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Abstract: This paper concerns the problem of slow viscous flow through 

a swarm of porous spherical particles. As boundary conditions, continuity 

of velocity, continuity of normal stress and stress-jump condition at the 

porous and fluid interface are employed. On the hypothetical cell surface, 

uniform velocity and Happel boundary conditions are used. The drag 

force experienced by each porous spherical particle in a cell is evaluated. 

The earlier results reported for the drag force experienced by a solid 

sphere in a cell by Happel
1
, and Qin and Kaloni

2
 for a porous sphere in 

unbounded medium have been then deduced. Representative results are 

presented in graphical form by using mathematica software and 

discussed. The effect of stress jump coefficient β  is observed in all the 

cases.  

Key Words and Phrases: Cell model, Brinkman equation, Stream 

function, Permeability, Drag force.  
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1. Introduction 
 

Many process and phenomena in science, engineering and technology 

involve the motion of flow fluids past and through porous media. Flows 

through porous media occur commonly on geophysical and biochemical 

environment and also have engineering applications, like sedimentation, 

fluidization, petroleum industry, lubricant problems, etc.  

Happel
1
 proposed a cell model in which both particle and outer envelope 

are spherical. The cell model technique involves the concept that random 

assemblage of particles can be divided into a number of identical cells, one 

particle enveloped by each cell. Furthermore, the volume of fluid cell is so 

chosen that the solid volume fraction in the cell equals the solid volume 
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fraction of the assemblage. Thus, the entire disturbances due to each particle 

are confined within the cell of fluid with which it is associated. Happel 

assumes that the inner surface is stationary and that fluid passes through a 

cell enveloping it. The following boundary conditions are imposed: (i) no-

slip and impenetrability at the inner surface. (ii) zero tangential stress and 

uniform velocity conditions at the outer envelope.  

When a Newtonian fluid flows between impermeable surfaces, the usual 

boundary condition is the no-slip condition on the boundary but when it 

flows over a permeable surface the no slip condition is no longer true. On 

that surface there will be a migration of fluids tangential to the boundary 

within the permeable surfaces i.e. there will be a net tangential drag due to 

the transfer of forward momentum across the permeable interface. Recently, 

Ochoa-Tapia and Whitaker
3,4 

studied the momentum transfer at the 

boundary between a porous medium and a homogeneous fluid theoretically 

and experimentally. They suggested a boundary condition at the interface of 

a fluid and porous surface which is commonly known as stress-jump 

condition which can be expressed in the form  

(1)            
(1)

(2) (1) (1)
,nt nt tT T v

k

βµ
− =      

where (1)
vt  being the  tangential velocity in porous region, (1)

Tnt and  (2)
Tnt  are 

shear stresses in clear fluid and porous regions, respectively  and k  being 

the permeability of the porous region and β  being the jump coefficient. 

A Cartesian-tensor solution of the Brinkman equation is investigated by 

Qin and Kaloni
2
 and they also evaluated the drag force on the porous sphere 

in unbounded medium. The problem of Stokes flow with slip and Kuwabara 

boundary conditions was studied by Datta and Deo
5
. The problem of flow 

past a porous sphere at small Reynolds number was discussed by Srivastava 

and Srivastava
6
 and they also studies the effects of jump coefficient on the 

drag force. Bhattacharyya and Raja-Sekhar
7
 have considered the problem of 

Stokes flow inside a porous spherical shell and solve it by applying the 

stress-jump condition at the porous interface. The stress jump coefficient at 

a fluid-porous dividing surface was also evaluated by Valdes-Parada et al.
8
. 

The motivations of these papers lead us to discuss the slow viscous flow 

through a swarm of porous spherical particles. 

In this paper the solution of the problem of slow viscous flow through a 

swarm of porous spherical particles is investigated. As boundary conditions, 

continuity of velocity, continuity of normal stress and stress-jump condition 

at the porous and fluid interface are employed. On the hypothetical cell 
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surface, uniform velocity and Happel boundary conditions are used. The 

drag force experienced by each porous spherical particle in a cell is 

evaluated. The earlier results reported for the drag force experienced by a 

solid sphere in a cell by Happel
1
, and Qin and Kaloni

2
 for a porous sphere in 

unbounded medium have been then deduced. Representative results are 

presented in graphical form by using mathematica software and discussed. 

The effect of stress jump coefficient β  is observed in all the cases. 

 

2. Mathematical formulations of the problem 
 

Let us consider the creeping flow of a slow viscous fluid flow through a 

swarm of porous spherical particles. The governing equations written for 

two regions are as follows: 

For the region (1), outside the porous sphere we assume the Stokes equation 

[Happel and Brenner
9
] as 

(2)     2 (1) (1)pµ∇ = ∇v , (1) 0div =v .          

For the region (2), inside the porous sphere we apply the Brinkman’s 

equation [Zlatanovski
10

] as  

 (3)  2 (2) (2) (2)
e grad p

k

µ
µ ∇ − =v v ,      (2) 0div =v .                     

Here, eµ  is the effective viscosity for the Brinkman flow which is taken to 

be different from µ  the coefficient of viscosity of clear fluid and k  being 

the permeability of the porous medium. Also, )(i
v  and

)(ip , 2,1=i  are the 

velocity vector and pressure at any point in the clear fluid and porous 

medium, respectively.  

Using the following non-dimensional variables  

(4)   )(2)( ~ ii Ua ψψ = ,    )()( ~ ii p
a

U
p

µ
= ,  ( ) ( )i iU=v vɶ ,   r ar∗ = ,  1,2i = ,              

in the equations (2) and (3) and eliminating the pressures and dropping the 

tildes, we obtain the resulting equations in spherical polar coordinates 

( , ,r θ φ )  as 

(5)          (1)2 2E  (E  )ψ  = 0,                   

(6)     (2)2 2 2E  (E  ) 0α ψ − = ,                                    

where the dimensionless operator  
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2 2 2(1 )2 ,
2 2 2

E
r r

ζ

ζ

∂ − ∂
= +

∂ ∂
   

(7)  2 2 2/α σ γ=  ,   2 2 2/ , /e a kγ µ µ σ= =    and  cosζ θ= .                            

Furthermore, the non-vanishing velocity components
( )( )( , ,0)
ii

rv vθ , shear and 

normal stresses respectively are given by   

 (8)  ( )
( )

1

2 sin

i
r

i
v

r

ψ
θθ

∂
= −

∂
 ;        

( )
( ) 1

sin

i
i

v
r rθ

ψ
θ

∂
=

∂
 ;                               

(9)   
( ) ( ) ( )2 2 22 (1 )( )

( , )
2 2 2sin

i i i
i

T r
r r rr r r

µ ψ ψ ζ ψ
θζ θ ζ

 ∂ ∂ − ∂
 = − −
 ∂ ∂ ∂ 

,                     

(10)  
( ) 2 ( )

( ) ( )

2

2 2 i i
i i

rrT p
r rr

µ ψ ψ
ζ ζ

 ∂ ∂
= − − − 

∂ ∂ ∂  

,       1,2i = .       

Also, the pressures may be obtained in both regions by integrating the 

following relations respectively: 

(11)  
(1) (1)

2 (1) 2 (1)

2
( );       ( );

sinsin

p p
E E

r rr

µ µ
ψ ψ

θ θ θθ

∂ ∂ ∂ ∂
= − =

∂ ∂ ∂ ∂
 

 (12)  

(2)
2 2 (2)

2

(2)
2 2 (2)

{( ( ) ) },
sin

{( ( ) ) }.
sin

e
a

e
a

p
E

r r

p
E

r

σ

σ

µ
ψ

θθ

µ
ψ

θ θ

∂ ∂
= − −

∂ ∂

∂ ∂
= −

∂ ∂

  

 

3. Statement and Solution of the problem 
 

In the mathematical model, we assume that all the porous spherical 

particles are randomly and homogeneously distributed in the viscous fluid. 

The porous medium is assumed to be homogeneous and isotropic. Let us 

now consider that porous spherical particles are stationary and steady 

axisymmetric flow has been established around it by uniform velocity U  

directed in the positive z-axis (see figure-1).  

In the case of axisymmetric incompressible creeping flow the regular 

solution of the stokes equation outside the porous sphere can be expressed 

as 
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(13)     (1) 2 4
1 1 1 1 2

1
( , ) [ ] ( )r A B r C r D r G

r
ψ ζ ζ= + + + ,                                                  

where     21
2 2

( ) (1 )G ζ ζ= − . 

The regular solution of the Brinkman equation inside the porous sphere in 

which origin lies may be taken as  

(14)          (2) 2
2 2 2 2( , ) [ ( )] ( )r A r D y r Gψ ζ α ζ= + ,    

where 2
sinh( )

( ) cosh( )
r

y r r
r

α
α α α= − . 

 

4. Matching conditions 
 

 At the interface of the porous surface and fluid r a∗ = , we assume that 

the velocity components and normal stress are continuous and jump 

condition in the shearing stress is employed. Therefore, the following 

matching condition at the interface is used. 

On the interface of porous sphere ( r a∗ = ):  

The continuity of velocity components across the porous sphere and 

normal stress   implies that we may take 

(15)                   (1) (2)
r rv v= ;              

(2)(1)v vθ θ=                                             

(16)                    (1) (2)( , ) ( , )rr rrT r T rζ ζ=       on   1r = .                           

Applying the stress jump condition on the porous and fluid interface as 

suggested by Ochoa-Tapia and Whittaker
3,4

                                        

(17)            
( ) ( ) )1(12

θθθ
βµ

v
k

TT rr =−         on   1=r ,                              

where β  being the jump coefficient at the interface and the sign of β  may 

be either positive or negative. In particular, if 0β =  then we get the 

continuity of shearing stress. 

On the cell surface ( br =∗
): 

  The continuity of normal component of velocity provides 

(18)  (2) cosrv U θ=     on    /r b a= =ℓ .                                              

 The vanishing of shear stress i.e., Happel condition implies that we take 
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(19)          
(2) (2) (2)2 2 22 (1 )

0
2 2 2r rr r

ψ ψ ζ ψ

ζ

∂ ∂ − ∂
− − =

∂∂ ∂
    on   r =ℓ .    

 

5. Determination of arbitrary constants 
 

Applying these above boundary conditions given by equations (15)-(19), 

we obtain   

(20)  2 2 2 1 1 1 1( )A D y A B C Dα+ = + + + ,   

(21) 2
2 1 2 2 1 1 1 12 { ( ) ( )} 2 4A y y D A B C Dα α α+ − = − + + + ,              

(22)         [ ]2 2 2
2 1 2 2 1 1 1[ 2{ ( ) 3 ( )} ] 6 3 6A y y D A C Dγ α α α α+ − = − + + ,    

(23)  

2 2 2
2 1 2 1 1

1 1 1 1

{( 6) ( ) 2 ( )} 6( )

{ 2 4 },

y y D A D

A B C D

γ α α α α

βσ

+ − − +

= − + + +
 

(24)  3 2 5 3
1 1 1 1A B C D+ + + = −ℓ ℓ ℓ ℓ ,      

(25)    5
1 1 0A D+ =ℓ .          

Solving these above equations (20)-(25), we find the following values of the 

unknown constants  

(26)  

6 2 2 2
1 1

2 3 2 2
2

1
[ ( ){2 ( 2 ) (6 )}

( ){6 (18 12 )}] ,

A y

y

σ α σ β σ α β σ

α γ σ σ β γ σ

= − − + + +
∆

+ + + − +


ℓ

  

(27) 

2 4 2 2 2
1 2

5 2 4 2 2 2

2 2 5 2
1

2 2 2 5 2 2

1
[ ( ){3{18 8 (6 ) 6 (2 2 )}

{ 54 9 2 6 ( 9 4 2 ) (27 2 )}}

( )[2 {6 6 3 (9 4 2 )}

{3{ (2 ) 2(3 )} { 6(3 ) (9 2 )}]] ,

B y

y

α σ σ βσ σ γ βσ σ

σ σ γ βσ σ βσ σ

α σ βσ σ βσ σ

α βσ σ σ σ βσ σ

= + + + + + − +
∆

+ − − + − − + − + +

− − + + − +

+ + + + + − + + +


ℓ

ℓ

ℓ

ℓ
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(28)  

5 2 2 2 2
1 2

2 2 5 2 2

5 2 2 5
1

2 5 2

1
[ ( ){ {3 ( 6 6 ) 2(9 6 )}

{ 36 24 2 (36 36 3 )}}

( )[ 2(2 3 )(2 ) { 6( 1 )

{2( 6 ) 3 (4 )}}]] ,

C y

y

σ α σ γ σ γ σ

β γ σ γ σ

α β σ σ α σ

β σ σ

= − − + + + + +
∆

+ − − + + − +

− − + − + − − +

+ − + + +


ℓ ℓ

ℓ

ℓ ℓ

ℓ

 

                                                                                                                                        

(29)   

2 2 2
1 1

2 3 2 2
2

1
[ ( ){2 ( 2 ) (6 )}

( ){6 (18 12 )}] ,

D y

y

σ α σ β σ α β σ

α γ σ σ β γ σ

= − − − + + +
∆

+ + + − +


ℓ

 

     

(30)

5 2 2 2 2
2 2

5 2 2 5
1

1
3 [ ( ){ ( 18 18 ) 2(9 6 2 2 )}

( ){2(2 3 ) (6 4 ( 6 ))}] ,

A y

y

α γ βσ σ γ βσ σ

α σ α βσ βσ

= − + + + + + + +
∆

− + + + + − +


ℓ ℓ

ℓ ℓ

                            

 

(31) 5 5
2

1
6 [(4 ) ( 1 ) ]D σ β σ= + + − +

∆
ℓ ℓ ℓ ,                                                                                     

where 

(32)      

5 2 2 2 2
2

2 2 2 2

2 4 2 2 2

6 2 4 2 2 2

2 2 2 2 3
1

2

( )[3 { (12 12 ) ( 6 6 )}

2 { ( 18 12 ) (9 6 )}

3 {18 8 (6 ) 6 (2 2 )}

{54 9 2 6 ( 9 4 2 ) (27 2 )}]

( )[3 {2 (2 2 ) (6 2 2 )}

2 {2

y

y

α σ β γ σ σ γ σ

σ β γ σ σ γ σ

σ σ βσ σ γ βσ σ

σ σ γ βσ σ βσ σ

α σ βσ σ α βσ σ βσ

σ σ

∆ = − + + − + +

+ − − + + + +

− + + + + + − +

+ + − + − + − − +

+ − + + + + +

−

ℓ

ℓ

ℓ

ℓ

2 2

5 2 2 2

6 2 2 2 2 2

( 2 ) {3 ( 6 )}}

3 {2 ( 2 ) { 2 (4 )}}

{2 (9 4 2 ) { 6(3 ) (9 2 )}}],

β σ α σ β σ

σ σ β σ α σ β σ

σ βσ σ α σ βσ σ

− + + + − +

− − + + − + +

+ − + + − + + +

ℓ

ℓ
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.sinhcosh)(sinh)( 21 αααααα −== yandy                                                         

  

6. Evaluation of the drag force 
 

The drag force experienced by a porous sphere in a cell can be evaluated 

by using the simple elegant formula [Happel and Brenner
9
] as   

(33)   

2 (1)
3

2
0

( ) .
E

F U a r d
r

π ψ
π µ ϖ θ

ϖ

∂
=

∂∫                                              

Here since sinrϖ θ=  and 2 (1) 2
1 1 2

2
[ 10 ] ( )E C r D G

r
ψ ζ= − + , inserting 

these above values in (33) and integrating, we find that 

(34) 

5 2 2 2 2
2

2 2 5 2 2

5 2 2 5 2 5 2
1

1

4 [ ( ){ {3 ( 6 6 ) 2(9 6 )}

{ 36 24 2 (36 36 3 )}

( )[ 2(2 3 )(2 ) { 6( 1 ) {2( 6 ) 3 (4 )}}]/ ,

4

aU y

y

F a UC

π µ σ α σ γ σ γ σ

β γ σ γ σ

α β σ σ α σ β σ σ

π µ

= − − + + + + +

+ − − + + − +

− − + − + − − + + − + + + ∆

=

ℓ ℓ

ℓ

ℓ ℓ ℓ

 

where ∆  is given by equation (32).  Also, the drag coefficient  DC  can be 

defined as 

(35)                        1
2 2

16
,

Re(1/ 2)
D

CF
C

U aρ π
= =                                                        

where 
2

Re and
aU

v
µ

ν ρ
= =  being the Reynolds number and kinematic 

viscosity of fluid, respectively. 

The following special cases can be deduced: 

I. Porous sphere with jump condition in unbounded medium ( )→ ∞ℓ : 

In this case, the value of drag force F  experienced by a porous sphere 

comes out as 

(36)         
2 2 2 2

1

2 2 2 2
2 1

12 [ {2 ( 1 ) (4 ( 4 ) )} ( )

{ (12 ( 12 ) ) ( 6 (6 ) )} ( )] /

F aU y

y

π µ α γ α αγ γ β α γ α

β α γ αγ α γ α

= − + + + − +

− + − + + − + + ∆
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where 

(37) 

2 3 3 2 2
1

2 2 4 3 3 4 4
1

2 2 2 2 2
2

[2 (9 8 ) 18( 1 )

( 6 4 )] ( ) [2 2

54( 1 ) 3 ( 3 4 ) 3 ( 9 8 )] ( )

y

y

α α βγ αβγ γ γ

α γ γ α α βγ α γ

γ α γ γ αβγ γ α

∆ = + − + − +

+ − + − +

+ − + + − + − − +

 

II. Porous sphere in a cell without jump ( 0)β = :  

 In this case, the value of drag force F  experienced by a porous sphere 

for the case of 1γ =  comes out as  

(38)   
2 2 2 5

1 2

2

4 [ 10 ( ) {30 (2 3 )} ( )]aU y y
F

π µ α α α α α− + + +
=

∆
ℓ ℓ

,                    

where 

(39)      

2 6 2 4 6 5
2 1

2 6
2

[2 {(5 6 ) 15 } ( ) { (2 3 3 2)

3( ( 14 10) 30 )} ( )].

y

y

α α α α

α α

∆ = − + − + − + −

+ + − +

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

                

III. Porous sphere in an unbounded medium without jump ( 0)β = : 

In this case, the value of drag force F  experienced by a porous sphere 

of radius a turns out as   

(40)            1
1 2

3
6 [1 ]

2
F aUπ µ λ

α
−= + + ,      1 1 2( ) / ( )y yλ α α= .                         

A well- known result was reported earlier by Qin and Kaloni
2
 for the 

drag force experienced by a porous sphere in an unbounded fluid. 

IV. A solid sphere in a cell: 

In this case, the value of drag force from the equation (38) by taking 

limit asα → ∞ , comes 

(41)            5/3 1/3 5/3 2 13 32
3 2 2

6 [1 ][1 ]F U aπ µ λ λ λ λ −= + − + − ,                  

where 3 3( / )a bλ −= = ℓ  being the solid volume fraction. This result for the 

drag force agrees with the earlier result reported by Happel
1
.  

V. A solid sphere in unbounded medium: 

   In this case, the value of drag force F  experienced by the solid sphere 

comes out as                                                                                                         
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U

 

 

θv  

Approaching Fluid 

Porous sphere 

Porous fluid interface  

Hypothetical surface 

Clear fluid 

z-axis 
 

vγ  

 

U  

 

br =∗

r a∗ =  

(42)     6F aUπ µ= .                                                                           

A well-known result for the drag reported earlier by Stokes for flow past a 

solid sphere in an unbounded medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.-1: The physical situation and the description of coordinate system for the model 

 

7. Conclusions 
 

The variation of the drag coefficient DC  against permeability parameter 

σ  for the porous sphere for various values of stress jump coefficient 

0.5, 0, 0.5β = −  has been shown in figures-2, 3 and 4 for different cell sizes 

ℓ  and viscosity ratios γ . These figures show that the drag coefficient DC  

increases with increase of σ , i.e. with decrease of permeability but it 

decreases with increase of  jump coefficient β . Here, it may be mentioned 

that the values of jump coefficient β  varies in the range –1 to 1 as 

experimentally found [Ochoa-Tapia and Whitaker
3,4

].  
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0.5

0

β

β

= −

=
 

 
                  0.5β =  

 

 

 

 

 

 

 

 

 

 

 
                                   Permeability parameter  σ →  
 

Fig. -2: Plot of drag coefficient DC of a porous sphere in a cell versus 

      permeability parameter σ  for various values of β  when cell size 

      1=ℓ  and 1γ = . 

 

 

                                   Permeability parameter  σ →  

 
                                    

 

 

 

 

 

 

 

 

 

 

 

                                   Permeability parameter  σ →  

 

Figure -3: Plot of drag coefficient DC of a porous sphere in a cell versus                  

permeability parameter σ  for various values of β  when cell size 2=ℓ  and 2γ = . 

 

C
D

 →
 

C
D

 →
 

0.5

0

0.5

β
β
β

= −

=

=
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                  0.5β = −  

                                    
                  0β =  

                   

 

 

 

 
                  0.5β =  

 

 
Permeability parameter  σ →  

 
Figure-4: Plot of drag coefficient DC of a porous sphere in a cell versus 

permeability parameter σ  for various values of β  when cell size 

                     1.5=ℓ  and 5γ = . 

 

 
Figure-5: Stream lines of flow pattern for a porous sphere in a cell when 

2, .125σ γ= = and 1a = . 

C
D

 →
 

0=β  

5.0=β  



Stokes flow past a swarm of porous spherical particles with stress jump condition 61 

 
Figure-6: Stream lines of flow pattern for a porous sphere in a cell when 

8, .125σ γ= = and 1a = . 

 

 
Figure-7: Stream lines of flow pattern for a porous sphere in a cell when 

2, .343σ γ= = and 1a =  
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The case when β =0, corresponds to the continuity of the stresses. The 

effect of stress jump coefficient β  is observed in all the cases. The stream 

lines of flow patterns for a porous sphere in a cell without jump are also 

plotted for various parameters as shown in Figures 4, 5 and 6. Here, the 

numerical results and figures for the given input parameter values, have 

been evaluated by using Mathematica 5.2 software. 
 

Acknowledgement: The first author is thankful to the Department of 

Science and Technology, Govt. of India for providing the financial 

assistance under its project No. SR/FTP/MS-07/2004 during this study. 

 

References 
 

1. J. Happel, Viscous flow in multiparticle systems: Slow motion of fluid relative to 

beds of spherical particles, J. A. I. Ch. E., 4-2 (1958) 197-201. 

2. Qin Yu and P. N. Kaloni, A Cartesian-tensor solution of the Brinkman equation, J. 

Engng. Math., 22 (1988) 177-188.     

3. J. A. Ochoa-Tapia and S. Whitaker, Momentum transfer at the boundary between 

a porous medium and a homogeneous fluid-I. Theoretical development, Int. J. 

Heat mass transfer, 38(14) (1995a) 2635-2646. 

4. J. A. Ochoa-Tapia and S. Whitaker, Momentum transfer at the boundary between 

a porous medium and a homogeneous fluid-II. Comparison with experiment, Int. J. 

Heat mass transfer, 38(14) (1995b) 2647-2655. 

5. S. Datta, and S. Deo, Stokes flow with slip and Kuwabara boundary conditions, 

Proc. Ind. Acad. Sci. (Math. Sci.), 112 (3) (2002) 463-475. 

6. A.C. Srivastava and N. Srivastava, Flow past a porous sphere at small Reynolds 

number, ZAMP, 56 (2005) 821-835. 

7. A. Bhattacharyya and G. P. Raja Sekhar, Stokes flow inside a porous spherical 

shell: Stress jump boundary condition, ZAMP, 56 (2005) 475-496. 

8. F. J. Valdes-Parada, B. Goyeau and J. A. Ochoa-Tapia, jump momentum boundary 

condition at a fluid–porous dividing surface: Derivation of the closure problem, 

Chem. Engng Sci., 62  (2007) 4025-4039. 

9. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijoff 

Publishers, The Hague, 1983. 

10. T. Zlatanovski, Axisymmetric creeping flow past a porous prolate spheroidal 

particle using the Brinkman model, Quart. J. Mech. Appl. Math., 52 (1) (1999) 

111-126. 

11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover 

Publications, 1970. 


