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Abstract: In this chapter, the stability of a parallel zonal flow of an 

incompressible, inviscid fluid in the β-plane has been critically examined 
for non-oscillatory modes. Necessary condition for instability and the 

condition for the temporal growth rate ni of unstable modes have been 

obtained. Other important results include the temporal growth rate for 

unstable modes, condition for the non-existence for non-oscillatory 

modes and necessary condition for the existence of non-oscillatory 

unstable modes.  
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1. Introduction 
 

The study of dynamic instability may be dated back to Helmholtz and 

Reynolds Lamb
1
 and since then has attracted the attention of many workers 

in hydrodynamics and meteorology. Helmholtz investigated wave motion 

along a surface of discontinuity with an abrupt change in the wind and 

density along the vertical and showed that the common surface is unstable 

for sufficiently short wave disturbances. It was also shown that any finite 

wind discontinuity will have the effect of destablization. Later on Rayliegh
2
 

investigated the stability of horizontal parallel flows and tried to 

approximate the actual current profile by combining a number of belts, each 

with linear velocity distribution, and showed that the stability of the current 
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will depend upon the shape of the profile. Heisenberg
3
 questioned the 

validity of this method. Later on, most advancement of the study of 

instability of an inviscid fluid was made by Lin
4
 who also gave a physical 

interpretation in terms of conservation of vorticity.  

Since all these studies are restricted to non-rotating systems, while in 

meteorology the earth’s rotation plays a very important role in the dynamics 

of  atmosphere, the results of these investigations can hardly be applied in 

the field of meteorology except for some special phenomena occuring on a 

rather small scale. Parallel of this study of stability of wave disturbances 

was the consideration of the acceleration attained by a particle displaced 

from its original position, based largely on the assumption of conservation 

of momentum of the particle, which implies that there will be no change in 

the pressure field. This consideration was extended into meteorology by 

Solberg
5
 and later on by Kleinschmidt

6
 by considering the balance of 

energy. We should distinguish the inertial instability discaused. Solberg 

from the instability we are considering which for the case of wave 

disturbances would depend upon the wave length. Furthermore in view of 

the emphasis generally given to the theory of momentum transfer in 

trubulent motion, it seems very desirable to consider the problem from the 

point of view of vorticity transfer. Besides, most writers in dealing with the 

problem of instability of wave motion were satisfied by showing that the 

wave velocity will become complex under certain conditions, very little 

attention has been given to the order of magnitude of the amplifying factors 

owing to mathematical difficulties.  

It should be pointed out that no attempt has been made to explain all the 

growth and decay of a very complicated system morely by dynamic 

instability. The dynamic stability or instability can only give some 

indication of the possibility for the development of some disturbances, while 

the actual mechanism of the disturbances itself must be studied from other 

considerations. Furthermore, since in some cases the general character of the 

basic current changes so rapidly that the disturbances can hardly be 

considered as small, and the system is receiving energy from outside, the 

dynamic stability will not give us the clue for these changes. But for many 

cases we actually find the main pattern of the flow remaining nearly the 

same for a long period of time without much change and with a series of 

waves long or short, moving along it. It is to these cases that our results 

should apply and if we can show that the order of magnitude of the 

amplifying factor is the same as in the actual cases, at least we can say the 

dynamic instability must be one of the main factors that are operating.  
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A sufficient condition of stability has been obtained for the problems of 

Kuo
7
 Hickernel

8
, Shandil

9
 governing the linear stability of a parallel zonal 

flow of an incompressible, inviscid fluid in the β -plane.  For the eigen 
value problem prescribed by the governing equation, Kuo obtained an 

extension of the celebrated Rayleigh
10
 inflexion point criterion  inviscid, 

homogeneous parallel shear flows and proved that a necessary condition of 

instability of this problem is that  2( ) 0,D U β− =  some where in the flow 

domain, It is mathematically proved that if the separation between the two 

boundaries does not exceed a critical value then the flow is stable even 

when the modified Rayleigh and Fjortoft
11 
necessary instability criteria are 

satisfied. Recently Padmini et.al.
12 
obtained bounds on the wave velocity of 

neutral modes. In the present paper, we extend the results of Shandil for 

homogeneous shear flow to the problem. 

 

2. Formulation of the problem -perturbation equations  
 

Consider the atmosphere to be barotropic, then the vorticity equation is 

given by 

(1)  ( )2 " 0,U U
t x x

ϕ
ϕ β

 ∂ ∂ ∂
+ ∇ + − = ∂ ∂ ∂ 

                  

where  ϕ  = perturbation  stream function  

and  U = U (z), basic zonal velocity. 

Let us consider the perturbnations of the form  

(2)   ϕ  (x, y, t) = ϕ (y) 
( )i x y c t

e
+ −

,                     

On using equation (2), equation (1) reduces to  

(3)   ( ) ( )2

2 2 0
D U

D k
U c

β ϕ
ϕ

−
− − =

−
,                 

and the associated boundary conditions are that φ  must vanish on the rigid 
walls, we may recede  to ±∞  in the limiting cases and thus 

(4)   ( ) ( )1 2 0,z zϕ ϕ= =                   

where z is the real independent variable such that 1 2,
d

z z z D
dz

≤ < ≡ ,    

k is a real constant and denotes the wave number, r ic c ic= +  is the complex 

wave velocity, U(z) is a twice continuously differentiable function of z and 
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denotes the prescribed basic velocity distribution while the dependent 

variable ( )zϕ  is, in general a complex valued function of z and denotes the 

z component of velocity distribution of the parallel flow and the parameter 

β  is the derivative of the Coriolis force in the latitudinal direction. In 

complex wave velocity 0rc ≠ , then the amplitude will be an exponential 

function of time t, for 0ic >  the amplitude will increase exponentially with 

time and the wave is said to be amplified, if on the other hand 0ic <  then 

the amplitude will decrease with time and the wave will be damped. If 

0,ic =  the amplitude will remain constant and the waves are said to be 

neutral. 

 

3. Mathematical Analysis 
 

Using the transformation ( )1/2U cϕ ψ= −  in equation (1), we get 

(5)  ( )
( )

( ) ( )2 2 21 "
' 0.

4 2

U
D U c D U k U c D U

U c
ψ β ψ

 
 − + − + − − − − =   −  

 

Multiplying equation (5) by *ψ  (the complex conjugate of ψ ) throughout 

and integrating the resulting equation over the boundary conditions (4) we 

get  

(6)  ( ) ( ) ( )

2
2 2 22 ' "

0
4 2

U U
U c D k dz dz

U c
ψ ψ β ψ

  − − + + − + − =  −    
∫ ∫ .  

Now equating the real and imaginary parts on both sides of equation (6), we 

obtain 

(7)   

( )

( )

2 22

2
2

2

' 1
" 0,

4 2

r

r

U c D k dz

U cU
U dz

U c

ψ ψ

β ψ

 − − +  

 −   + − + − = 
  − 

∫

∫
  

and                          

(8)   

2
'

2 22

2 2
0

4 ( )
i

r i

U
c D dz k dz

U c c
ψ ψ

  
  + − =   − +     

∫ ∫ .                       
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Now we prove the following theorems: 

Theorem 1: The temporal growth rate ni of unstable modes satisfies the    

condition                                       

    ( )2 2

max

1
' .

4
i i in U where n c k< =   

 Proof :   If  0,ic ≠   then from equation (8), we have 

(9)    
2

2 22

2

'
0

4 i

U
D dz k dz

c
ψ ψ

 
+ − ≤ 

 
 

∫ ∫ .                                 

For the validity of inequality (9), we must have 

( )2 2

max.

1
'

4
in U<  where     i in c k=  

 The above bounds on in  clearly indicate that the range of in  increase 

with the increase in shear velocity. A possible destablizing character of 

shear is clearly indicated from this result. These bounds are obtained for 

general types of modes whether oscillatory or non-oscillatory. However if 

we analyze the instability of non-oscillatory modes then the theorem 

provides a condition which rules out the existence of non-oscillatory 

unstable modes. 

Theorem 2: For non-oscillatory modes a necessary condition for 

instability is 
2

2 2 2'
, .

4
i i i

U
n k U where n c k< − =  

Proof: For non-oscillatory unstable modes ( 0rc = ), equation (8) reduces 

to   

(10) 

( )
2 2 2 2 2

2 2

2 2

1
'

4 0
i

i

k U k c U

D dz dz
U c

ψ ψ

 + − 
+ = 

+ 
 

∫ ∫ .               

Equation (10) shows that a necessary condition for its validity is that                                                      

  2 2 2 21
' , where ,

4
i i in U k U n c k< − =  

We conclude from here that  

(i) If the condition 
2 2

2

1

4'

k U

U
>  is satisfied everywhere in the flow 
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domain, where 'U  is nowhere zero, then non-oscillatory unstable 

mode can not exit. 

(ii) The bounds provided by this inequality on in  for non-oscillatory 

unstable modes are sharper bounds as compared to the bounds 

obtained in Theorem 1. 

Theorem 3: If 
"

1,
2

U

β
≥  then non-oscillatory modes do not exit. 

Proof: Let the modes be non-oscillatory i.e. 0rc =  so that equation (7) 

reduces to  

(11) ( ) ( )
( )

2
2 2 22

2 2

' 1
" 2 0

24 i

UU
U D k dz U

U c
ψ ψ β ψ

 
 + + + − = +  

∫ ∫ .         

Now if 
"

1,
2

U

β
≥  everywhere in the flow domain then equation (11) 

becomes mathematically inconsistent showing thereby that our assumption 

of the existence of non-oscillatory modes is not correct. In other words rc  

cannot be zero under the condition of the theorem. 

Theorem 4: If 2 1
" ,

2
k U β> −  then non-oscillatory modes do not exist. 

Proof:  On rewriting equation (11), we have  

(12) 
2

2 2 22

2 2

1 1 '
" 0

2 4
i

UU
U D dz Uk U dz dz

U c
ψ β ψ ψ + + − + =   +

∫ ∫ ∫ .         

Now if 2 1
" ,

2
Uk U β> −  then for the validity of equation (12), we must 

have 0,rc ≠  which shows that the non-oscillatory modes do not exist. 

Theorem 5: Neutrally non-oscillatory modes ( )0, 0r ic c= =  do not 

exist if the condition   

   
2

1 1
" 0

4 2'

U
U

U
β + − > 

 
, 

holds everywhere in the flow domain. 

Proof : Substituting  0ic =  in equation (11), we have  
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   ( )
2

2 2 22 "

2

' 1
0

24

UU
U D k dz U dz

U
ψ ψ β ψ

  + + + − =  
   

∫ ∫ . 

        Clearly the neutrally non-oscillatory modes do not exist if the condition 

(13)      
2

1 1
" 0,

4 2'

U
U

U
β + − > 

 
                                           

holds everywhere in the flow domain, where ' 0U ≠  for all values of z in the 

flow domain. 

      A Particular Case: (Linear Velocity Profile): For linear velocity 

profile condition (13) reduces to  

      
2

1

4'

U

U

β
< . 

     Theorem 6. The necessary condition for unstable non-oscillatory modes 

is that " 2 0U β− < . 

     Proof : Multiplying equation (6) on both sides by *c  (complex conjugate 

of c) and integrating over the flow domain, we get 

(14)       2

2 2 2* 2

2 * *
2*

2

' 1
. " 0.

4 2

c U c D k dz

U c U c
U c dz

U c

ψ ψ

β ψ

   − − +      

 −   + − + − =   − 

∫

∫
 

The real and imaginary parts of (14) must vanish separately and the 

vanishing of the imaginary part gives. 

(15) ( ) ( )2
2 2 22

2

2' 1
. " 0

4 2

r
i

c UU
c U D k dz U dz

U c
ψ ψ β ψ

  −    + − + − =    −   
∫ ∫  

 If 0ic ≠  and cr = 0 then equation (15) reduces to 

 (16)    ( )
2

2 2 22

2 2

' 1
. " 0

4 2( )i

U U
U D k dz U dz

U c
ψ ψ β ψ

  + + + − =  
 +  

∫ ∫ . 

For the validity of equation (16), we must necessarily have  

" 2 0.U β− <  

whereas the above condition holds automatically for linear profile, it will 
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not be so if the velocity profile is parabolic or of any other type satisfying 

" 2U β>  everywhere in the flow domain. 

      Theorem 7: The non-oscillatory modes are unstable if the condition  

    
2' 1

" 0
4 2

U
UU Uβ+ − < , 

holds everywhere in the flow domain. 

      Proof: If 0ic ≠ , then for the consistency of equation (16), we must 

necessarily have 

  

( )
2

2 2

' 1
" 0,

24 i

UU
U

U c
β+ − <

+
 some where in the flow domain. 

This provides 

  
2' 1

" 0,
4 2

U
UU Uβ+ − <  

This condition is violated under the condition  

2 1

" 2U

β
< . 

where 'U  is nowhere zero and "U is strictly positive in the range of z. 

      Theorem 8: Non-oscillatory unstable modes exist if 

  
1
,

4
Sβ <    where   

( )
( )( )

2 2 2 2

2 2 2

' 2

2 " ' 4

Uk U k U
S

U U k U
β

β

+
=

− +
 

      Proof: Let the modes be non-oscillatory and unstables, then using 

Theorem 1 in equation (11), we have  

( )
2

2 22

2
2

2

' 1
" 2 0

2'
4

4

UU
U D dz Uk U dz

U
U

k

ψ β ψ

 
 
 

+ + + − ≤   +   
  

∫ ∫ , 

For the validity of this ineqality, we must have  

  ( )
2 2 2 2 2 2

2 2 2

4 ' ' 1
" 2 0,

24 '

Uk k U U UU k
U

k U U
β

 + +
  + − <

+
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or   

(17)                 
( )

( )

2 2 2 2

2 2 2

' 2 1

42 " (4 ' )

Uk U k U

U k U Uβ

+
<

− +
,          

or  
1

4
Sβ < ,   where  

( )
( )( )

2 2 2 2

2 2 2

' 2

2 " ' 4

Uk U k U
S

U U k U
β

β

+
=

− +
 

This proves the theorem. 

 Remark: Linear velocity profile: For linear velocity profile ( )" 0U = , 

the condition (17) reduces to 

  
( )
( )

2 2 2 2

2 2 2

' 2 1
.

42 ' 4

Uk U k U
S

U k U
β

β

+
= <

+
 

 It follows from the fact that for 0β >  and for linear velocity profile non-

oscillatory unstable mode exist under the condition  

  
2 1

.
2 4

U k

β
<   

 Theorem 9: The necessary condition for unstable modes is that 
1

2
rc >  

maxU  if " 2 0U β− >  holds everywhere in the flow domain.  

 Proof:  If 0,ic ≠  then proof follows from equation (15). 

 Theorem 10: If the condition  

  

( )
2 2

2 2 2

'
1,

1
" ' 4

2

Uk U

U U k Uβ
>

 − + 
 

 

holds everywhere in the flow domain, then non-oscillatory unstable modes 

do not exist. 

 Proof:  If " 2 0,U β− <  everywhere in the flow domain, then for the 

validity of equation (16) the necessary condition is  

  

( )
( )

2

2 2

' 1
2 " ,

24 i

UU
U

U c
β< −

+
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or   

(18)  
( )

2
2 2'

2 2 "
i

UU
c U

Uβ
> −

−
                                              

which provides the lower bounds on 2
ic , also from Theorem 1, we have the 

upper bound on 2
ic  as  

(19)      
2

2

2

'

4
i

U
c

k
< .                               

Combining these inequalities (18) and (19), we get 

  
( )

2 2
2 2

2

' '
.

2 2 " 4
i

UU U
U c

U kβ
− < <

−
 

These bounds on 2
ic  do not exist if the condition  

  
( )( )

2 2

2 2 2

4 '
1

2 2 " ' 4

k UU

U U k Uβ
>

− +
 

or   

( )
2 2

2 2 2

'
1,

1
" ' 4

2

Uk U

U U k Uβ
>

 − + 
 

 

holds everywhere in the flow domain. 
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