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Abstract: In this formalism the covariant derivative contains the four
potentials associated with four charges and thus leads the different
gauge strength for the particles containing electric, magnetic,
gravitational and Heavisidian charges. Quaternions representation in
spontaneously symmetry of breaking and Higg's mechanics and the
equation of motion are derived for free particles (i.e. electric, magnetic,
gravitational and Heavisidian charges). The quaternionic gauge theory
of quantum electrodynamics has also been developed in presence of
electric, magnetic, gravitational and Heavisidian charges.
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1. Introduction

The asymmetry between electricity and magnetism became very clear at
the end of 19" century with the formulation of Maxwell's equations.
Magnetic monopoles were advocated" ? to symmetrize theseequations in a
manifest way that the existence of an isolated magnetic charge implies the
quantization of electric charge and accordingly the considerable literature®**
has come in force. The fresh interests in this subject have been enhanced
by’t Hooft® and Polyakov'® with the idea that the classicalsolutions having
the properties of magnetic monopoles may be found in Yang-Mill's gauge
theories. Now it has become clear that monopoles are better understood in
grand unified theories and super-symmetric gauge theories. Julia and Zee"
extended the’t Hooft-Polyakov theory® *® of monopolesand constructed the
theory of non-Abelian dyons (particles carrying simultaneously electric and
magnetic charges). The quantum mechanical excitation of fundamental
monopoles includes dyons which are automatically arisen®® from the semi-
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classical quantization of global charge rotation degree offreedom of
monopoles. In view of the explanation of CP-violation in terms of non-zero
vacuumangle of world®, the monopoles are necessary dyons and Dirac
quantization condition permits dyons tohave analogous electric charge.
Renewed interests in the subject of monopole has gathered enormous
potential importance in connection of quark confinement problem® in
quantum chromodynamics,possible magnetic condensation®** of vacuum
leading to absolute color confinement in QCD, itsrole as catalyst in proton
decay®*, CP-violation®, current grand unified theories® and super-
symmetric gauge theories?®®®. There has been a revival in the formulation of
natural laws withinthe frame work of general quaternion algebra and basic
physical equations. Quaternions® were very first example of hyper complex
numbers having the significant impacts on Mathematics and Physics.
Moreover, quaternions are already used in the context of special relativity®,
electrodynamics®® Maxwell's equation®*, quantum mechanics®*, gauge
theories®®, supersymmetry39,40 and other branches of Physics* and
Mathematics*. Symmetry plays the central role in determining its dynamical
structure.

The Lagrangian exhibits invariance under gauge transformations for
the electroweak interactions. Since the imposition of local symmetry implies
the existence of mass less vector particles®, Higg's mechanism is used for
the spontaneous breaking of gauge sym metry to generate masses for the
weak gauge bosons charged as well as neutral particle®. If thesefeatures of
the gauge theory are avoided, we obtain massive vector bosons and hence
the gauge symmetry must be broken. In the Higg's mechanism a larger
symmetry is spontaneously broken into a smaller symmetry through the
vacuum expectation value of the Higg's field and accordingly gauge bosons
become massive. The simplest way of introducing spontaneous symmetry
breakdown is to include scalar Higg's fields by hand into the Lagrangian®.
Recently, we have made an attemptto develop the quaternionic formulation
of Yang-Mill's field equations and Octonion reformulation of quantum
chromodynamics (QCD) by taking magnetic monopole into account**’. The
quaternion gauge theory of spontaneously symmetry breaking mechanism
already developed by others*** in terms of gauge groups and methodology
adopted by them in different manners. Starting with the definition of
quaternion gauge theory, we have undertaken the study of

SU(2),xSU(2) xU(1),xU (1) in terms of the simultaneous existence of
electric and magnetic charges along with their Yang-Mill's counterparts>**".
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As such, we have developed the gauge theory in terms of four coupling
constants associated with four-gauge symmetry SU (2)_xSU(2) xU(1),
XU (1) .
Accordingly, we have made an attempt to obtain the Abelian and non-
Abelian gauge structures for the particles carrying simultaneously the
electric and magnetic charges (namely dyons). In this paper the covariant
derivative contains the four-potentials associated with these four charges
and thus leads the different gauge strength for the particles containing
electric, magnetic, gravitational and Heavisidian charges. Quaternion’s
representation in spontaneously symmetry of breaking and Higg's
mechanics and the equation of motion are derived for free particles (i.e.
electric, magnetic, gravitational and Heavisidian charges). We have
extended the local gauge invariance in order to explain spontaneous
symmetry breaking mechanism. The quaternionic gauge theory of quantum
electrodynamics has also been developed in presence of electric, magnetic,
gravitational and Heavisidian charges.

2. Spontaneous Symmetry Breaking in the Form of Quaternions

The Lagrangian of a complex scalar field, which carries a scalar electric
charge (e), and magnetic charge (g), gravitational (m) and Heavisidian

(h) must be gauged with respect to both the vector and pseudo vector
potentials (A B C#,D#) is*"

w =t

@) L=(D,9)(D,0)-V(9) -G FuF T gM M

Tg, tm I, N
4 4 "

uv

Then the Lagrangian for unified charges (electric, magnetic, gravitational,
Heavisidian) of the scalar field is*,

(2.2) L, =(0, +ieA, +igB, +imC,, +ihD, )
x ¢ (0,+ieA, +igB, +imC,, +ihD,, )¢
1 1 1 1

S Fu B M M N N
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where ¢
gravitational and Heavisidian four currents 3, J
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field can be written in terms as,

is the complex conjugate of ¢. The electric magnetic

319 =ie[¢(D,9)-4(D,9) .

3™ =gl g D_¢)|,
ORI

3% =im[ #(D,¢)-¢(D,9) |

3 =|h[¢? ) ¢(Dﬂ¢)].
Since e, g, m, h are scalar quantities, then the potential terms described
8.847,
(2.4) V() =m?(54)+4(F4)",

where m? and are real constant parameters and should be positive to ensure
the stable vacuum. If the potential energy in the vacuum state of minimum

energy can be found by minimizing potential V (¢). Then for the vacuum
state,

2.5) ‘;\; 0= g\; ~0=m?§ +24(§4)§ =0
where
2
26 gt — |
(2.6) 5

Substituting the value of V (#)”in the equation (2.1), then equation (2.1) can

be written as,
(2.7) L, =(0, +ieA, +igB, +imC,, +ihD, )

— . . . . 1
x & (6ﬂ+|eAu+|gBﬂ+|mCﬂ+|hDﬂ)¢ “IMaM w
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ARt i (§0)-a(60)

The self interaction coupling constant A is taken to be positive definite and
for m?>0 the potential acquires a vacuum expectation value of

(2.8) ¢(x)=%(v+n(x)+ig(x)):%(v+n(x))ei§(x)/ﬁ.

One can transform the &(x) field away by making the gauge transformation
under the following conditions,

2.9) ¢'(x)=¢(x)=%(v+n(x))

2

and the potentials has the following form

K, ()= A, ()= 5-0,x(x),
B' (x)=B x—iazcx,
10 L ()=8,,(x) = (%)
C;t(x)zcﬂ(x)_ﬂaﬂ’((x)'
D}, (x)=D,,(x)= 50, (x).

The Lagrangian L, is invariant under the above transformations,

substituting these unitary gauge transformations in the equation (2.7), the
Lagrangian becomes *

(2.11) LS=%(8#77)(8"77)+%(2m2)772—ZF R =M, M

1 L1 w1
= Fa T =N N +Ev2(e2AyA”+ng#B”

+m?C ,C#+h?D,D* +2egA ,B* +2emA C* +2ehA D*

+2gmB,C* +2ghB D + 2mhC ,D* ) - Avp® _%774
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+vy(e”A, A% +g?B, B +m’°C,C* +h’D,D" )+ (2egA,B*
+2emA, C* +2¢hA,D* +2gmB,C* +2ghB,,D* + 2mhC D * ),
where

(2.12) Li=L,+L,,
If the Lagrangian is free from kinetic and mass terms, then*
_ 1 u 1 2 2 1 uv 1 uv
(2.13) L, _E(aﬂn)(a 77)+E(2m )n — ML M=
N N# 12 (e2a A% 4 g2B B¥ +mPC C*
— N N+ 2 (e’A,A*+9’B, B +m’C,,

2 7
+h“D ,D* +2egA B* +2emA C* +2ehA D* +2gmB C*

+2ghB,,D* +2mhC ,D* )

and the interaction terms of Lagrangian L, becomes®’

(2.14) L, =-Avp® —%774 +vn(eA,A* +9°B,B* +m°C,C*
+h?D ,D* +2egA B* +2emA C* +2ehA D* +2gmB C*
+2ghB,, D" +2th#D”)+T7—22(e2A#A“ +9°B,B*
+m?C,C#+h’D,D* +2egA B* +2emA C* +2ehA D*
+2gmB,C* +2ghB,D* + 2mhC,D* ).

One can write the gauge boson mass and their scalar interaction terms in the
form of 4x4 matrices as,
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e’ eg em eh) A¥

2

ge g° gm gh|B”

(2.15) p=x(A,B,C,D :
(” ! ) me mg m2 mhi|C#
he hg hm h?)|D*
2
k=", v, 1 for the gauge boson mass, tri-linear interaction and

2
quaternionic action terms respectively. Now applying the duality
transformation E =Ecosn+Hsinn, H =Ecosy—sinn, and G =Gcosz

—Hsiny and G=Gcosn+Msinny, M =Gcosy—Hsinz . If the mass and
integration matrices are diagonalized. Then

0 0O 0

AH
0 0
B#
(2.16) p=x(A,B,C,D,)=/0 0 0 0 o
e’ +g?
0 0 D
+m?® +h?
The equation (2.7) can also be written as,
R — — 2
(217)) L =D,¢D"p-m?*(4¢)-A(44)
—EFWF‘”—EM M L Vf’”—lN L NAY
4 4 4 4~ 4 *

Applying the following gauge transformations,
(2.18) P 0o .

The unified gauge fields for electric, magnetic, gravitational and
Heavisidian A,, B,, C,, D, transformed™ as,

A, =0A,&+a0d,b,
B,=wB,d+w),d
C,=aC,&+wd,d,
D, =D, &+ wd,a.

(2.18)
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Applying the condition equation (2.18), the covariant derivatives for unified
charges reduces to,

(2.19) A,$=0,4—ieA, $—igB ¢—imC,4—ihD ¢,

Taking the variation in the covariant derivative, the equation (1.19)
becomes,

(2.20) S5(A,$)=0,6p—ieA,5p—igB 54 —imC 5 —ihD 5
~ieSA ¢ —ig5B ¢ —imSC ,¢—ihsD, ¢
~(0, —ieA, —igB,, —imC,, —ihD,,)5p—iesA, ¢
~igsB ¢ —imSC ¢~ ihsD ¢
=A ,0p—ieSA,$—ig5B ,¢—imSC ,¢—ihsD, 4.
Similarly,
(2.21) 5(A.)=A,5p—iesA$—igoB,¢—imsC, 4 —ihsD,4,

where the energy momentum field strength for different charges such as
electric, magnetic, gravitational and Heavisidian®,

F.=0,A—-0,A,—ie[A,, A,],

222 M, =8,B,-6,B,-i[B, B,]
fn=0,C,-0,C,—ie[C,.C,|,

N, =0,D,-8,D,-ie[D,,D,].

and correspondingly the variation in equation (2.22) becomes,
SF,, =A,0A, —A5A,

oM ,, =A 6B, -A 6B,

5f,,=A,8C, ~A,6C,
6N, =A,6D,~A,6D,,.

(2.23)
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Applying the variational principle, then the Lagrangian L in equation
(2.17) becomes®,

(2.24) 5L=(A#5¢—ie5Aﬂ¢—igdBﬂ¢—im5Cy¢—ih5D#¢)A"¢
+A B A 5p—ieS N p—igsB¥p—imSC p —ihs D )
sy s 1 u \ \ u
—~(m? +224¢)(¢5p +¢5¢)+ZFW (A*5AY - A"SA")

+%M e (A#5B —AV&B*‘)% f,,. (A#5CY —A'SCH)

+%NV# (A*sDY -A"sD*),

where the transformations are F,, =-F,,, M ,, ==M , f  =-1 ,

N , =—N,,. Rearranging the terms of equation (2.24), we get
(2.25) 5L=[{5¢7 (a,479—(m? +2/1¢7¢))¢H

+:{5¢(A”A”¢ ~(m?+ 2,1¢¢7))¢7ﬂ

o san (A,8)8 —4(A,9) +%A" FV#}
+ 5B”(Aﬂ¢)$—¢(A_y¢)+%A”MV#}

+:5c” (Aﬂ¢)¢7—¢(A_ﬂ5)+%M fvﬂ}

+—6A”(Aﬂ¢)ﬁ—¢(A_#¢)+%A”NVH},

We get the equation of motion for unified charge as,

(2.26) A NG—(M? +214¢)p=A NG —(m° + 210 )¢,
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Then the current equation for the unified charges are described as,

(2.27)
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