceptible host population. Let 0R  is the basic reproduction number for 

isolated prey population and 1R  is the basic reproduction in the prey 

population when both prey and predator are present in the system. Using next 

generation approach 11, the epidemiological threshold quantities 0R and 1R  

for the system (1) are computed as  

1 1
0

1 1

c K
R

d 



  and 

"
1 1

1 "
1 1 2 2

c S
R

d a S


 
,  

It may be noted that 1R < 0R . Also, the greater vulnerability of prey will 

reduce 1R . 

The variational matrix V of given system (1) is given by  

                        

1
11 1 1 1 1 1 1 1

1

1 1 22 2 1 2 1

1 2 2 2 33 2

2 2 2 1 3 2

- - - -

- - ,

-

0 -

rS
a c S a S a S

K

c I a a I a IV

ka S a S a

a S a I d







 
 

 
 
 
 
  

 

where  

1 1
11 1 2 2 1 1

1 1

2
- ( ) - -

rS rI
a r a S I c I

K K
    

22 1 1 1 1 2 2 2- - - ( )a c S d a S I   

33 2 1 2 1 1- (- )a a I d ka S    

Theorem 2.2 The trivial equilibrium point 0 (0,0,0,0)E   iis a saddle point 

with unstable manifold along 1S
 direction. 

 Proof: From variational matrix V, the characteristic equation about 

0 (0,0,0,0)E  is obtained as 

           1 1 2 3 2( )( )( )( ) 0.r d d d             

All the eigenvalues are negative except the one along 1S  i.e. r  .  

Hence result. 

Theorem 2.3 The axial equilibrium 1 1( ,0,0,0)E K  is locally asymptotically 

stable provided    
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(2.4)                       0 1R   and  1 1 2.ka K d                                                    

 Proof: The characteristic equation about 1 1( ,0,0,0)E K  is obtained as 

   1 1 1 1 2 1 1 3 2( )( )( )( ) 0.r c K d d ka K d               

All the eigenvalues are negative provided  

 1 1 1 1c K d    and 1 1 2ka K d  

Hence  result. 
 

When the perturbations are taken in 1 1S I  plane only, then the 

equilibrium point 1 1( ,0,0,0)E K  is locally asymptotically stable for 0 1R  . 

However in the presence of predator population the stability depends upon the 
dynamics of predator also as is evident from (2.4). In fact, when the feeding 
efficiency of predator is sufficiently low then the disease will die out from 
both the prey and predator under condition (2.4) and the equilibrium point 

1 1( ,0,0,0)E K is locally asymptotically stable.   

The equilibrium 1 1( ,0,0,0)E K is saddle point when  

(2.5)                           1 1 2
1

1 1

,max
d d

K
c ka

 
  

 
                          

      

Further, when 1 1( ,0,0,0)E K  is locally asymptotically stable, it is observed 

from (2.1) and (2.2) that the equilibrium points ' '
2 1 1( , , 0,0)E S I and 

 " "
3 1 2,0, ,0E S S  do not exist. Further, the stability of 1E  also excludes the 

existence of * * * * *
1 1 2 2( , , , )E S I S I ..  

Theorem 2.4 If 0 1R  , then ' '
2 1 1( , , 0,0)E S I  locally asymptotically stable 

provided  

 (2.6)                       ' '2 3
1 1 1 2

3 2

0.
( )

a d
ka S I d

d 
  


                           

  

 Proof: From variational matrix V, the characteristic equation about 
' '

2 1 1( , , 0,0)E S I  is obtained as 

              
' ' '

2 ' ' 21 1 1 1
1 1 1 1 1'

1 1 1

0,
rS I rS

c I c S P Q
K S K


    

     
           

     
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where 

 ' '
2 1 1 1 2 3 2 ,P a I ka S d d       

 '
2 1 1 3 2 3 2 1( )( ) .Q d ka S d d a I     

Since the expression  '
1 1 1 0c S    is always positive, the first quadratic 

factor gives eigenvalues with negative real part.  Therefore, the system 

around ' '
2 1 1( , , 0,0)E S I is locally asymptotically stable provided (2.6) is 

satisfied.     
It may be concluded from theorem 2.4 that the disease may be endemic in 

prey population subject to the condition (2.6) when the basic reproduction 

number 0R  is above the threshold.  In this case, the predator species goes to 

extinction. 

The condition of instability of  ' '
2 1 1( , , 0,0)E S I  if it exists, is given by 

(2.7)                         ' '2 3
1 1 1 2

3 2

0.
( )

a d
ka S I d

d 
  


                                    

Theorem 2.5 The disease free equilibrium state 3 1 2
ˆ ˆ( ,0, ,0)E S S , iiss  locally 

asymptotically stable provided 

               1 1 2 2 1 1
ˆ ˆ 0c S a S d     . 

Proof:  From variational matrix V, the characteristic equation about 

3 1 2
ˆ ˆ( ,0, ,0)E S S  is obtained as           

     

"
2 " 2 " " " "1

1 2 1 1 2 1 1 2 2 1 1 3

1

( )( ) 0.
rS

a S ka S S c S a S d d
K

    
   

           
   

 

Since the quadratic factor always yields two eigenvalues with negative real 
part, the condition for stability is 

(2.8)                            1 1 2 2 1 1
ˆ ˆ 0.c S a S d                      

This completes the proof.     
 

Its simplification gives  1 1.R   

If the feeding efficiency of predator population is sufficiently high so as 

2
1

1

d
K

ka
   tthheenn  tthhee  predator population persist.  When the basic reproduction 

number 1R  is below the threshold, then the disease dies out and prey and 
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predator population go to their usual persistent equilibrium values and the 

equilibrium point 3 1 2
ˆ ˆ( ,0, ,0)E S S is stabilized. 

The greater vulnerability of prey to predation may be responsible for 
persistence of disease free prey predator population. 

The disease free equilibrium state 3 1 2
ˆ ˆ( ,0, ,0)E S S   if it exist, is unstable if 

(2.9)                       1 1 2 2 1 1
ˆ ˆ 0c S a S d                                      

   

Theorem 2.6 The non-zero equilibrium point * * * * *
,1 1 2 2( , , )E S I S I  , if exists, 

is not locally asymptotically stable.  

Proof:     The characteristic equation about *E  is obtained as  

(2.10)                         4 3 2
0 1 2 3 0,A A A A                                

   
where 

1 1 1 2 2
0 3 2

1 1 2

,
I rS I

A d
S K S

 
      

22 2 1 1 1 1
1 3 2 1 1 1 1 2

2 1 1 1

,
I I rS rS

A d cS ka S S
S S K K

 
 

    
           
    

 

    

   

2 2 1 1
2 1 1 1 1 3 2 1 1 3 2 2 2

2 1

2
2 3 2 1 22 1 2
1 1 2 1 1 1 2 3 2

1 2 1 3 2

1 2 1 1 2
1 1 3 2 1 2

1 2

( ) ,

I rS I
A c c S d I c d a

S K

d a I Ir S I r
ka S S a c ka S I d

K S K d

c rS I I
ka d a I S

K S


   









 
       

 

  
        

  

  

 

 

*
* * * *3 2 1 2 1 1 2

3 1 3 1 2 1 1 2 2 1 1

1 1 1 1

2 *2
* * * *1 2 3 1 2 2
1 1 2 1 3 2 1 2 1 2

1

( )
( ) ( ) .

d ra rka a I Drka ra
A c d a S c a I a S I

K K K K

a d I S I
cS a I d ka a I S

S


 

     
          

     


    

 

As the constant term 3A is always negative, at least one eigenvalue of the 

equation (2.10) will be positive, therefore * * * * *
1 1 2 2( , , , )E S I S I  is not locally 

asymptotically stable.  
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It is observed that ' '
2 1 1( , , 0,0)E S I , if it exist, is locally asymptotically 

stable provided 3 1 2
ˆ ˆ( ,0, ,0)E S S  is unstable and vice-versa. However, it is 

possible for some choice of parameters that both ' '
2 1 1( , , 0,0)E S I  and 

3 1 2
ˆ ˆ( ,0, ,0)E S S  exist and locally stable.  

It is also observed that when both ' '
2 1 1( , , 0,0)E S I and 3 1 2

ˆ ˆ( ,0, ,0)E S S are 

stable then non-zero equilibrium point * * * * *
,1 1 2 2( , , )E S I S I  always exist. 

 

3. Numerical simulations 
 

Numerical simulations have been carried out to investigate dynamics of 
the proposed model in the 3-D system. Computer simulations have been 
performed on MATLAB for different set of parameters. 
 Consider the following set of parametric values:   

(3.1)            
1 1 2 1 2

3 1 1 2

0.1, 50, 0.25, 0.3, 0.7, 0.6,

0.6, 0.01, 0.8, 0.9, 0.012.

r K d d

d c a a k

      

    
               

 The system (1) has equilibrium point 1(50,0,0,0)E for the data set (3.1). It 

is locally asymptotically stable as the computed value of 0 is0.5882 1R   and 

the value of feeding efficiency k  of predator population is sufficiently low 

and the condition 2
1

1

d
K

ka
 is satisfied. The solution trajectories in phase space 

1 1 2S I S   are drawn in Fig 1 for different initial values.  
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Fig 1a: Phase plot depicting the stability of equilibrium point 
1E  in phase space S1 - I1 -  S2 
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Fig 1b: Phase plot depicting the stability of equilibrium point 

1E  in phase space S1 - I1 -  S2 

 
Now consider the following set of parametric values: 

 (3.2)        
1 1 2 1 2

3 1 1 2

0.59, 250, 0.27, 0.3, 0.7, 0.45,

0.6, 0.001, 0.07, 0.09, 0.1.

r K d d

d c a a k

      

    
          

                    

For this set, the point 1(250,0,0,0)E  is unstable and 

3 (64.2857, 0, 6.2612, 0)E  is locally asymptotically stable as feeding 

efficiency 0.1k   is sufficiently large such that 2
1

1

( 64.2857)
d

K
ka

   and 

1 0.0419 1R   . Fig. 2 shows the stability of the equilibrium 

point 3 (64.2857, 0, 6.2612, 0)E . Further, the equilibrium point 

' '
2 1 1( , , 0,0)E S I does not exist in this case as 1 1

1

1

( )
( 970)

d
K

c


  . 
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Fig 2: Phase plot depicting the stable behavior of the equilibrium point 3E  

Consider the following data with other parameter as in (3.2): 

(3.3) 1 1 1 2500, 0.025, 0.01, 0.03, 0.1.K c a a k            

The equilibrium point 1(500,0,0,0)E  is unstable and 

2 (38.8,28.3133,0,0)E  exists as infection rate 1c  in prey population is high 

enough so that 1 1
1

1

( )d
K

c


  and 2 (38.8,28.3133,0,0)E  becomes locally 

stable as condition (2.5) is satisfied and 0 12.8866 1R   . The stability of the 

equilibrium point 2 (38.8,28.3133,0,0)E is shown in Fig 3. Further, it was 

observed that the equilibrium point 3 1 2
ˆ ˆ( ,0, ,0)E S S does not exist in this case 

as 2
1

1

( 4500)
d

K
ka

  .  
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Fig 3: Phase plot depicting the stable behavior of the equilibrium point  2E  

Now we examine the case when 2E  is stable and 3E  is unstable. For this 

take following data set of parameters.  

(3.4)         
1 1 2 1 2

3 1 1 2

0.02, 100, 0.01, 0.3, 0.01, 0.11,

0.15, 0.002, 0.01, 0.02, 0.33.

r K d d

d c a a k

      

    
                                    

 As 1K is greater than computed value 33.3333 of  2

1

d

ka
 and 10 of  

1 1

1

( )d

c


 in this case, the equilibrium point 1(100,0,0,0)E  is unstable and 

both the planar equilibrium points  2 (10, 15, 0, 0)E  and 

3 (33.3333, 0, 1.3333, 0)E  exists. The equilibrium point 

3 (33.3333, 0, 1.3333, 0)E  is found to be unstable as it satisfies the condition 

(2.8) i.e. " "
21 1 2 1 1 0.02 0c S a S d       and 2 (10, 15, 0, 0)E  is found to be 

locally asymptotically stable as condition (2.6) is satisfied i.e. 

' '2 3
1 1 1 2

3 2

0.1770 0
( )

a d
ka S I d

d 
    


 and 0 10 1R   . The solution 

trajectories in phase space 1 1 2S I S   are drawn in Fig 4 for different initial 

values. All these trajectories converge to 2 (10, 15, 0, 0)E . Starting with initial 

value in the neighborhood of the point 3 (33.3333, 0, 1.3333, 0)E , the solution 

trajectory approaches to the equilibrium point 2 (10, 15, 0, 0)E . This confirms 

the instability of  3 (33.3333, 0, 1.3333, 0).E   
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Fig 4: Phase plot depicting the stability of 2E  and instability of 3E  

Now we take the case when 3E is stable and 2E  unstable, for this consider 

following set of data 

(3.5)               
1 1 2 1 2

3 1 1 2

0.75, 45, 0.29, 0.3, 0.6, 0.9,

0.95, 0.02, 0.3, 0.5, 0.73.

r K d d

d c a a k

      

    
                                     

As 1K is greater than computed value 4.3379 of  2

1

d

ka
 and 44.5 of  

1 1

1

( )d

c


 in this case, the equilibrium point 1(45,0,0,0)E  is unstable  and  

system (1) has two planar equilibrium points,  say 2 (44.5,0.2764,0,0)E  and 

3 (4.3379,0,2.2590,0)E . The equilibrium point 3 (4.3379,0,2.2590,0)E  is 

found to be stable as it satisfies the condition (2.8)) i.e. 
" "

1 1 2 2 1 1 1.9327 0c S a S d       and 2 (44.5,0.2764,0,0)E  is found to be 

unstable as 0 1.0112 1R    and condition (2.6) is not satisfied 

i.e. ' '2 3
1 1 1 2

3 2

8.6899 0
( )

a d
ka S I d

d 
   


. The solution trajectories in phase 

space S1 - I1 - S2 are drawn in Fig 5 for different initial values.  All these 

trajectories approach to 3 (4.3379,0,2.2590,0)E . Convergence of solution 

trajectory to equilibrium 3 (4.3379,0,2.2590,0)E  with initial value near 

2 (44.5,0.2764,0,0)E  also confirms the instability of  2 (44.5,0.2764,0,0)E  . 
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Fig 5: Phase plot depicting the stability of 3E and instability of 2E  

  

 The following data is selected for which all the equilibrium points 
exist: 

 (3.6)                
1 1 2 1 2

3 1 1 2

0.6, 50, 0.2, 0.3, 0.6, 0.3,

0.35, 0.2, 0.2, 0.3, 0.25.

r K d d

d c a a k

      

    
                                      

In this case, the equilibrium point 1(50,0,0,0)E  is unstable. It is observed that 

both the equilibrium points 2 (4.0, 3.4074, 0, 0)E
 and 3(6.0, 0, 2.64, 0)E  are 

locally asymptotically stable. The point 2 (4.0,3.4074,0,0)E  is stable because 

of ' '2 3
1 1 1 2

3 2

0.6504 0
a d

ka S I d
d 

    


 and 0 12.5 1R   .  Also, 

3(6.0,0,2.64,0)E  is locally asymptotically stable as 1 0.7538 1R   . Both the 

equilibrium points have their own domains of attractions. Trajectories with 
different initial conditions converge to different equilibrium points (See Fig 
6).  

The instability of non-zero equilibrium point 
*(7.2908,0.3995,1.8523,0.3416)E  can be seen from Fig 6.  

It is also noticed that when even a very small perturbation is taken from 
*(7.2908,0.3995,1.8523,0.3416)E  to (7.2908,0.3995,1.85,0.3416)E , along z-

direction, the trajectory converges to 2 (4.0, 3.4074, 0, 0)E . Whereas, when 

the perturbation is taken to (7.2908,0.3995,1.86,0.3416)F , the trajectory of 

the system converges to 3(6.0,0,2.64,0)E .                  
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Fig 6: Phase plot depicting the stable behaviour of 2E , 3E  

 
5. Discussion 

  

A predator-prey model has been proposed and analyzed in this paper. 
From the infected prey, the disease is spreading to susceptible prey and 
consequently to the predator species. The predator-prey species are  
categorized into susceptible and infected classes. It is assumed that the 
disease does not  cause immunity in the prey and predator species. The SIS 
model system admits four boundary equilibrium points and one non-zero 
interior equilibrium point. The dynamic behavior of the system around each 
equilibrium point has been studied and threshold values for basic 

Reproduction numbers 0R  and 1R  are computed.  It has been observed the 

predator population becomes extinct and the disease dies out from the prey 
population for sufficiently small feeding efficiency of predator when the basic 

reproduction number 0R  in prey population is below the threshold. If the 

basic reproduction number 0R  in the prey population is above the threshold, 

the disease in prey population approaches endemic level and predator 
population becomes extinct. Since the logistic growth for infected prey is not 

considered, prey population, ' '
1 1S I  will never reach its carrying capacity. 

Disease in prey may be responsible for elimination of predator. 
In case the feeding efficiency of predator population is sufficiently high so 

that 2
1

1

d
K

ka
   then the  predator population persists.  When the basic 

reproduction number 1R  is below the threshold, then the disease dies out and 

prey and predator population both go to their persistent equilibrium values 
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and the equilibrium point 3 1 2
ˆ ˆ( ,0, ,0)E S S is stabilized. The difference in death 

rates of infected and susceptible species may be responsible for instability of 

the equilibrium point * * * * *
1 1 2 2( , , , )E S I S I . Therefore, the disease may not be 

endemic in prey predator system  
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