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Abstract: In this formalism the covariant derivative contains the four 

potentials associated with four charges and thus leads the different 

gauge strength for the particles containing electric, magnetic, 

gravitational and Heavisidian charges. Quaternions representation in 

spontaneously symmetry of breaking and Higg's mechanics and the 

equation of motion are derived for free particles (i.e. electric, magnetic, 

gravitational and Heavisidian charges). The quaternionic gauge theory 

of quantum electrodynamics has also been developed in presence of 

electric, magnetic, gravitational and Heavisidian charges. 
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1. Introduction 

 

       The asymmetry between electricity and magnetism became very clear at 

the end of 19
th

 century with the formulation of Maxwell's equations. 

Magnetic monopoles were advocated1, 2 to symmetrize theseequations in a 

manifest way that the existence of an isolated magnetic charge implies the 

quantization of electric charge and accordingly the considerable literature3-14 

has come in force. The fresh interests in this subject have been enhanced 

by’t Hooft15 and Polyakov
16

 with the idea that the classicalsolutions having 

the properties of magnetic monopoles may be found in Yang-Mill's gauge 

theories. Now it has become clear that monopoles are better understood in 

grand unified theories and super-symmetric gauge theories. Julia and Zee17 

extended the’t Hooft-Polyakov theory15, 16 of monopolesand constructed the 

theory of non-Abelian dyons (particles carrying simultaneously electric and 

magnetic charges). The quantum mechanical excitation of fundamental 

monopoles includes dyons which are automatically arisen18 
from the semi-
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classical quantization of global charge rotation degree offreedom of 

monopoles. In view of the explanation of CP-violation in terms of non-zero 

vacuumangle of world19, the monopoles are necessary dyons and Dirac 

quantization condition permits dyons tohave analogous electric charge. 

Renewed interests in the subject of monopole has gathered enormous 

potential importance in connection of quark confinement problem20 in 

quantum chromodynamics,possible magnetic condensation21,22
 of vacuum 

leading to absolute color confinement in QCD, itsrole as catalyst in proton 

decay23,24, CP-violation19, current grand unified theories25 and super-

symmetric gauge theories26-29. There has been a revival in the formulation of 

natural laws withinthe frame work of general quaternion algebra and basic 

physical equations. Quaternions30 were very first example of hyper complex 

numbers having the significant impacts on Mathematics and Physics. 
 

Moreover, quaternions are already used in the context of special relativity31, 

electrodynamics32,3 Maxwell's equation34, quantum mechanics35,36, gauge 

theories37,38, supersymmetry39,40 and other branches of Physics41 and 

Mathematics42. Symmetry plays the central role in determining its dynamical 

structure.  

      The Lagrangian exhibits invariance under   gauge transformations for 

the electroweak interactions. Since the imposition of local symmetry implies 

the existence of mass less vector particles43, Higg's mechanism is used for 

the spontaneous breaking of gauge sym metry to generate masses for the 

weak gauge bosons charged as well as neutral particle44. If thesefeatures of 

the gauge theory are avoided, we obtain massive vector bosons and hence 

the gauge symmetry must be broken. In the Higg's mechanism a larger 

symmetry is spontaneously broken into a smaller symmetry through the 

vacuum expectation value of the Higg's field and accordingly gauge bosons 

become massive. The simplest way of introducing spontaneous symmetry 

breakdown is to include scalar Higg's fields by hand into the Lagrangian45. 

Recently, we have made an attemptto develop the quaternionic formulation 

of Yang-Mill's field equations and Octonion reformulation of quantum 

chromodynamics (QCD) by taking magnetic monopole into account46,47. The 

quaternion gauge theory of spontaneously symmetry breaking mechanism 

already developed by others48-52 in terms of gauge groups and methodology 

adopted by them in different manners.  Starting with the definition of 

quaternion gauge theory, we have undertaken the study of 

       2 2 1 1
e m e m

SU SU U U    in terms of the simultaneous existence of 

electric and magnetic charges along with their Yang-Mill's counterparts53-57. 



                           Quaternionic Formulation in Symmetry Breaking Mechanism               97 

 

 

As such, we have developed the gauge theory in terms of four coupling 

constants associated with four-gauge symmetry      2 2 1
e m e

SU SU U   

 1
m

U .   

       Accordingly, we have made an attempt to obtain the Abelian and non-

Abelian gauge structures for the particles carrying simultaneously the 

electric and magnetic charges (namely dyons). In this paper the covariant 

derivative contains the four-potentials associated with these four charges 

and thus leads the different gauge strength for the particles containing 

electric, magnetic, gravitational and Heavisidian charges. Quaternion’s 

representation in spontaneously symmetry of breaking and Higg's 

mechanics and the equation of motion are derived for free particles (i.e. 

electric, magnetic, gravitational and Heavisidian charges). We have 

extended the local gauge invariance in order to explain spontaneous 

symmetry breaking mechanism. The quaternionic gauge theory of quantum 

electrodynamics has also been developed in presence of electric, magnetic, 

gravitational and Heavisidian charges. 

 

2.  Spontaneous Symmetry Breaking in the Form of Quaternions 

  

       The Lagrangian of a complex scalar field, which carries a scalar electric 

charge  e , and magnetic charge  g , gravitational  m  and Heavisidian 

 h  must be gauged with respect to both the vector and pseudo vector 

potentials  , , ,A B C D     is47, 

 

(2.1)                 
2 1 1

4 4
L D D V F F M M 

          

 

                       
1 1

4 4
f f N N 
  . 

 

Then the Lagrangian for unified charges (electric, magnetic, gravitational, 

Heavisidian) of the scalar field is47, 
 

(2.2)              sL ieA igB imC ihD           
 

                         ieA igB imC ihD            
 

                        
1 1 1 1

4 4 4 4
F F M M f f N N   
       , 
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where   is the complex conjugate of  . The electric, magnetic, 

gravitational and Heavisidian four currents  e
J  ,  m

J  ,  G
J  ,  H

J   of scalar 

field can be written in terms as, 
 

(2.3)             

     
     
     
     

,

,

,

.

e

m

G

H

J ie D D

J ig D D

J im D D

J ih D D

  

  

  

  

   

   

   

   

   
 


    


   
 

   
  

 

 

Since e , g , m , h  are scalar quantities, then the potential terms described 

as47, 
 

(2.4)                  
22 2V m       , 

 

where 2m  and are real constant parameters and should be positive to ensure 

the stable vacuum. If the potential energy in the vacuum state of minimum 

energy can be found by minimizing potential  V  . Then for the vacuum 

state, 
 

(2.5)             0 0
dV dV

d d 
    2 2 0m        , 

 

where 

(2.6)              
2

22

v m





  . 

 

Substituting the value of  
2

V  in the equation (2.1), then equation (2.1) can 

be written as, 
 

(2.7)              sL ieA igB imC ihD           
 

                         ieA igB imC ihD          
1

4
M M 
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1 1 1

4 4 4
F F f f N N  
        

22m       , 

 

The self interaction coupling constant   is taken to be positive definite and 

for 2 0m   the potential acquires a vacuum expectation value of 

 

(2.8)                          21 1

2 2

i x
x v x i x v x e


        . 

 

One can transform the  x  field away by making the gauge transformation 

under the following conditions, 
 

(2.9)                    
1

2
x x v x       

 

and the potentials has the following form 
 

(2.10)            

     

     

     

     

1
,

2

1
,

2

1
,

2

1
.

2

A x A x x
ev

B x B x x
gv

C x C x x
mv

D x D x x
hv

  

  

  

  










   


    


    


    


 

 

The Lagrangian sL  is invariant under the above transformations, 

substituting these unitary gauge transformations in the equation (2.7), the 

Lagrangian becomes
 47

 

 

(2.11)                2 21 1 1 1
2

2 2 4 4
sL m F F M M  

           

 

                        2 2 21 1 1

4 4 2
f f N N v e A A g B B   
        

 

                        2 2 2 2 2m C C h D D egA B emA C ehA D    
          

 

                         3 42 2 2
4

gmB C ghB D mhC D v  
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                          2 2 2 2 2v e A A g B B m C C h D D egA B    
          

 

                        2 2 2 2 2emA C ehA D gmB C ghB D mhC D    
         , 

 

where 
 

(2.12)            0s IL L L  , 

 

If the Lagrangian is free from kinetic and mass terms, then47 
 

(2.13)                2 2
0

1 1 1 1
2

2 2 4 4
L m M M f f  

           

 

                         2 2 2 21 1

4 2
N N v e A A g B B m C C   

        

 

                         2 2 2 2 2h D D egA B emA C ehA D gmB C    
          

 

                         2 2ghB D mhC D 
    

 

and the interaction terms of Lagrangian IL  becomes
47 

 

(2.14)           3 4 2 2 2

4
IL v v e A A g B B m C C  

  


          

 

                        2 2 2 2 2h D D egA B emA C ehA D gmB C    
          

 

                         
2

2 22 2
2

ghB D mhC D e A A g B B   
   


     

 

                        2 2 2 2 2m C C h D D egA B emA C ehA D    
          

 

                        2 2 2gmB C ghB D mhC D  
     . 

 

One can write the gauge boson mass and their scalar interaction terms in the 

form of 44  matrices as, 
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(2.15)            

2

2

2

2

e eg em eh A

ge g gm gh B
A B C D

me mg m mh C

he hg hm h D





    



 

  
  
  

    
  
  
  

 ,                 

2

2

v
  , v , 

1

2
 for the gauge boson mass, tri-linear interaction and 

quaternionic action terms respectively. Now applying the duality 

transformation cos sinE E H   , cos sinH E    , and cosG G   

sinH   and cos sinG G M   , cos sinM G H   . If the mass and 

integration matrices are diagonalized. Then 
 

(2.16)            
2 2

2 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

A

B
A B C D

C
e g

D
m h





    



 

 
  
  
      
  
     

. 

 

The equation (2.7) can also be written as, 

(2.17) )            
22

sL D D m
          

 

                        
1 1 1 1

4 4 4 4
F F M M f f N N   
       . 

 

Applying the following gauge transformations, 
 

(2.18)             . 

 

The unified gauge fields for electric, magnetic, gravitational and 

Heavisidian A , B , C  , D  transformed53 as, 

 

(2.18)            

,

,

,

.

A A

B B

C C

D D
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Applying the condition equation (2.18), the covariant derivatives for unified 

charges reduces to, 
 

(2.19)           ieA igB imC ihD                 , 

 

Taking the variation in the covariant derivative, the equation (1.19) 

becomes, 
 

(2.20)             ieA igB imC ihD                   
 

                               ie A ig B im C ih D               
 

                                ieA igB imC ihD ie A               
 

                               ig B im C ih D           
 

                               ie A ig B im C ih D                  . 

 

Similarly, 
 

(2.21)             v v v v v vie A ig B im C ih D                 , 

 

where the energy momentum field strength for different charges such as 

electric, magnetic, gravitational and Heavisidian53, 
 

(2.22)            

, ,

, ,

, ,

, .

v v v v

v v v v

v v v v

v v v v

F A A ie A A

M B B ie B B

f C C ie C C

N D D ie D D

   

   

   

   

        
        


       


       

 

 

and correspondingly the variation in equation (2.22) becomes, 
 

(2.23)            

,

,

,

.

v v v

v v v

v v v

v v v

F A A

M B B

f C C

N D D
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Applying the variational principle, then the Lagrangian L in equation 

(2.17) becomes53, 
 

(2.24)             L ie A ig B im C ih D 
                      

 

                          ie A ig B im C ih D    
                

 

                             2 1
2

4

v v
vm F A A 
            

 

                            
1 1

4 4

v v v v
v vM B B f C C   
             

 

                          
1

4

v v
vN D D 
      , 

 

where the transformations are v vF F  , v vM M  , v vf f  , 

v vN N  . Rearranging the terms of equation (2.24), we get 

 

(2.25)              2 2L m
         

  
 

 

                           2 2m
        

  
 

 
            

                           
1

vA F
ie

 
      

 
      
 

   

     

 

                           
1

vB M
ig

 
      

 
      
 

 

 

 

                           
1

vC f
im

 
      

 
      
 

 

 

 

                           
1

vN
ie

 
      

 
       
 

, 

 

We get the equation of motion for unified charge as, 
 

(2.26)               2 22 2m m 
               , 
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Then the current equation for the unified charges are described as, 
 

(2.27)            

     
     

     
     

,

,

,

.

ev
v

mv
v

Gv
v

Hv
v

F J ie

M J ig

f J im

N J ih
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